AN76405 (Infineon

EZ-USB™ FX3™/FX3S™ boot options

About this document

Scope and purpose

ANT6405 describes the boot options—over USB, I°C, serial peripheral interface (SPI), and synchronous Address
Data Multiplexed (ADMux) interfaces—available for the EZ-USB™ FX3™ peripheral controller. This application
note is also applicable to FX3S™ and CX3 peripheral controllers.

Intended audience

This application note is primarily intended for EZ-USB™ FX3™/FX3S™/CX3 users.

Associated part family

CYUSB30xx

More code examples? We heard you.

For a consolidated list of USB SuperSpeed Code Examples, visit https://www.cypress.com/101781.

Table of contents

AboUt this dOCUMENT.....cuiiiiiiiniiiiiniiieiiniineiisieiiaeitestasisesrestassestescsesssssascsssssssasssssssssssssssssssssssnssassne 1
Table Of CONTENTS...uciuiiiiiiiineiiiiiniiieriiineiiitiniiaesieiiaettestascsesrestascsesssscaesssssasssssssssassssssassssssassasssessassses 1
1 INErOAUCEION couuiviiieiieiiniiieiiaiinesieiiaiaesiastaesiesiaecsestascaessessaessssssscaesssssasssssssssassssssassssssassssssassansss 4
2 MOre iNformation c...iiiuciiiiniiniiniineiieniniinesiniiaeisesiascaesrestsecsesssscaessesssessssssscassssssassssssnssasssnssassne 5
2.1 EZ-USB™ FX3™ software development Kit........cocvecieeeeeeriineeiereeeesieseetese et te s sa s re e 5
2.2 GPIF™ 11 @SIGNEL c.ntiieieieeteteetet ettt ettt et et st et e st st e b e satestess e st e bes st ensenbesatensesssensessesnsensesasensens 5
3 (24 Bl + 7o Yo X o o1 41T 1 -3 ON 7
4 L0 23 Y 1 N 9
4.1 PMODE PINS 1euveeiiieitineineenterssesseeseeseesssesssesssesssesssessssssssesssesssesssesssessseesssesssesssesssessssssssesssesssessssessasssees 9
4.2 FRATUIES ettt ettt e ettt e s st e s s eart e e s s use e e s s nseee s s nsneessensaaessensaaessensaaessennsaessennsenesanns 9
4.2.1 DEfAUIt SIlICON D ...ueiieeeeeteteeteteeeet ettt ettt et et e b e s be et e be st e beebeensebeeseensesseensensesssensensennsenes 9
4.2.2 2T oYoYu Lo T Ta 1T g oAV =YY o 1TSS 10
4.2.3 RENUMEIATION™. ..ottt rre e et e e bt e s s te e s beesesbee s bae e bteeessee s saeesssaesnseaensseesseenn 10
424 BUS-POWEred apPPliCAtIONS ..ccviruerieierteteeeetereet ettt st ettt a st e e e sae et e be s e essessesssessesnsensas 10
4.2.5 USB fallback Options (== USB)cvecieiieiiceeieteeeete sttt et sve e tesre s e tesrnesae e e s e sessnenees 10
4.2.6 USB With VID/PID OPLIONS .uveeteriirieieriteienieetesieseestesteetestesssesessesssessessssssessssssessessssssessesssessesssenses 10
4.2.7 USB dEfaUlt EVICEveeeeiieeeeteteeteeeeetee ettt ettt e s e e ae s s s e e e s e et e sre e s e bessaesessaensessenssenses 10
4.2.8 USB SELUP PACKET .. ietitieteeteterert ettt ettt et et e e s ae st e s s st st e sse et esbessnessessesnsansesnsensas 10
4.2.9 USB Chapter 9 and Vendor COMMAaNScocveveeirrienirrienienteieneetenresteseeseeesessessessessesssessesssenses 11
4.2.10 USB VENAOr COMMANGASuiieiiieiiiiiiieiieeseeseesresressresstessseeseaesssessesssessseasseessnessnesssesssasssasssaesseesnes 11
4.2.11 USB download SAmMPLe COAE ..ottt sttt et e st e sae et e sbe s e e ssesse s s e saesneenees 13
4.3 ChecksUM CalCULATION c..viiiictecececeetece et e et e e s e sre e s re st e s ba s baessnesssesssesssnassasnsnas 14
43.1 FX3™ bootloader memory alloCationoceeiieiieriiiiiiiiicicsecr e s s sre s e e e svnesee 14
4.3.2 REZISTEIS/MEMOIY QCCESS .uvvivrervirureiereetenieeterteseestesseetessesssesessesssessesssensessesnsessesssessessesssessesssenses 15
433 USB €FUSE VID/PID DOOT OPLIONuiiiiiitiitireeiieniensiessiesseesnessessessaesseeesseesseessnesssesssesssasssassseesnns 15
Application Note Please read the Important Notice and Warnings at the end of this document 001-76405 Rev.*K

www.infineon.com page 1 of 77 2021-04-16

http://www.infineon.com/
http://www.cypress.com/products/ez-usb-fx3s

o _.
EZ-USB™ FX3™/FX3S™ boot options < Infineon

Table of contents

43.4 USB OTG coeeiieeieeiteeeeeitteeeeiteeese ittt e s sseeeesssbteesssasteessssaeesssasaaesssassaesssnsssessssssnesssssnessssssnesssssseaesssnsnes 15
435 BOoOtloader IMItatioNSccueeierieieieieeree ettt ettt st st sae st et e e nes 15
4.3.6 USB WatChAOZ LIMEN ...ttt ettt ettt ettt et s et e sae et e b e st e sbe e st e b esaeeatenses 15
4.3.7 USB SUSPENA/FESUME.....cuvieuieierreeterieeeetesestessesseessessesssessesssessessesssessessesssessesssessesssessessesssessesssenses 15
4.3.8 USB dEVICE AESCIIPLOIS .eouvieeeeieeeeeteiertetesteetesteste e st e eeste s e essessesss e sessaessessesssassesssessessesssessesssenses 15
4.4 BOOt IMAZE fOrMAL ..ottt ettt s bbb e st et e s e e e e ebessens 17
441 Example of boot image format organized in long-word formatccceceveecienencenenceeceneeeee, 18
5 I2C EEPROM BOOT couuiiuiiiueiinniinnicinniaesineicrasiaessssssssssasssssscssssssssssssssssssassssssssssssassssssssssssnsssasssne 20
5.1 FRATUIES ..ottt aa e s ar e sba e s a 20
5.2 Storing firmware image 0N EEPROMccociviririninienieieteeeesiesie sttt sttt ssessessessesaesaessesassessesnes 21
521 Important points on 128-KB EEPROM addreSSiNgccceeereerieneerierieeienieseseessessessessesssessesseenses 21
5.3 BOOt IMAZE fOrMAL ..ottt ettt s bbb e st e e e s e e e e ebasaens 22
5.4 CheckSUM CalCULATION .c.ueiiiiteeeeeee ettt ettt b e s bbbttt saeenes 24
5.4.1 First eXample DOOT IMQAZE c..cveiiieieiieieeieeerereetee ettt ettt b s b st sttt enes 24
5.4.2 Second eXample DOOT IMAZEcoii ittt ettt sttt st s e e e 24
5.4.3 Checksum calculation SAMPLE COAE ...ttt 25
6 12C EEPROM boot With USB fallDackKcccuiirmniirnniiirnniiirnniciranicnraeicnsacicnssssnsscssnssessssssssssssssssnes 27
6.1 FRATUIES ..ottt ba e s sae e s ba e e a 27
6.2 Example image for boot With VID @nd PID......c.ccevieieiiiririrenenesiesiesteseesee e ssesaesae s s aesesaeas 27
7 £ o+ T T« 1 RN 28
7.1 FRATUIES ..ottt ba e s sae e s bae e a 28
7.2 SELECtiON Of SPIFlASNiiiiiieiteeeee sttt ettt s e e b aeneesesseenas 29
7.3 Storing firmware image on SPIflash/EEPROM........cccouiiiirinininenenienienieeeeeeseessesseseessessessessenesseenes 29
7.4 BOOt IMAZE fOrMQAL ...ttt sttt ettt st b s b sb et et et e e e e eseesessens 30
7.5 CheckSUM CalCUIALION ..ouiiiiiieteee ettt ettt et et b st e b e st et e sbe st e saesbaeneenee 31
8 SPI Boot With USB fallDackc.ceuieuiiniiniiniieiiniieiiniisnianiasieniaisesiasisessesiscsessasssessesssscsessascsssss 33
8.1 Example image for boot With VID @nd PID........ccevueieiiieinirenenesiesiesieseeeee e see st ssesaesae s s eeessens 33
9 SYNChronous ADMUX BOOTiuiieiiiiaiiniieineiaiieiieineiacissiessecsecasssssessecsssessessesssssssssessessssssssssessoses 34
9.1.1 INEEITACE SIGNALS vttt sttt ettt b s b sttt e bt et enesaeenes 34
9.1.2 SYNCHIONOUS ADMUX LIMINE . ..iviiiieiirieiienieetenieete st erteeteste st etesbesstessesseetessesssessessssnsessesssensessasssenne 35
9.1.3 USB fallDack (--SUSB)....eivieeieiecieeteieeeetesesteste et e testesseestesreesessesss e sessaessesseessessesssassessesssensesssenses 36
9.14 WA DOOT ...ttt ettt ettt b e s bbb et ettt e st e b sbesbebebeae e eneeneenesaens 36
9.1.5 A T oY] 7= LT Lo TSR 36
9.1.6 O] | LY I oY o] o Yol e Y TSR 38
9.1.7 Firmware download eXamPLle........ccuieiieieeciececceeceee ettt cte e e e e e e sae s teste e be e saesneeenns 39
9.1.8 Processor port (P-Port) regiSter Mapccccveeerierienieieeeeeesesestese ettt s see e e e e e esesseenas 40
9.2 BOOt IMAZE fOrMAL ...ttt sttt ettt e b e s bbb et et e e e e e e ebesaens 49
10 eMMCDOOL ...ceiiiiiiiiiiiiiiciiitiiiiicteitnetiteittecteitacsestataccsestaccsessassscssessasssessassssssessassssssnssasasens 53
11 Default state of I/Os dUuring bootccciuuiiuiiniiniiniinniniinineniniiaeciiiaisesieecsessssssccsessescsesssssascanss 54
12 Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)......ccccectutaecnesrancaccsnscaccanes 56
12.1 USB DOOT ... ettt ettt ettt ettt et s bt et b e et et ea et e s bt et e b e sat et e bt e abenateatenres 56
12.2 2 DOOT .ttt ettt ettt et ettt e ae b e b et et et et e st e ReeReeseete et et et eaenaeneeneereereas 60
12.3 Y I o o Lo | PRSP 64
13 Appendix B: Troubleshooting steps for Sync ADMUX BOOt........cccueiruiinecneniaccaecresiaecaessescaecsnssaecaens 69
13.1 INTEIAlIZATION ettt ettt et b e st e bt et e s bt et e b sae et e be et e sae et enees 69
13.2 TSt rEZISTEr FEAU/WIITE. .. ettt ettt ettt st b e b e bt et be e 69
13.3 TESE FIFO AU/ WL cevvveeeietiei ettt eerve e e e bee e e eebae e e sesbeeeesesbaseesessaasesessasessessaseesenseressnnes 69
134 Test firmWare dOWNLOAMooverierierieieeeteeetet ettt e et s e et e be st e sesbeessesseessensesanensans 71
Application Note 20f 77 001-76405 Rev.*K

2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Table of contents

14 Appendix C: Using the elf2img utility to generate firmware image.....ccccoerviieiiniinccnninccecnnniacaens 72
14.1 = T TSP OTRSPTPI 72
14.1.1 DA T P ettt ettt s st bbbt e s et e s b e s be e s nane s bae s 72
14.1.2 T T =T g U] o AVZ =Tt o ol (oY T [T 72
14.1.3 EEPROM CONTIOL ...ttt sttt ettt sttt et ettt sa e b e s b sb et esa et eneenessenes 72
14.1.31 [2C PANAMELEIS ittt ettt ettt eerte e s st e e s s bee e s sessaeessessaeessnsaaeessseaesssnseaesssseasessnsees 73
14.1.3.2 SP I PAIAMELEIS . ittt ettt sree e sre e st e s see e s ree s seessssaesaseessssassssaessnseessaessneeesseessreens 73
3 L = =T L= PPN 74
REVISION NISTOrY..cuiiiiiiiiiiiiiiniinciiiiiiiieiiiiniieiiniieecseiiaecsesisstsccssstsscsessesanss 75
Application Note 30f 77 001-76405 Rev.*K

2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Introduction

1 Introduction

EZ-USB™ FX3™ is the next-generation USB 3.0 peripheral controller, providing highly integrated and flexible
features that enable developers to add USB 3.0 functionality to a wide range of applications. FX3™ supports
several boot options, including booting over USB, I°C, SPI, synchronous and asynchronous ADMux interfaces.

Note: This application note describes the details of only the USB, I°C, SPI, and synchronous ADMux boot
options.

The default state of the FX3™ 1/Os during boot is also documented. Appendix A covers the stepwise sequence
for testing the different boot modes using the FX3™ DVK.

Application Note 40of 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=58321

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

More information

2 More information

Infineon provides a wealth of data at www.cypress.com to help you to select the right device for your design,
and to help you to integrate the device into your design quickly and effectively.

e Overview: USB Portfolio, USB Roadmap
e USB 3.0 product selectors: FX3™ , FX3S™, CX3, HX3

e Application notes: Infineon offers a large number of USB application notes covering a broad range of topics,
from basic to advanced level. Recommended application notes for getting started with FX3™ are:

- AN75705 - Getting started with EZ-USB™ FX3™
- AN70707 - EZ-USB™ FX3™ /FX3S™ hardware design guidelines and schematic checklist
- AN65974 - Designing with the EZ-USB™ FX3™ slave FIFO interface

- AN75779 - How to implement an image sensor Interface with EZ-USB™ FX3™ in a USB Video Class (UVC)
framework

- AN86947 - Optimizing USB 3.0 throughput with EZ-USB™ FX3™
- ANB84868 - Configuring an FPGA over USB using EZ-USB™ FX3™
- ANG68829 - Slave FIFO interface for EZ-USB™ FX3™ : 5-bit address mode
- AN76348 - Differences in implementation of EZ-USB™ FX2LP and EZ-USB™ FX3™ applications
- ANB89661 - USB RAID 1 disk design using EZ-USB™ FX3S™
e Code examples:
- USB Hi-Speed
- USB Full-Speed
- USB SuperSpeed
e Technical reference manual (TRM):
- EZ-USB™ FX3™ Technical Reference Manual
e Development kits:
- CYUSB3KIT-003, EZ-USB™ FX3™ SuperSpeed Explorer Kit
- CYUSB3KIT-001, EZ-USB™ FX3™ Development Kit
- Models: IBIS

2.1 EZ-USB™ FX3™ software development kit

Infineon delivers the complete software and firmware stack for FX3™ to easily integrate SuperSpeed USB into
any embedded application. The Software Development Kit (SDK) comes with tools, drivers, and application
examples, which help accelerate application development.

2.2 GPIF™ Il designer

The GPIF Il Designer is a graphical software that allows designers to configure the GPIF Il interface of the EZ-
USB™ FX3™ USB 3.0 Device Controller.

The tool allows users the ability to select from one of five Infineon-supplied interfaces, or choose to create their
own GPIF Il interface from scratch. Infineon has supplied industry-standard interfaces such as asynchronous
and synchronous Slave FIFO, and asynchronous and synchronous SRAM. Designers who already have one of
these pre-defined interfaces in their system can simply select the interface of choice, choose from a set of
standard parameters such as bus width (x8, 16, x32) endianness, clock settings, and then compile the interface.
The tool has a streamlined three-step GPIF interface development process for users who need a customized

Application Note 50f 77 001-76405 Rev.*K
2021-04-16

https://www.cypress.com/?source=PSoC5LP_Datasheet
http://www.cypress.com/?id=167
http://www.cypress.com/?rID=94780
http://www.cypress.com/?id=3526
http://www.cypress.com/?id=4833
http://www.cypress.com/cx3/
http://www.cypress.com/hx3
http://www.cypress.com/?rid=59979
http://www.cypress.com/?rid=53203
http://www.cypress.com/?rid=51581
http://www.cypress.com/?rid=62824
http://www.cypress.com/?rID=84341
http://www.cypress.com/?rid=75048
http://www.cypress.com/?rid=59936
http://www.cypress.com/?rid=61948
http://www.cypress.com/?rID=88018
http://www.cypress.com/?rID=61168
http://www.cypress.com/?rID=101782
http://www.cypress.com/?rid=101780
http://www.cypress.com/?rid=101781
http://www.cypress.com/?rID=80775
http://www.cypress.com/documentation/development-kitsboards/cyusb3kit-003-ez-usb-fx3-superspeed-explorer-kit
http://www.cypress.com/documentation/development-kitsboards/cyusb3kit-003-ez-usb-fx3-superspeed-explorer-kit
http://www.cypress.com/documentation/development-kitsboards/ez-usb-fx3-development-kit-cyusb3kit-001?source=search&keywords=CYUSB3KIT-001
http://www.cypress.com/documentation/development-kitsboards/ez-usb-fx3-development-kit-cyusb3kit-001?source=search&keywords=CYUSB3KIT-001
http://www.cypress.com/?rID=68389
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=59628

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

More information

interface. Users can first select their pin configuration and standard parameters. Secondly, they can design a
virtual state machine using configurable actions. Finally, users can view the output timing to verify that it
matches the expected timing. After this three-step process is complete, the interface can be compiled and
integrated with FX3™.

Application Note 6 of 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

FX3™ boot options

3 FX3™ boot options

FX3™integrates a bootloader that resides in the masked ROM. The function of the bootloader is to download
the FX3™ firmware image from various interfaces such as USB, I1°C, SPI, or GPIF Il (for example, synchronous
ADMugx, or asynchronous ADMux).

The FX3™ bootloader uses the three PMODE input pins of FX3™ to determine the boot option to be used. Figure
1 shows the boot options discussed in this application note. Table 1 lists these boot options along with the
required PMODE pin settings.

1’C EEPROM

Boot from an
I°C EEPROM

External FPGA/
Processor

Boot over
Sync ADMux

EZ-USB FX3

Boot over
B e usevom

_PMODEZ
_PMODES, |
PMODEQ,
P! Fisoh
SPI Flash
Figure 1 FX3™ boot options
Table 1 Boot options for FX3™ *
PMODE[2:0] Pins Boot option USB fallback
PMODE][2] PMODE[1] PMODE[0]
z 0 0 Sync ADMux (16-bit) No
VA 1 1 USB Boot Yes
1 YA Z I’C No
Z 1 Z I)C > USB Yes
0 Z 1 SPI 2> USB Yes
1 0 0 eMMC** No
0 0 0 eMMC** > USB Yes

Other combinations are reserved.
Note:

* Z = Float. The PMODE pin can be made to float either by leaving it unconnected or by connecting it to an FPGA
I/0 and then configuring that 1/0 as an input to the FPGA.
**: eMMC boot is only supported by FX3S™.

In addition to the boot options listed in Table 1, FX3™ supports booting from asynchronous ADMux interface.
Contact Applications Support for details. The following sections describe the boot options supported by FX3™:

e USB Boot: The FX3™ firmware image is downloaded into the FX3™ system RAM from the USB Host.

Application Note 7of 77 001-76405 Rev.*K
2021-04-16

https://secure.cypress.com/myaccount/?id=25&techSupport=1

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

FX3™ boot options

e 12C EEPROM Boot: The FX3™ firmware image is programmed into an external I?C EEPROM, and on reset, the
FX3™ bootloader downloads the firmware over I°C.

e SPI Boot: The FX3™ firmware image is programmed into an external SPI flash or SPI EEPROM, and on reset,
the FX3™ bootloader downloads the firmware over SPI.

e Synchronous ADMux Boot: The FX3™ firmware image is downloaded from an external processor or an FPGA
connected to the FX3™ GPIF Il interface.

Application Note 8of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

USB boot

4 USB boot

Figure 2 shows the system diagram for FX3™ when booting over USB.

EZ-USB FX3

Boot over

External FPGA/ P USB2.0 USB Host
PMODE2=Z
————

PMODE1=1

PMODEO=1
——

Figure 2 FX3™ system diagram

4.1 PMODE pins

For USB boot, the state of the PMODE[2:0] pins should be Z11, as shown in Table 2.

Table 2 PMODE pins for USB boot
PMODE[2] PMODE][1] PMODE]0]
Z 1 1

Note: Z=Float

4.2 Features

The external USB Host can download the firmware image to FX3™ in USB 2.0 mode. FX3™ enumerates as a USB
Vendor class device with bus-powered support.

The state of FX3™in USB boot mode is as follows:

e USB 3.0 (SuperSpeed) signaling is disabled.
e USB 2.0 (High Speed/Full Speed) is enabled.
e FX3™uses the vendor command AOh for firmware download/upload. This vendor command is implemented

in the bootloader. (Unlike FX2LP™, the AOh vendor command is implemented in firmware; that is, in the
bootloader code.)

4.2.1 Default Silicon ID

By default, FX3™ has the default Cypress Semiconductor VID=04B4h and PID=00F3h stored in the ROM space.
This VID/PID is used for default USB enumeration unless the eFUSE* VID/PID is programmed. The default
Cypress ID values should be used only for development purposes. Users must use their own VID/PID for final
products. AVID is obtained through registration with the USB-IF.

1 eFUSE is the technology that allows reprogramming of certain circuits in the chip. Contact your Cypress representative for details on
eFUSE programming.

Application Note 90of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options < Infineon

USB boot

4.2.2 Bootloader revision

The bootloader revision is stored in the ROM area at the address FFFF_0020h, as shown in Table 3.

Table 3 Bootloader revision

Minor revision FFFF_0020h

Major revision FFFF_0021h

Reserved bytes FFFF_0022h, FFFF_0023h
4.2.3 ReNumeration™

ReNumeration™ feature is supported in FX3™ and is controlled by firmware.

When first plugged into a USB Host, FX3™ enumerates automatically with its default USB descriptors. Once the
firmware is downloaded, FX3™ enumerates again, this time as a device defined by the downloaded USB
descriptor information. This two-step process is called “ReNumeration™.”

4.2.4 Bus-powered applications

The bootloader enumerates in the bus-powered mode. FX3™ can fully support bus-powered designs by
enumerating with less than 100 mA, as required by the USB 2.0 specification.

4.2.5 USB fallback options (--> USB)

When booting over other options with USB fallback enabled, FX3™ will fall back to the same USB boot mode
described in this section. The operating current may be slightly higher than the USB boot mode due to other
clock sources being turned ON.

4.2.6 USB with VID/PID options

The bootloader supports booting with a new VID/PID that may be stored in the following:

e |>’C EEPROM: See the 12€C EEPROM boot section of this application note.
e SPI EEPROM: See the SPI boot section of this application note.
e eFUSE (VID/PID): Contact Infineon Sales for custom eFUSE VID/PID programming.

4.2.7 USB default device

The FX3™ bootloader consists of a single USB configuration containing one interface (interface 0) and an
alternative setting of '0'". In this mode, only endpoint 0 is enabled. All other endpoints are turned OFF.

4.2.8 USB setup packet

The FX3™ bootloader decodes the SETUP packet that contains an 8-byte data structure defined in Table 4.

Table 4 Setup Packet
Byte | Field Description
0 bmRequestType Request type: Bit7: Direction
Bit6-0: Recipient
1 bRequest This byte will be A0Oh for firmware download/upload vendor command.
2-3 wValue 16-bit value (little-endian format)
Application Note 10 of 77 001-76405 Rev.*K

2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

(infineon

USB boot

Byte | Field Description

4-5 windex 16-bit value (little-endian format)

6-7 wLength Number of bytes
Note: Refer to the USB 2.0 Specification for the bitwise explanation.
4.2.9 USB Chapter 9 and Vendor commands

The FX3™ bootloader handles the commands in Table 5.

Table5 USB commands
bRequest Descriptions
00 GetStatus: Device, Endpoints, and Interface
01 ClearFeature: Device, Endpoints
02 Reserved: Returns STALL
03 SetFeature: Device, Endpoints
04 Reserved: Returns STALL
05 SetAddress: Handle in FX3™ hardware
06 GetDescriptor: Devices’ descriptors in ROM
07 Reserved: Returns STALL
08h GetConfiguration: Returns internal value
09h SetConfiguration: Sets internal value
0Ah GetInterface:Returns internal value
0Bh SetInterface: Sets internal value
0Ch Reserved: Returns STALL
20h-9Fh Reserved: Returns STALL
AOh Vendor Commands: Firmware upload/download and so on
Alh-FFh Reserved: Returns STALL
4.2.10 USB vendor commands

The bootloader supports the AOh vendor command for firmware download and upload. The fields for the
command are shown in Table 6 and Table 7.

Table 6 Command fields for firmware download
Byte | Field Value Description
0 BmRequestType | 40h Request type: Bit7: Direction
Bit6-0: Recipient.
1 bRequest AOh This byte will be A0 for firmware download/upload vendor
command.
2-3 WVvalue AddrL (LSB) 16-bit value (little endian format)
4-5 Windex AddrH (MSB) | 16-bit value (little endian format)
6-7 wlength Count Number of bytes
Application Note 11 of 77 001-76405 Rev.*K

2021-04-16

http://www.usb.org/developers/docs/usb20_docs/

EZ-USB™ FX3™/FX3S™ boot options

(infineon

USB boot
Table7 Command fields for firmware upload
Byte | Field Value Description
0 BmRequestType | COh Request type: Bit7: Direction
Bit6-0: Recipient.
1 bRequest AOh This byte will be A0 for firmware download/upload vendor
command.
2-3 WValue AddrL (LSB) 16-bit value (little endian format)
4-5 Windex AddrH (MSB) | 16-bit value (little endian format)
6-7 wlLength Count Number of bytes

Table 8 Command fields for transfer of execution to program entry
Byte | Field Value Description
0 bmRequestType | 40h Request type: Bit7: Direction
Bit6-0: Recipient
1 bRequest AOh This byte will be A0 for firmware download/upload vendor
command.
2-3 wValue AddrL (LSB) | 32-bit Program Entry

4-5 windex

AddrH (MSB)

32-bit Program Entry>>16

6-7 wlength

0

This field must be zero.

In the transfer execution entry command, the bootloader will turn off all the interrupts and disconnect the USB.
Three examples of vendor command subroutines follow.

Example 1. Vendor Command Write Data Protocol With 8-Byte Setup Packet

bmRequestType = 0x40

bRequest = 0xAO0;

wValue = (WORD)address;
windex = (WORD)(address>>16);
wlength =1 to 4K-byte max

This command will send DATA OUT packets with a length of transfer equal to wLength and a DATA IN Zero

length packet.

Example 2. Reading Bootloader Revision with Setup Packet

bmRequestType = 0xCO

bRequest = 0xAOQ;

wValue = (WORD)0x0020;
windex = (WORD)O0xFFFF;
wlength =4

Application Note

001-76405 Rev.*K
2021-04-16

12 of 77

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

USB boot

This command will issue DATA IN packets with a length of transfer equal to wLength and a DATA OUT Zero
length packet.

Example 3. Jump to Program Entry With 8-Byte Setup Packet (refer to Table 8.)
bmRequestType = 0x40

bRequest = 0xAO0;

wValue =Program Entry (16-bit LSB)

windex =Program Entry >>16 (16-bit MSB)

wLength =0

Note: FX3™ uses 32-bit addressing. Addresses should be written to the wValue and windex fields of the
command.

4,2.11 USB download sample code

To download the code, the application should read the firmware image file and write 4K sections at a time
using the vendor write command. The size of the section is limited to the size of the buffer used in the
bootloader.

Note: The firmware image must be in the format specified in Table 14.

The following is an example of how the firmware download routine can be implemented.

DWORD dCheckSum, dExpectedCheckSum, dAddress, i, dLen;
WORD wSignature, wLen;

DWORD dImageBuf[512*1024];

BYTE *bBuf, rBuf[4096];

fread (&wSignature, 1,2, input file);/*fread(void *ptr, size t size, size t count, FILE
*stream)

read signature bytes. */
if (wSignature != 0x5943) // check ‘CY’ signature byte
{
printf (“Invalid image”);
return fail;
}
fread(&i, 2, 1, input file); // skip 2 dummy bytes

dCheckSum = 0;

while (1)

{
fread (&dLength, 4,1,input file); // read dLength
fread(&dAddress,4,1,input file); // read dAddress
if (dLength==0) break; // done

// read sections

Application Note 13 of 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

USB boot

fread (dImageBuf, 4, dLength, input file);
for (i=0; i<dLength; i++) dCheckSum += dImageBuf[i];
dLength <<= 2; // convert to Byte length
bBuf = (BYTE*)dImageBuf;
while (dLength > 0)
{
dLen = 4096; // 4K max
if (dLen > dLength) dLen = dLength;
VendorCmd (0x40, 0Oxa0, dAddress, dLen, bBuf); // Write data
VendorCmd (0xc0, 0xa0, dAddress, dLen, rBuf); // Read data
// Verify data: rBuf with bBuf
for (i=0; i<dLen; i++)
{
if (rBuf[i] !'= bBuf) { printf(“Fail to verify image”); return fail; }
}
dLength -= dLen;
bBuf += dLen;
dAddress += dLen;

}

// read pre-computed checksum data
fread(&dExpectedChecksum, 4, 1, input file);
if (dCheckSum != dExpectedCheckSum)

{

printf (“Fail to boot due to checksum error\n”);
return fail;

}

// transfer execution to Program Entry

VendorCmd (0x40, 0xa0O, dAddress, 0, NULL);

input_file is the FILE pointer that points to the firmware image file, which is in the format specified in Table 14.

4.3 Checksum calculation

In USB download, the download tool is expected to handle the checksum computation as shown in the USB
download sample code section.

4.3.1 FX3™ bootloader memory allocation

The FX3™ bootloader allocates 1280 bytes of data tightly-coupled memory (DTCM) from 0x1000_0000 to
0x1000_04FF for its variables and stack. The firmware application can use it as long as this area remains
uninitialized, that is, uninitialized local variables, during the firmware download.

The bootloader allocates the first 16 bytes from 0x4000_0000 to 0x4000_000F for warm boot and standby boot.
These bytes should not be used by firmware applications.

Application Note 14 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options < Infineon

USB boot

The bootloader allocates about 10K bytes from 0x4000_23FF for its internal buffers. The firmware application
can use this area as the uninitialized local variables/buffers.

The bootloader does not use the instruction tightly-coupled memory (ITCM).

4.3.2 Registers/Memory access

The FX3™ bootloader allows read access from the ROM, MMIO, SYSMEM, ITCM, and DTCM memory spaces. The
bootloader allows write access to the MMIO, SYSMEM, ITCM, and DTCM memory spaces except for the first 1280-
byte of DTCM and first 10K of system memory. When writing to the MMIO space, the expected transfer length for
Bootloader must be four (equal to LONG word), and the address should be aligned by 4 bytes.

4.3.3 USB eFUSE VID/PID boot option

The FX3™ bootloader can boot with your choice of VID and PID by scanning the eFUSE (eFUSE_USB_ID) to see
whether the USB_VID bits are programmed. If they are, the bootloader will use the eFUSE value for VID and PID.

4.3.4 USB OTG

The FX3™ bootloader does not support USB On-The-Go (OTG) protocol. It operates as a USB bus-powered
device.

4.3.5 Bootloader limitations

The FX3™ bootloader handles limited checking of the address range. Accessing non existing addresses can lead
to unpredictable results.

The bootloader does not check the Program Entry. An invalid Program Entry can lead to unpredictable results.
The bootloader allows write access to the MMIO register spaces. Write accesses to invalid addresses can lead to
unpredictable results.

4.3.6 USB watchdog timer

The FX3™ USB hardware requires a 32-kHz clock input to the USB core hardware. The bootloader will configure
the watchdog timer to become the internal 32-kHz clock input for the USB core if the external 32-kHz clock is
not present.

4.3.7 USB suspend/resume

The FX3™ bootloader will enter the suspend mode if there is no activity on USB. It will resume when the PC
resumes the USB operation.

4.3.8 USB device descriptors

The following tables list the FX3™ bootloader descriptors for High Speed and Full-Speed.

Note: The Device Qualifier is not available in the Full-Speed mode.
Table 9 Device descriptor
Offset | Field Value Description
0 bLength 12h Length of this descriptor = 18 bytes
1 bDescType 01 Descriptor type = Device
Application Note 150f 77 001-76405 Rev.*K

2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

USB boot
Offset | Field Value Description
2-3 wBCDUSB 0200h | USB Specification version 2.0
4 bDevClass 00 Device class (No class-specific protocol is implemented.)
5 bDevSubClass 00 Device subclass (No class-specific protocol is implemented.)
6 bDevProtocol 00 Device protocol (No class-specific protocol is implemented.)
7 bMaxPktSize 40h Endpoint0 packet size is 64.
8-9 wVID 04B4h | Cypress Semiconductor VID
10-11 | wPID 00F3h FX3™ silicon
12-13 wBCDID 0100h FX3™ bcdID
14 iManufacture 01h Manufacturer index string =01
15 iProduct 02h Serial number index string = 02
16 iSerialNum 03h Serial number index string = 03
17 bNumConfig 01lh One configuration
Table 10 Device qualifier
Offset | Field Value | Description
0 bLength 0Ah Length of this descriptor = 10 bytes
1 bDescType 06 Descriptor type = Device Qualifier
2-3 wBCDUSB 0200h | USB Specification version 2.00
4 bDevClass 00 Device class (No class-specific protocol is implemented.)
5 bDevSubClass 00 Device subclass (No class-specific protocol is implemented.)
6 bDevProtocol 00 Device protocol (No class-specific protocol is implemented.)
7 bMaxPktSize 40h Endpoint0 packet size is 64.
8 bNumConfig 01lh One configuration
9 bReserved 00h Must be zero
Table 11 Configuration descriptor
Offset | Field Value | Description
0 bLength 09h Length of this descriptor = 10 bytes
1 bDescType 02h Descriptor type = Configuration
2-3 wTotalLength 0012h | Total length
4 bNuminterfaces |01 Number of interfaces in this configuration
5 bConfigValue 01 Configuration value used by SetConfiguration request to select this
interface
bConfiguration | 00 Index of string describing this configuration =0
7 bAttribute 80h Attributes: Bus Powered, No Wakeup
8 bMaxPower 64h Maximum power: 200 mA

Application Note

16 of 77 001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

(infineon

USB boot
Table 12 Interface descriptor (Alt. Setting 0)
Offset Field Value Description
0 bLength 09h Length of this descriptor =10 bytes
1 bDescType 04h Descriptor type = Interface
2 binterfaceNum 00h Zero-based index of this interface =0
4 bAltSetting 00 Alternative Setting value=0
5 bNumEndpoints 00 Only endpoint0
6 binterfaceClass FFh Vendor Command Class
7 binterfaceSubClass 00h
8 binterfaceProtocol 00h
9 ilnterface 00h None
Table 13 String descriptors
Offset Field Value Description
0 bLength 04h Length of this descriptor = 04 bytes
1 bDescType 03h Descriptor type = String
2-3 wlLanguage 0409h Language = English
4 bLength 10h Length of this descriptor = 16 bytes
5 bDescType 03h Descriptor type = String
6-21 wStringldx1 - “Cypress”
22 bLength 18h Length of this descriptor = 24 bytes
23 bDescType 03h Descriptor type = String
24-47 wStringldx2 - “WestBridge”
48 bLength 1Ah Length of this descriptor = 26 bytes
49 bDescType 03h Descriptor type = String
50-75 wStringldx3 - “0000000004BE”
4.4 Boot image format

For USB boot, the bootloader expects the firmware image file to be in the format shown in Table 14. The EZ-
USB™ FX3™ SDK provides a software utility that can be used to generate a firmware image in the format
required for USB boot. Refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB FX3
SDK\1.3\util\elf2img directory after installing the SDK. For 64-bit systems, the first folder in the path is Program
Files(x86). The number 1.3 in the directory path is the version number of the SDK, and it can vary based on the
latest release of the FX3™ SDK. For more details on using the elf2img utility, see Appendix C in Figure 15

Appendix A.
Table 14 Boot image format
Binary image |Length Description
header (16-bit)
wSignature 1 Signature 2 bytes initialize with “CY” ASCII text.
blmageCTL;) Bit0 = 0: Execution binary file; 1: data file type
Bit3:1 No use when booting in SPI EEPROM

Application Note

001-76405 Rev.*K
2021-04-16

17 of 77

http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990

EZ-USB™ FX3™/FX3S™ boot options

(infineon

USB boot
Binary image |Length Description
header (16-bit)

Bit5:4(SPI speed):

00: 10 MHz

01:20 MHz

10: 30 MHz

11: Reserved

Bit7:6: Reserved, should be set to zero

blmageType; 2 blmageType = 0xB0: Normal FW binary image with checksum

blmageType = 0xB2: I*C/SPI boot with new VID and PID

dLength 0 2 First section length, in long words (32-bit)
When blmageType = 0xB2, the dLength 0 will contain PID and VID. Bootloader
ignores the rest of the following data.

dAddress 0 2 First section address of Program Code.
Note: Internal ARM address is byte addressable, so the address for each
section should be 32-bit aligned.

dData[dLength | dLength Image Code/Data must be 32-bit aligned.

0] 0*2

More sections

dLength N 2 0x00000000 (Last record: termination section)

dAddress N Should contain valid Program Entry (Normally, it should be the Startup code,

thatis, the RESET vector.)

Note: If bimageCTL.bit0 = 1, the bootloader will not transfer the execution to
this Program Entry.

If bimageCTL.bit0 = 0, the bootloader will transfer the execution to this
Program Entry. This address should be in the ITCM area or SYSTEM RAM area.

The bootloader does not validate the Program Entry.

dCheckSum 2 32-bit unsigned little-endian checksum data will start from the first section to
the termination section. The checksum will not include the dLength,

dAddress, and Image Header.

4.4.1 Example of boot image format organized in long-word format
Locationl: 0xBO 0x10 'Y’ ’C’ //CY Signature, 20 MHz, O0xB0O Image

Location2: 0x00000004 //Image length of section 1 = 4

Location3: 0x40008000 //1lst section stored in SYSMEM RAM at 0x40008000
Locationd4: 0x12345678 //Image starts (Sectionl)

Location5: Ox9ABCDEF1

Location6: 0x23456789

Location7: OxABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 = 2

Location9: 0x40009000 //2nd section stored in SYSMEM RAM at 0x40009000
LocationlO: OxDDCCBBAA //Section 2 starts

Locationll: 0x11223344

Locationl2: 0x00000000 //Termination of Image

001-76405 Rev.*K
2021-04-16

Application Note 18 of 77

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

USB boot
Locationl3: 0x40008000 //Jump to 0x40008000 on FX3 System RAM
Locationl4: Ox6AF37AF2 //Checksum (0x12345678 + Ox9ABCDEF1 + 0x23456789 +

0xABCDEF12+ OxDDCCBBAA +0x11223344)

The stepwise sequence for testing the USB boot mode using the FX3™ DVK is shown in the USB Boot section of
Appendix A.

19of 77 001-76405 Rev.*K

Application Note
2021-04-16

http://www.cypress.com/?rID=58321

EZ-USB™ FX3™/FX3S™ boot options

12C EEPROM boot

5 12C EEPROM boot

Figure 3 shows the system diagram for FX3™ when booting over I*C.

(infineon

I’C EEPROM

On Reset, FX3 bootloader
downloads firmware over I>C

USB3.0/
External FPGA/ EZ-USB FX3 USB2.0 USB Host
Processor
PMODEZfl
PMODE1=Z
PMODEO=Z
Figure 3 FX3™ system diagram for 12C boot

For I1°C EEPROM boot, the state of the PMODE[2:0] pins should be 1ZZ, as shown Table 15.

Table 15 PMODE pins for I>’C boot
PMODE[2] PMODE[1] PMODE[0]
1 Z Z

The pin mapping of the FX3™ I°C interface is shown in Table 16.

Table 16 Pin mapping of I1>C interface
EZ-USB™ FX3™ pin 12C interface
12C_GPIO[58] 12C_SCL
12C_GPIO[59] 12C_SDA

5.1 Features

e FX3™boots from I°C EEPROM devices through a two-wire I°C interface.
o EEPROM? device sizes supported are:

- 32 kilobit (Kb) or 4 kilobyte (KB)

- 64 Kbor8KB

- 128 Kbor 16 KB

- 256 Kbor32KB

- 512Kbor64 KB

- 1024 Kb or 128 KB

- 2048 Kb or 256 KB

2 Only 2-byte I1°C addressees are supported. Single-byte address is not supported for any I?C EEPROM size less than 32 Kb.

Application Note 20 of 77

001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

12C EEPROM boot

Note: It is recommended to use the firmware image built in Release mode, as the size of the generated
image file in the Release version is smaller than that in the Debug version.

e ATMEL, Microchip, and ST Electronics devices have been tested.

e 100 kHz, 400 kHz, and 1 MHz I*C frequencies are supported during boot. Note that when Vios is 1.2V, the
maximum operating frequency supported is 100 kHz. When Vo5 is 1.8 V, 2.5V, or 3.3V, the operating
frequencies supported are 400 kHz and 1 MHz. (Vios is the 1/O voltage for I°C interface).

e Boot from multiple I>*C EEPROM devices of the same size is supported. When the I°C EEPROM is smaller than
the firmware image, multiple 1°C EEPROM devices must be used. The bootloader supports loading the image
across multiple I?°C EEPROM devices. SuperSpeed Explorer CYUSB3KIT-003 uses a 256 KB EEPROM (M24M02)
from ST Electronics. The bootloader can support up to eight I°C EEPROM devices smaller than 128 KB. The
bootloader can support up to four I>*C EEPROM devices of 128 KB.

e Only one firmware image can be stored on I1°C EEPROM. No redundant images are allowed.

e The bootloader does not support the multimaster I°C feature of FX3™ . Therefore, during the FX3™ I*)C
booting process, other I’C masters should not perform any activity on the I*C bus.

5.2 Storing firmware image on EEPROM

The FX3™ bootloader supports a master I1°C interface for external serial I>*C EEPROM devices. The serial I)C
EEPROM can be used to store application-specific code and data. Figure 4 shows the pin connections of a
typical I?*C EEPROM.

The I°C EEPROM interface consists of two active wires: serial clock line (SCL) and serial data line (SDA).
The Write Protect (WP) pin should be pulled LOW while writing the firmware image to EEPROM.

The A0, A1, and A2 pins are the address lines. They set the slave device address from 000 to 111. This makes it
possible to address eight I’°C EEPROMs of the same size. These lines should be pulled HIGH or LOW based on the
address required.

VIOS VIO5 VIOS

0 KQ%O Kéo KQ

A0

VCC 2.2KQ
SCL}|

SDA
A2 2.2KQ

I°C EEPROM

Al

Figure 4 Pin connections of a typical I>’C EEPROM

5.2.1 Important points on 128-KB EEPROM addressing

In the case of a 128-KB I*C EEPROM, the addressing style is not standard across EEPROMs. For example,
Microchip EEPROMs use pins Al and A0 for chip select, and pin A2 is unused. However, Atmel EEPROMs use A2
and Al for chip select, and A0 is unused. Both these cases are handled by the bootloader. The addressing style
can be indicated in the firmware image header.

Application Note 210f 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

12C EEPROM boot

Table 17 shows how four Microchip 24LC1025 EEPROM devices can be connected.

Table 17 Microchip 24LC1025 EEPROM device connections
Device No. Address Range A2 Al A0 Size
1 0x00000-0Ox1FFFF Vcce 0 O 128 KB
2 0x20000-0x3FFFF Vce 0 1 128 KB
3 0x40000-0x5FFFF Vcce 1 0 128 KB
4 0x60000-0xTFFFF Vee 1 1 128 Kbytes
Table 18 shows how four Atmel 24C1024 EEPROM devices can be connected.
Table 18 ATMEL 24C1024 EEPROM device connections
Device |Address Range A2 A1 A0 Size
No.
1 0x00000-0Ox1FFFF 0 0 NC 128 KB
2 0x20000-0x3FFFF 0 1 NC 128 KB
3 0x40000-0x5FFFF 1 0 NC 128 KB
4 0x60000-0xTFFFF 1 1 NC 128 KB

Note: NC indicates no connection.

For example, if the firmware code size is greater than 128 KB, then you must use two I1°C EEPROMs, with the
addressing schemes corresponding to that EEPROM, as shown in the previous two tables. The firmware image
should be stored across the EEPROMs as a contiguous image as in a single I°C EEPROM.

5.3 Boot image format

The bootloader expects the firmware image file to be in the format shown in Table 19. The EZ-USB™ FX3™ SDK
provides a software utility that can be used to generate a firmware image in the format required for I°C EEPROM
boot. Refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB FX3 SDK\1.3\util\elf2img
directory after installing the SDK. For 64-bit systems, the first folder in the path is Program Files(x86). The
number 1.3 in the directory path is the version number of the SDK, and it can vary based on the latest release of
the FX3™ SDK. For more details on using the elf2img utility, see Appendix C and Figure 21 in Appendix A.

Table 19 Firmware image storage format
Binary image Length (16- | Description
header bit)
WSignature 1 Signature 2 bytes initialize with “CY” ASCII text
blmageCTL; a Bit0 = 0: execution binary file; 1: data file type

Bit3:1 (1°C size)

7: 128 KB (microchip)

6: 64 KB (128K ATMEL and 256K ST Electronics)
5:32 KB

4:16 KB

3:8KB

2: 4 KB

Application Note 22 of 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=57990

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

12C EEPROM boot

Binary image Length (16- | Description

header bit)
Notes:
Options 1 and 0 are reserved for future usage. Unpredicted results will
occur when booting in these modes.
Bit5:4 (I°C speed):
00: 100 kHz
01:400 kHz
10: 1 MHz
11: Reserved
Notes:
The bootloader power-up default will be set at 100 kHz, and it will adjust
the I°C speed if needed.
Bit7:6: Reserved; should be set to zero

blmageType; V2 blmageType = 0xB0: Normal FW binary image with checksum
blmageType = 0xB2: I°C boot with new VID and PID

dLength 0 2 First section length, in long words (32-bit)
When blmageType = 0xB2, the dLength 0 will contain PID and VID. The
bootloader will ignore the rest of the following data.

dAddress 0 2 First section address of Program Code, not the I*’C address

Notes:
The internal ARM address is byte addressable, so the address for each
section should be 32-bit aligned.

dData[dLength 0] |dLength0*2 | Allimage code/data also must be 32-bit aligned.

More sections
dLength N 2 0x00000000 (Last record: termination section)

dAddress N 2 Should contain valid Program Entry (Normally, it should be the startup
code, that is, the RESET vector.)
Notes:

If blmageCTL.bit0 = 1, the bootloader will not transfer the execution to
this Program Entry.

If bimageCTL.bit0 = 0, the bootloader will transfer the execution to this
Program Entry. This address should be in the ITCM area or SYSTEM RAM
area.

The bootloader does not validate the Program Entry

dCheckSum 2 The 32-bit unsigned little-endian checksum data will start from the First
sections to the termination section. The checksum will not include the
dLength, dAddress, and Image Header.

Example: The binary image file is stored in the I?°C EEPROM in the following order:
Byte0: “C”

Bytel: “Y”

Byte2: bImageCTL

Byte3: bImageType

Application Note 230of 77 001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

infineon

12C EEPROM boot

Byte N: Checksum of Image
Attention:

e Bootloader default boot speed =100 kHz; to change the speed from 100 kHz to 1 MHz, bimageCTL<5:4>
should be set to 10.

e Toselect the I’C EEPROM size, bimageCTL[3:1]should be used.
e The addressing for the Microchip EEPROM 24LC1026 is different from the addressing of other 128-KB

Microchip EEPROMs. If using Microchip EEPROM 24LC1026, the I1°C EEPROM size field, for example,
blmageCTL[3:1], should be set to 6.
5.4 Checksum calculation

The bootloader computes the checksum when loading the binary image in the I°C EEPROM. If the checksum
does not match the one in the image, the bootloader does not transfer execution to the Program Entry.

The bootloader operates in little-endian mode; for this reason, the checksum must also be computed in little-
endian mode.

The 32-bit unsigned little-endian checksum data starts from the first sections to the termination section. The
checksum does not include the dLength, dAddress, and Image Header.

5.4.1 First example boot image

The following image is stored only at one section in the system RAM of FX3™ at the location 0x40008000:

Locationl: O0xBO Ox1A 'Y’ ’C’ //CY Signature, 32KB EEPROM, 400Khz, 0xB0 Image
Location2: 0x00000004 //Image length =4

Location3: 0x40008000 // lst section stored in FX3 System RAM at 0x40008000
Location4: 0x12345678 //Image starts

Location5: Ox9ABCDEF1

Location6: 0x23456789

Location7: OxABCDEF12

Location8: 0x00000000 //Termination of Image

Location9: 0x40008000 //Jump to 0x40008000 in FX3 System RAM

Location 10: 0x7C048C04 //Check sum (0x12345678 + Ox9ABCDEF1 + 0x23456789 +

5.4.2

0xABCDEF12)

Second example boot image

The following image is stored at two sections in the system RAM of FX3™ at the locations 0x40008000 and

0x40009000:

Locationl: O0xBO Ox1A 'Y’ ’C’ //CY Signature, 32KB EEPROM, 400Khz, 0xB0 Image

Location2: 0x00000004 //Image length of section 1 =4

Location3: 0x40008000 //1st section stored in FX3 System RAM at 0x40008000
Locationd: 0x12345678 //Image starts (Sectionl)

Location5: Ox9ABCDEF1

Location6: 0x23456789

Application Note 24 of 77 001-76405 Rev.*K

2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

12C EEPROM boot

Location7: OxABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 =2

Location9: 0x40009000 //2nd section stored in FX3 System RAM at 0x40009000
LocationlO: OxDDCCBBAA //Section 2 starts

Locationll: 0x11223344

Locationl2: 0x00000000 //Termination of Image

Locationl3 0x40008000 //Jump to 0x40008000 in FX3 System RAM

Location 14: 0x6AF37AF2 //Check sum (0x12345678 + Ox9ABCDEF1 + 0x23456789 +

O0xABCDEF12 + OxDDCCBBAA + 0x11223344)

Similarly, you can have N sections of an image stored using one boot image.

The stepwise sequence for testing the USB boot mode using the FX3™ DVK is shown in the 12C Boot section of
Appendix A.

5.4.3 Checksum calculation sample code

The following is the checksum sample code:

// Checksum sample code

DWORD dCheckSum, dExpectedCheckSum;
WORD wSignature, wlLen;

DWORD dAddress, 1i;

DWORD dImageBuf[512*1024];

fread(&wSignature,1,2,input file); // read signature bytes
if (wSignature != 0x5943) // check ‘CY’ signature byte
{
printf (“Invalid image”);
return fail;
}
fread(&i, 2, 1, input file); // skip 2 dummy bytes
dCheckSum = 0O;
while (1)
{
fread(&dLength, 4,1, imput file); // read dLength
fread(&dAddress,4,1,input file); // read dAddress
if (dLength==0) break; // done
// read sections
fread (dImageBuf, 4, dLength, input file);
for (i=0; i<dLength; i++) dCheckSum += dImageBuf[i];
}
// read pre-computed checksum data
fread (&dExpectedChecksum, 4, 1, input file);
if (dCheckSum != dExpectedCheckSum)

Application Note 250f 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=58321

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

12C EEPROM boot

{

printf (“Fail to boot due to checksum error\n”);

return fail;

}

This section described the details of the I°C boot option. The next section describes the I*)C boot option with
USB fallback enabled.

Application Note 26 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options < Infineon

12C EEPROM boot with USB fallback

6 12C EEPROM boot with USB fallback

For the I°C EEPROM boot with USB fallback, the state of the PMODE[2:0] pins should be Z1Z, as shown in Table
20.

Table 20 PMODE Pins for I’C boot with USB fallback
PMODE[2] PMODE][1] PMODE[0]
Z 1 V4

In all USB fallback modes (denoted as “--> USB”), USB enumeration occurs if 0xB2 boot is selected or an error
occurs. After USB enumeration, the external USB Host can boot FX3™ using USB boot. I°C EEPROM boot with
USB fallback (I*C --> USB) may also be used to store only Vendor Identification (VID) and Product Identification
(PID) for USB boot.

The I?C EEPROM boot fails under the following conditions:

e |2C address cycle or data cycle error
e Invalid signature in FX3™ firmware image
e Invalidimage type

A special image type is used to denote that instead of the FX3™ firmware image, data on EEPROM is the VID and
PID for USB boot. This helps in having a new VID and PID for USB boot.

6.1 Features

e Incase of USB boot, the bootloader supports only USB 2.0. USB 3.0 is not supported.

o If the 0xB2 boot option is specified, the USB descriptor uses the customer-defined VID and PID stored as part
of the 0xB2 image in the I’C EEPROM.

e On USB fallback, when any error occurs during I°C boot, the USB descriptor uses the VID=0x04B4 and
PID=0x00F3.

e The USB device descriptor is reported as bus-powered, which will consume about 200 mA. However, the
FX3™ chip is typically observed to consume about 100 mA.

6.2 Example image for boot with VID and PID

Locationl: 0xB2 Ox1A 'Y’ ’C’ //CY Signature,32k EEPROM, 400Khz, 0xB2 Image

Location2: 0x04B40008 //VID = 0x04B4 | PID=0x0008

Application Note 27 of 77 001-76405 Rev.*K

2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

(infineon

SPI boot

7 SPI boot

Figure 5 shows the system diagram for FX3™ when booting over SPI.

SPI Flash/
EEPROM
USB3.0/
External FPGA/ - USB2.0
Processor EZ-USB FX3
PMODE2=0
PMODE1=Z
PMODEO=1
R

USB Host

Figure 5 System diagram for SPI boot

For SPI boot, the state of the PMODE[2:0] pins should be 0Z1, as shown in Table 21.

Table 21 MODE pins for SPI boot
PMODE|[2] PMODE[1] PMODE]0]
0 Z 1

The pin mapping of the FX3™ SPI interface is shown in Table 22.

Table 22 Pin mapping of SPI interface
EZ-USB™ FX3™ pin SPl interface
GPIO[53] SPI_SCK
GPIO[54] SPI_SSN
GPIO[55] SPI_MISO
GPIO[56] SPI_MOSI
7.1 Features

FX3™ boots from SPI flash/EEPROM devices through the 4-wire SPI interface.

e SPI flash/EEPROM devices from 1 Kb to 128 Mb in size are supported for boot.

Supported SPI Flash parts:

- SPIFlash (S25FS064S (64-Mbit), S25LFL064L (64-Mbit) and S25FS128S (128-Mbit))

- Winbond W25Q32FW (32-Mbit)

e SPI frequencies supported during boot are ~10 MHz, ~20 MHz, and ~30 MHz.

o Note that the SPI frequency may vary due to a rounding off on the SPI clock divider and clock input.

- When the crystal or clock input to FX3™ is 26 MHz or 52 MHz, the internal PLL runs at 416 MHz. SPI
frequencies with PLL_CLK =416 MHz can be 10.4 MHz, 20.8 MHz, or 34.66 MHz.

- When the crystal or clock input to FX3™ is 19.2 MHz or 38.4 MHz, the internal PLL runs at 384 MHz. SPI
frequencies with PLL_CLK =384 MHz can be 9.6 MHz, 19.2 MHz, and 32 MHz.

e Operating voltages supported are 1.8V,2.5V,and 3.3 V.

Application Note 28 of 77

Only one firmware image is stored on an SPI flash/EEPROM. No redundant image is allowed.

001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

SPI boot

e For SPI boot, the bootloader sets CPOL=0 and CPHA=0. (For the timing diagram of this SPI mode, refer to the
SPItiming in the FX3™ datasheet.)

e USB fallback is supported and used for storing new VID/PID information for USB boot. See the SPI Boot with
USB fallback section in this application note for more information.

7.2 Selection of SPI flash
SPI flash should support the following commands to support FX3™ boot.

e Read data: 03h with 3-byte addressing

e Read Status register: 05h

o Write Enable: 06h

o Write data (Page Program): 02h

e Sector Erase: D8h

SPI flash can be used for FX3™ boot as long as the read commands match. If there are any differences in the
write commands, then programming of that SPI flash will not be successful with the provided
CyBootProgrammer.img (located at C:\Program Files (x86)\Cypress\Cypress USBSuite\application\c_sharp\
controlcenter); it requires changing the SPI write commands used in the USBFlashProg example project of the

FX3™ SDK. The image file created after building the modified USBFlashProg project should replace the provided
CyBootProgrammer.img (with the same name) for successful programming of the SPI flash.

7.3 Storing firmware image on SPI flash/EEPROM

The FX3™ bootloader supports a master SPI controller for interfacing with external serial SPI flash/EEPROM
devices. The SPI flash/EEPROM can be used to store application-specific code and data. Figure 6 shows the
pinout of a typical SPI flash/EEPROM.

The SPI EEPROM interface consists of four active wires:

e CS#: Chip Select

e SO: Serial Data Output (master in, slave out (MISO))
e Sl: Serial Data Input (master out, slave in (MOSI))

e SCK: Serial Clock input

The HOLD# signal should be tied to VCC while booting or reading from the SPI device
The Write Protect (WP#) and HOLD# signals should be tied to VCC while writing the image onto EEPROM.

Note that external pull-ups should not be connected on the MOSI and MISO signals, as shown in Figure 6.

SPI_MOSI
s
SPLMISO__|¢ vCCH——o
100 KQ SPI_CLK
cK
SPI Flash
= HOLD#
47KQ
spissnt | ..
47KQ SPI_WP# VSSI——
_/\N\—i wP#
Figure 6 Pin connections of a typical SPI flash
Application Note 29 of 77 001-76405 Rev.*K

2021-04-16

http://www.cypress.com/documentation/datasheets/cyusb301x-cyusb201x-ez-usb-fx3-superspeed-usb-controller?source=search&cat=technical_documents

EZ-USB™ FX3™/FX3S™ boot options

(infineon

SPI boot

7.4

Boot image format

For SPI boot, the bootloader expects the firmware image file to be in the format shown in Table 23. The EZ-
USB™ FX3™ SDK provides a software utility that can be used to generate a firmware image in the format
required for SPI boot. Refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB FX3
SDK\1.3\util\elf2img directory after installing the SDK. For 64-bit systems, the first folder in the path is Program
Files(x86). The number 1.3 in the directory path is the version number of the SDK, and it can vary based on the
latest release of the FX3™ SDK. For more details on using the elf2img utility, see Appendix C and Figure 29 in

Appendix A.

Table 23

Boot image format for SPI boot option

Binary image header

Length (16-
bit)

Description

wSignature

1

Signature 2 bytes initialize with “CY” ASCII text

blmageCTL

2

Bit0:0: execution binary file; 1: data file type
Bit3:1 Not used when booting from SPI
Bit5:4 (SPI speed):

00: 10 MHz

01: 20 MHz

10: 30 MHz

11: Reserved

Note: Bootloader power-up default is set to 10 MHz, and it will
adjust the SPI speed if needed. The FX3™ SPI hardware can run only
up to 33 MHz.

Bit7:6: Reserved. Should be set to zero.

blmageType

Y2

blmageType = 0xB0: Normal firmware binary image with checksum
blmageType = 0xB2: SPI boot with new VID and PID

dLength 0

First section length, in long words (32-bit)

When bimageType = 0xB2, the dLength 0 will contain PID and VID.
Bootloader ignores the rest of any following data.

dAddress 0

First section address of program code

Note: The internal ARM address is byte-addressable, so the address
for each section should be 32-bit aligned.

dData[dLength 0]

dLength 0*2

Image Code/Data must be 32-bit aligned.

More sections

dLength N

0x00000000 (Last record: termination section)

dAddress N

Should contain valid Program Entry (Normally, it should be the
Startup code, that is, the RESET vector.)

Note:

If bimageCTL.bit0 = 1, the bootloader will not transfer the execution
to this Program Entry.

If blmageCTL.bit0 = 0, the bootloader will transfer the execution to
this Program Entry: This address should be in the ITCM area or
SYSTEM RAM area.

Bootloader does not validate the Program Entry.

Application Note

30of 77 001-76405 Rev.*K

2021-04-16

http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990

EZ-USB™ FX3™/FX3S™ boot options

infineon

SPI boot
Binary image header | Length (16- Description
bit)
dCheckSum 2 32-bit unsigned little-endian checksum data will start from the first

section to the termination section. The checksum will not include
the dLength, dAddress, and Image Header.

Example: The binary image file is stored in the SPI EEPROM in the following order:

Byte0: “C”

Bytel: “Y”

Byte2: bImageCTL

Byte3: bimageType

Byte N: Checksum of Image

Important Point to Note:

Bootloader default boot speed = 10 MHz; to change the speed from 10 MHz to 20 MHz, the bimageCTL[5:4]
should be set to 01.

7.5

Checksum calculation

The bootloader computes the checksum when loading the binary image over SPI. If the checksum does not
match the one in the image, the bootloader will not transfer the execution to the Program Entry.

The bootloader operates in little-endian mode; for this reason, the checksum must also be computed in little-

endian mode.

The 32-bit unsigned little-endian checksum data starts from the first section to the termination section. The
checksum will not include the dLength, dAddress, and Image Header. Refer to the Checksum calculation
sample code section for the sample code to calculate the checksum.

Example 1. The following is an example of a firmware image stored only at one section in the system RAM of

FX3™ at location 0x40008000.

Locationl:
Location2:
Location3:
Location4:
Locationb5:
Locationé6:
Location7:
Location8:

Location9:

Location 10:

Application Note

0xBO 0x10 'Y’

0x00000004
0x40008000
0x12345678
0x9ABCDEF1
0x23456789
O0xABCDEF12
0x00000000
0x40008000

0x7C048C04

rC’ //CY Signature, 20 MHz, 0xBO Image
//Image length = 4
//1st section stored in FX3 System RAM at 0x40008000

//Image starts

//Termination of Image
//Jump to 0x40008000 in FX3 System RAM

//Checksum (0x12345678 + Ox9ABCDEF1 + 0x23456789 +
0xABCDEF12)

001-76405 Rev.*K
2021-04-16

31of 77

EZ-USB™ FX3™/FX3S™ boot options

infineon

SPI boot

Example 2. The following is an example of a firmware image stored at two sections in the system RAM of FX3™
at location 0x40008000 and 0x40009000.

Locationl:
Location?2:
Location3:
Location4:
Locationb:
Locationé6:
Location7:
Location8:

Location9:

LocationlO:
Locationll:
Locationl2:
Locationl3:

Location 14:

0xBO 0x10 'Y’

0x00000004
0x40008000
0x12345678
0x9ABCDEF1
0x23456789
OxABCDEF12
0x00000002
0x40009000
0xDDCCBBAA
0x11223344
0x00000000
0x40008000

0x6AF37AF2

"Cc’ //CY Signature, 20MHz, O0xBO Image

//Image length of section 1 = 4
//1lst section stored in FX3 System RAM at 0x40008000
//Image starts (Sectionl)

//Section 1 ends

//Image length of section 2 = 2

//2nd section stored in FX3 System RAM at 0x40009000
//Section 2 starts

//Termination of Image
//Jump to 0x40008000 in FX3 System RAM

//Checksum (0x12345678 + 0Ox9ABCDEF1 + 0x23456789 +
OxABCDEF12 + OxDDCCBBAA + 0x11223344)

Similarly, you can have 'N' sections of an image stored using one boot image.

The stepwise sequence for testing the USB boot mode using the FX3™ DVK is shown in the SPI Boot section of

Appendix A.

Application Note

001-76405 Rev.*K
2021-04-16

320f 77

http://www.cypress.com/?rID=58321

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

SPI Boot with USB fallback

8 SPI Boot with USB fallback

In all USB fallback (“-->USB”) modes, USB enumeration occurs if 0xB2 boot is selected or an error occurs. After
USB enumeration occurs, the external USB Host can boot FX3™ using USB boot. SPI boot with USB fallback (SPI
-->USB) is also used to store VID and PID for USB boot.

SPI boot fails under the following conditions:

e SPladdress cycle or data cycle error
e Invalid signature on FX3™ firmware. Invalid image type

A special image type is used to denote that instead of the FX3™ firmware image, data on SPI flash/EEPROM is
the VID and PID for USB boot. This helps in having a new VID and PID for USB boot.

e Inthe case of USB boot, the bootloader supports only USB 2.0. USB 3.0 is not supported.

o If the 0xB2 boot option is specified, the USB descriptor uses the customer-defined VID and PID stored as part
of the 0xB2 image in the SPI flash/ EEPROM.

e On USB fallback, when any error occurs during I°C boot, the USB descriptor uses the VID=0x04B4 and
PID=0x00F3.

e The USB Device descriptor is reported as bus-powered, which will consume about 200 mA. However, the
FX3™ chip is typically observed to consume about 100 mA.

8.1 Example image for boot with VID and PID
Locationl: 0xB2 0x10 'Y’ ’C’ //CY Signature, 20 MHz, 0xB2 Image
Location2: 0x04B40008 //VID = 0x04B4 | PID = 0x0008

The next section describes the details of the synchronous ADMux interface and booting over the synchronous
ADMux interface.

Application Note 330f 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Synchronous ADMux boot

9 Synchronous ADMux boot

Figure 7 shows the FX3™ system diagram when booting over the synchronous ADMux interface.

External FPGA/ EZ-USB FX3
Processor

USB3.0/
EoE2 USB Host

PMODE2=Z7
————
PMODEO=0

Figure 7 System diagram for synchronous ADMux boot

For booting over the synchronous ADMux interface, the state of the PMODE[2:0] pins should be Z00, as shown in
Table 24.

Table 24 PMODE pins for sync ADMux boot
PMODE[2] PMODE[1] PMODE[0]
VA 0 0

The FX3™ GPIF Il interface supports a synchronous ADMux interface, which may be used for downloading a
firmware image from an external processor or FPGA. The synchronous ADMux interface configured by the
bootloader consists of the following signals:

e PCLK: This must be a clock input to FX3™ . The maximum frequency supported for the clock input is 100
MHz.

e DQ[15:0]: 16-bit data bus

e A[7:0]: 8-bit address bus

o CE#: Active LOW chip enable

e ADV#: Active LOW address valid
o WE#: Active LOW write enable

e OE#: Active LOW output enable
e RDY: Active HIGH ready signal

9.1.1 Interface signals

Figure 8 shows the typical interconnect diagram for the sync ADMux interface configured by the bootloader
and connected with an external processor.

Application Note 34 0of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Synchronous ADMux boot

CLK

CE#

ADV#

External A[7:0)/DQ[15:0] EZ-USB EX3
Processor o

WE#

OE#

RDY

Figure 8 Sync ADMUX interface

For read operations, both CE# and OE# must be asserted.
For write operations, both CE# and WE# are asserted.

ADV# must be LOW during the address phase of a read/write operation. ADV# must be HIGH during the data
phase of a read/write operation.

The RDY output signal from the FX3™ device indicates that data is valid for read transfers.

The pin mapping of the FX3™ sync ADMux interface is shown in Table 25.

Table 25 Pin Mapping of sync ADMux interface
EZ-USB™ FX3™ pin Sync ADMux interface
GPIO[7:0]/GPIO[15:0] A[7:0]/DQ[15:0]
GPIO[16] CLK
GPIO[17] CE#
GPI0[18] WE#
GPI0O[19] OE#
GPI0[25] RDY
GPIO[27] ADV#
9.1.2 Synchronous ADMux timing

For details on the sync ADMux timing diagrams (synchronous ADMux interface—read cycle timing and write
cycle timing) and timing parameters, see Figure 9, Figure 10, and Table 26.

Sync ADMUX Mode Power-Up Delay

On power-up or a hard reset on the RESET# line, the bootloader will take some time to configure GPIF Il for the
sync ADMux interface. This process can take a few hundred microseconds. Read/write access to FX3™ should be
performed only after the bootloader has completed the configuration. Otherwise, data corruption can result.
To avoid it, use one of the following schemes:

e Wait for 1 ms after RESET# deassertion.

o Keep polling the PP_IDENTIFY register until the value 0x81 is read back.

o Wait for the INT# signal to assert, and then read the RD_MAILBOX registers and verify that the value
readback equals 0x42575943 (that is, ‘CYWB’).

Application Note 350f 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Synchronous ADMux boot

9.1.3 USB fallback (-->USB)

The USB fallback will not be active during sync ADMUX boot even if an error occurs on the commands.

9.1.4 Warm boot

When a warm boot is detected, the bootloader will transfer execution to the previously stored “Program Entry,”
which could be the user’s RESET vector. In this case, the GPIF Il configuration is preserved.

9.1.5 Wakeup/Standby

After a wakeup from standby, the application firmware is responsible for configuring and restoring the
hardware registers, GPIF Il configuration, ITCM, or DTCM.

After a wakeup from standby, the bootloader checks that both ITCM and DTCM are enabled.

Note: When the bootloader wakes up from the standby mode or a warm boot process, the bootloader
jumps to the reset interrupt service subroutine and does the following:

e Invalidates both DCACHE and ICACHE

e Turns ON ICACHE

e Disables MMU

e Turns ONDTCM and ITCM

e Sets up the stack using the DTC

The bootloader allocates 0x500 bytes from 0x1000_0000 - 0x1000_04FF, so 0x1000_0500 — 0x1000_1FFF is

available for downloading firmware. When the download application takes over, the memory from
0x1000_0000 - 0x1000_04FF can be used for other purposes.

2- cycle latency from OE# to DATA —p
-+ #| iCLKH | tCLKL
< »

o (o -
CLK _/—_/__/__/__ m
tCo
|= 5 P " »
Al0:7)/DQ[0:15] Va Adcress WL’W
L [S“ 111H »
ADV# | o

S
S /
OE# —r— 1]

" W » HW
RDY 1 1——»}
tCH
WE# (HIGH)
Figure 9 Synchronous ADMux interface - read cycle timing
Application Note 36 of 77 001-76405 Rev.*K

2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Synchronous ADMux boot

Note:

The External P-Port processor and FX3S™ operate on the same clock edge.
The External processor sees RDY assert two cycles after OE# asserts and sees RDY deassert a cycle after the data
appears on the output.

3. Valid output data appears two cycles after OE# is asserted. The data is held until OE# deasserts.

4. Two-cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less
than 50 MHz. (This 1-cycle latency is not supported by the bootloader.)

2-cycle lalency between

WES and dala helng Lsiched 2-cyce latency between this ck edge and RDY deassertion seen by

the host

CLK \ /i__/__/ RN SN
Ao TY0(0 18 Y e

TAVWE
! : 1S tH
W
RDY }/ }
tRW —

Figure 10 Synchronous ADMux interface - write cycle timing

Note:

1. The External P-Port processor and FX3S™ operate on the same clock edge.

2. The External processor sees RDY assert two cycles after WE# asserts and deasserts three cycles after the edge
sampling the data.

3. Two-cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less
than 50 MHz. (This 1-cycle latency is not supported by the bootloader.)

Table 26 Synchronous ADMux timing parameters
Parameter Description Min Max Unit
FREQ Interface Clock frequency - 100 MHz
tCLK Clock period 10 - ns
tCLKH Clock HIGH time 4 - ns
tCLKL Clock LOW time 4 - ns
tS CE#/WE#/DQ setup time 2 - ns
tH CE#/WE#/DQ hold time 0.5 - ns
tCH Clock to data output hold time 0 - ns
tDS Data input setup time 2 - ns
tDH Clock to data input hold time 0.5 - ns

Application Note 370of 77 001-76405 Rev.*K

2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Synchronous ADMux boot

Parameter Description Min Max Unit
tAVDOE ADV# HIGH to OE# LOW 0 - ns
tAVDWE ADV# HIGH to WE# LOW 0 - ns
tHZ CE# HIGH to Data HI-Z - 8 ns
tOHZ OE# HIGH to Data HI-Z - 8 ns
toLZ OE# LOW to Data HI-Z 0 - ns
tKwW Clock to RDY valid - 8 ns
9.1.6 GPIF 11 API protocol

This protocolis used only in GPIF Il boot mode. After reset, the external application processor (AP)
communicates with the bootloader using the command protocol defined in Table 27.

Table 27 GPIF Il API protocol
Field Description
bSignature[2] 2-byte

Sender initialize with “CY”
The bootloader responds with “WB”

bCommand Sender: 1-byte Command

0x00: NOP

0x01: WRITE_DATA_CMD: Write Data Command

0x02: Enter Boot mode

0x03: READ_DATA_CMD: Read Data Command

The bootloader treats all others as no operation and return error code in bLenStatus
bLenStatus Input: (1-byte)

For bCommand 00: bLenStatus = 0 (the bootloader will jump to addr in dAddr if
bCommand is WRITE_DATA_CMD and ignore value for all other commands)

bCommand 01: Length in Long Word (Max = (512-8)/4)

bCommand 02: Number of 512 byte blocks (Max =16)

bCommand 03: Length in Long Word (Max = (512-8)/4)

Bootloader responds with the following data in the PIB_RD_MAILBOX1 register:
0x00: Success

0x30: Fail on Command process encounter error

0x31: Fail on Read process encounter error

0x32: Abort detection

0x33: PP_CONFIG.BURSTSIZE mailbox notification from the bootloader to application.
The PIB_RD_MAILBOXO0 will contain the GPIF_DATA_COUNT_LIMIT register.

0x34: The bootloader detects DLL _LOST_LOCK. The PIB_RD_MAILBOXO0 will contain the
PIB_DLL_CTRL register.

0x35: The bootloader detects PIB_PIB_ERR bit. The PIB_RD_MAILBOXO0 will contain the
PIB_PIB_ERROR register.

0x36: The bootloader detects PIB_GPIF_ERR bit. The PIB_RD_MAILBOXO0 will contain the
PIB_PIB_ERROR register.

dAddr 4-byte

Application Note 38 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

Field Description

Sender: Address used by command 1 and 3

dData[bLenStatus] | Data length determine by bLenStatus
Sender: Data to be filled by the Sender

Note:

The error code bLenStatus will be reported on the mailbox of the GPIF I.
When downloading firmware to FX3™ using sync ADMUX, the external AP should ensure the following:
a) Command block length is exactly 512 bytes
b) Response block length is exactly 512 bytes
c) The bootloader binary image is converted to a data stream that is segmented in multiples of 512 bytes.

d) The data chunk of the bootloader image is not larger than 8K. For instance, on the command 0x02, the
bLenStatus should not be larger than 16 blocks (8K bytes). The limitation stated above is due to the
maximum DMA buffer size. The maximum DMA_SIZE that the bootloader supports is 8K and thus, the AP
can send only 8K data (max) per transfer. If the firmware size is greater than 8K, multiple transfers are
needed to download the complete firmware to FX3™. i.e, step 4 of section 13.4 should be repeated for
each transfer until the complete firmware is transferred

e) The host does not send more than the total image size.

3. The bootloader does not support queuing commands. Therefore, every time a command is sent, the host must
read the response.

4. To prevent the corruption of the API structure during the downloading process ,the host should not download
firmware to the reserved bootloader SYSTEM address (0x4000_0000 to 0x4000_23FF). An error will be returned
if the firmware application attempts to use this space. The first 1280 bytes of DTCM should also not be used
(0x1000_0000 - 0x1000_04FF)

5. Onthe WRITE_DATA_CMD: When bLenStatus = 0, the bootloader jumps to the Program Entry of the dAddr.

9.1.7 Firmware download example

This section describes a simple way to implement the firmware download from a host processor to FX3™ via the
16-bit synchronous ADMux interface.

The host processor communicates with the FX3™ bootloader to perform the firmware download. The
communication requires the host processor to read and write FX3™ registers and data sockets.

Note: Refer to the “FX3™ Terminology” section in the Getting Started with EZ-USB™ FX3™ application
note to learn about the concept of sockets in FX3™.

The host processor uses available GPIF Il sockets to transfer blocks of data into and out of FX3™ . The FX3™
bootloader maintains three data sockets to handle the firmware download protocol: one each for command,
response, and firmware data.

#define CY WB DOWNLOAD CMD SOCKET (0x00) // command block write only socket
#define CY WB DOWNLOAD DATA SOCKET (0x01) // data block read/write socket
#define CY WB DOWNLOAD RESP SOCKET (0x02) // response read only socket

The host processor communicates with the FX3™ bootloader via these data sockets to carry out the firmware
download. The command and response are data structures used for the firmware download protocol. Both are

Application Note 39 of 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=59979

o _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

512 bytes in size. The bit fields are defined in these data structures to perform various functions by the FX3™
bootloader. In the simple example implementation given in this document, only the first four bytes of both
command and response are actually used. The rest of the data bytes in the command and response are don't
cares.

From the high-level FX3™ firmware, the download requires the host processor to perform the following
sequence of socket accesses:

1. One command socket writes with command block initialized as:

command[0] = 'C';

command[1l] = 'Y'; /* first two bytes are signature bytes with
constant value of "CY" */

command[2] = 0x02; /* 0x2 1is value for boot mode command. */

command [3] 0x01; /* 1 data block */

2. One response socket reads that expects response block data as:

response (0] = 'W';

response[l] = 'B'; /* first two bytes are signature bytes with
constant value of "WB" */

//response[2] = 0x0; /* this byte is don't care. */

response[3] = 0x0; /* indicate command is accepted */

3. One data socket writes that transfers the entire firmware image in terms of byte array into FX3™.

Note that once the firmware image has been completely transferred, the FX3™ bootloader automatically jumps
to the entry point of the newly downloaded firmware and starts executing. Before the host process can
communicate with the downloaded firmware, it is recommended to wait for a certain amount of time
(depending on the firmware implementation) to allow the firmware to be fully initialized. An even better option
is to implement in the firmware a status update via mailbox registers after the initialization. In this case, the
host processor is notified whenever the firmware is ready.

9.1.8 Processor port (P-Port) register map

The register list shown in Table 28 indicates how the PP_xxx registers are mapped on the external P-Port
address space. Addresses in this space indicate a word, not a byte address. The sync ADMux interface provides
eight address lines to access these registers.

Table 28 Processor port register map
Register name Address | Width | Description
(bits)

PP_ID 0x80 16 P-Port Device ID Register. Provides device ID information

PP_INIT 0x81 16 P-Port reset and power control. This register is used for reset and
power control and determines the endian orientation of the P-Port.

PP_CONFIG 0x82 16 P-Port configuration register

PP_IDENTIFY 0x83 16 P-Port identification register. The lower 8 bits of this register are
read-only and defaulted to 0x81.

PP_INTR_MASK 0x88 16 P-Port Interrupt Mask Register. This register has the same layout as
PP_EVENT and masks the events that lead to assertion of interrupt.

Application Note 40 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

Register name

Address | Width | Description
(bits)

PP_DRQR5_MASK

0x89 16 P-Port DRQ/RS5 Mask Register. This register has the same layout as
PP_EVENT and masks the events that lead to assertion of interrupt
or DRQ/R5 respectively.

PP_ERROR 0x8C 16 P-Port error indicator register

PP_DMA_XFER Ox8E 16 P-Port DMA transfer register. This register is used to set up and
control a DMA transfer.

PP_DMA_SIZE Ox8F 16 P-Port DMA Transfer Size Register. This register indicates the

(remaining) size of the transfer.

PP_WR_MAILBOX

0x90 64 P-Port Write Mailbox Registers. These registers contain a message of
up to eight bytes from the AP to FX3™ firmware.

PP_MMIO_ADDR 0x94 32 P-Port MMIO Address Registers. These registers together form a 32-
bit address for accessing the FX3™ internal MMIO space.

PP_MMIO_DATA 0x96 32 P-Port MMIO Data Registers. These registers together form a 32-bit
data for accessing the FX3™ internal MMIO space.

PP_MMIO 0x98 16 P-Port MMIO Control Register. This register controls the access to
the FX3™ MMIO space.

PP_EVENT 0x99 16 P-Port Event Register. This register indicates all types of events that

can cause interrupt or DRQ to assert.

PP_RD_MAILBOX

0x9A 64 P-Port Read Mailbox Registers. These registers contain a message of
up to eight bytes from FX3™ firmware to the AP.

PP_SOCK_STAT

0x9E 32 P-Port Socket Status Register. These registers contain 1 bit for each
of the 32 sockets in the P-port, indicating the buffer availability of
each socket.

Refer to the “Registers” chapter in the EZ-USB™ FX3™ TRM for the bit field definitions of these registers.

Before delving into the details of the FX3™ firmware download, note that the following functions are frequently
used in the example implementation in this document and are platform-dependent. Contact Cypress Support
for more information on how these can be implemented on a specific platform.

IORD REG16 () ;
IOWR_REG16 () ;

IORD SCK16 () ;
driven on

TOWR SCK16 () ;
on

//
//
//

//
//
//

16-bit read from GPIF II
16-bit write to GPIF II
1l6-bit read from active socket set in PP DMA XFER. The address

on the Sync ADMux bus during the address phase is treated as a
don’ t-care

l6-bit write to active socket set in PP_DMA XFER. The address driven

// on the Sync ADMux bus during the address phase is treated as a
// don’ t-care
Note: While performing register access, the most significant bit of the 8-bit address should be 1, notifying

FX3™that it is register access operation. Similarly, for performing socket access, the most
significant bit should be set to 0.

Application Note

41 of 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=80775
https://secure.cypress.com/myaccount/?id=25&techSupport=1

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

mdelay () ; // millisecond delay

udelay () ; // microsecond delay

The following is the example implementation of the fx3_firmware_download() function that takes a pointer to
the firmware data array and the size of the firmware as parameters.

/* Register addresses and the constants used in the code shown below. */

#define CY WB DOWNLOAD CMD SOCKET 0x00 // command block write only socket
#define CY WB DOWNLOAD DATA SOCKET 0x01 // data block read/write socket
#define CY WB DOWNLOAD RESP SOCKET 0x02 // response read only socket

// All register addresses defined with bit 7 set to indicate Register access (not
Socket)

#define PP _CONFIG 0x82

#define CFGMODE 0x0040

int fx3 firmware download(const u8 *fw, ul6 sz)
{

u8 *command=0, *response=0;

ul6 val;

u32 blkent;

ul6e *p = (ule *)fw;

int i=0;
printf ("FX3 Firmware Download with size = 0x%x\n", sz);
/* Check PP CONFIG register and make sure FX3 device is configured */

/* When FX3 bootloader is up with correct PMODE, bootloader configures */
/* the GPIF II into proper interface and sets the CFGMODE bit on PP _CONFIG

*/
val = IORD REG16 (PP_CONFIG) ;
if ((val & CFGMODE)== 0) {
printf ("ERROR: WB Device CFGMODE not set !!! PP7CONFIG=Ox%x\n", val);
return FAIL;
}
/* A good practice to check for size of image */
if (sz > (512*1024)) {
printf ("ERROR: FW size larger than 512kB !!!\n");
return FAIL;
}
Application Note 42 of 77 001-76405 Rev.*K

2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

/* Allocate memory for command and response */

/* Host processor may use DMA sequence to transfer the command and response
*/

/* In that case make sure system is allocating contiguous physical memory
area */

command = (u8 *) malloc(512);

(u8 *) malloc(512);

response
memset (command, 0, 512);

memset (response, 0, 512);
if (command==0 || response==0) ({

printf ("ERROR: Out of memory !!!\n");
return FAIL;

/* Initialize the command block */

command[0] = 'C';

command[1l] = 'Y';

command[2] = 0x02; /* Enter boot mode command. */
command[3] = 0x01; /* 1 data block */

/* Print the command block if you like to see it */

for (i=0; 1<512; 1i++) {

if (! (1%16))
printf ("\n%.3x: ", 1i);
printf ("%.2x ",command[i]) ;

}
printf ("\n") ;

/* write boot command into command socket */

sck bootloader write(CY WB DOWNLOAD CMD SOCKET, 512, (ulé *)command) ;

/* read the response from response socket */

sck bootloader read(CY WB DOWNLOAD RESP SOCKET, 512, (ulé *)response);

/* Check if correct response */
if (response[3]!=0 || response[0]!='W' || response[l]!='B') {

Q

printf ("ERROR: Incorrect bootloader response = 0x%x
1'11\n", response[3]);

for (i=0; 1<512; i++) {
if (! (1%16))
printf ("\n%.3x: ", 1i);

printf ("%$.2x ", responsel[il]);

Application Note 43 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

printf ("\n");
kfree (command) ;
kfree (response) ;

return FAIL;

/* Firmware image transfer must be multiple of 512 byte */

/* Here it rounds up the firmware image size */

/* and write the array to data socket */

blkent = (sz+511)/512;

sck bootloader write (CY WB DOWNLOAD DATA SOCKET, blkcnt*512, p);

/* Once the transfer is completed, bootloader automatically jumps to */

/* entry point of the new firmware image and start executing */

kfree (command) ;
kfree (response) ;
mdelay (2) ; /* let the new image come up */

return PASS;

The following is an example implementation of the socket write and socket read functions. Besides the data
direction, function implementations for both socket write and read are based on the following command,
configuration, and status bits on the PP_* register interface:

e PP_SOCK_STAT.SOCK_STATIN]. For each socket, this status bit indicates that a socket has a buffer available
to exchange data (it has either data or space available).

e PP_DMA_XFER.DMA_READY. This status bit indicates whether the GPIF Il is ready to service reads from or
writes to the active socket (the active socket is selected through the PP_DMA_XFER register).
PP_EVENT.DMA_READY_EV mirrors PP_DMA_XFER.DMA_READY with a short delay of a few cycles.

e PP_EVENT.DMA_WMARK_EV. This status bit is similar to DMA_READY, but it deasserts a programmable
number of words before the current buffer is completely exchanged. It can be used to create flow control
signals with offset latencies in the signaling interface.

o PP_DMA_XFER.LONG_TRANSFER. This config bit indicates if long (multibuffer) transfers are enabled. This bit
is set by the application processor as part of transfer initiation.

o PP_CONFIG.BURSTSIZE and PP_CONFIG.DRQMODE. These config bits define and enable the size of the DMA
burst. Whenever the PP_CONFIG register is updated successfully, the FX3™ bootloader responds with a value
0x33in the PP_RD_MAILBOX register.

e PP_DMA_XFER.DMA_ENABLE. This command and status indicates that DMA transfers are enabled. This bit is
set by the host processor as part of transfer initiation and cleared by FX3™ hardware upon transfer
completion for short transfers and by the application processor for long transfers.

Application Note 44 of 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

/* Register addresses and the constants used in the code shown below. */

#define PP _CONFIG 0x82

#define CFGMODE 0x0040
#define PP DRQR5 MASK 0x89
#define DMA WMARK EV 0x0800
#define PP _DMA XFER 0x8E
#define LONG TRANSFER 0x0400
#define DMA DIRECTION 0x0200
#define DMA ENABLE 0x0100
#define PP_EVENT 0x99
#define DMA READY EV 0x1000
#define PP_RD MAILBOXO 0x9A // 64 Bit register accessed as 4 x 16 bit
registers
#define PP_RD MAILBOX1 0x9B
#define PP_RD MAILBOX2 0x9C
#define PP_RD MAILBOX3 0x9D
#define PP _SOCK STAT L 0x9E // LSB 16 bits of 32 bit register
#define PP_SOCK_STAT H 0x9F // MSB 16 bits of 32 bit register

static u32 sck bootloader write(u8 sck, u32 sz, ul6 *p)

{

u32 count;
ul6é val, buf sz;

int i;

buf sz = 512;
/* Poll for PP _SOCK STAT L and make sure socket status is ready */
do {
val = IORD REG16(PP_SOCK STAT L);
udelay (10) ;
} while (! (valé& (0xl<<sck)));

/* write to pp dma xfer to configure transfer

socket number, rd/wr operation, and long/short xfer modes */
val = (DMA ENABLE | DMA DIRECTION | LONG TRANSFER | sck);
IOWR_REG16 (PP_DMA XFER, val);

/* Poll for DMA READY EV */

Application Note 45of 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

count = 10000;

do {
val = IORD REG16 (PP _EVENT) ;
udelay (10) ;
count—--;
} while ((!(val & DMA READY EV)) && (count != 0));
if (count == 0) {
printf ("%s: Fail timeout; Count = 0\n", _ func);

return FAIL;

/* enable DRQ WMARK EV for DRQ assert */
IOWR_REG16 (PP_DRQR5 MASK, DMA WMARK EV) ;

/* Change FX3 FW to single cycle mode */
IORD REG16 (PP_CONFIG) ;
val = (val&OxFFF0) | CFGMODE;
IOWR_REG16 (PP_CONFIG, val);

val

/* Poll for FX3 FW config init ready */
count = 10000;

do {
val = IORD REG16 (PP _RD MAILBOX2);
udelay (10) ;
count --;
} while ((!(val & 0x33)) || count==0); /* CFGMODE bit is cleared by FW */
if (count == 0) {
printk("%s: Fail timeout; Count = 0\n", _ func);
return FAIL;
}
count=0;
do {

for (i = 0; i < (buf sz / 2); i++)

IOWR_SCK16 (*p++); /* Write 512 bytes of data continuously to
data socket 16 bits at a time (Sync ADMux has 16 data lines) */

count += (buf sz / 2);

if (count < (sz/2))
do {
udelay (10) ;

Application Note 46 of 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

val = IORD REGl6 (PP_SOCK STAT L); /* After writing 512
bytes to data socket of the device, P-Port Socket Status Register is read to check if
the Socket is available for reading or writing next set of 512 bytes data */

} while (! (val& (0Ox1l<<sck)));/* You remain in this Do-while loop
till PP _SOCK STAT L register makes the bit corresponding to the socket as 1
indicating socket is now available for next read/write */

} while (count < (sz/2)); /* sz 1is the total size of data to be written. In
case of firmware download, sz will be total size of the firmware */

/* disable dma */

val = IORD REG16 (PP DMA XFER);
val &= (~DMA ENABLE) ;
TOWR_REG16 (PP_DMA XFER, val);

printf ("DMA write completed \n") ;
return PASS;

static u32 sck bootloader read(u8 sck, u32 sz, ult *p)

u32 count;
ulé val, buf sz;
int 1i;
buf sz = 512;
/* Poll for PP _SOCK STAT L and make sure socket status is ready */
do {
val = IORD REG16 (PP_SOCK STAT L);
udelay (10) ;
} while (! (val& (0x1<<sck))):;

/* write to PP _DMA XFER to configure transfer

socket number, rd/wr operation, and long/short xfer modes */
val = (DMA ENABLE | LONG TRANSFER | sck);
IOWR REG16 (PP_DMA XFER, val);

/* Poll for DMA READY EV */
count = 10000;

do {
val = IORD REG16 (PP EVENT);
udelay (10) ;
count--;
} while ((!(val & DMA READY EV)) && (count != 0));
Application Note 47 of 77 001-76405 Rev.*K

2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

infineon

Synchronous ADMux boot

if (count == 0) {
printk ("%s:

return FAIL;

Fail timeout;

Count = 0\n", _ func);

/* enable DRQ WMARK EV for DRQ assert */

IOWR_REG16 (PP_DRQR5 MASK,

DMA WMARK EV) ;

/* Change FX3 FW to single cycle mode */

val IORD_REG16(PP_CONFIG);
val = (val&OxFFFO) | CFGMODE;

IOWR_REG16 (PP_CONFIG, val);

/* Poll for FX3 FW config init ready */

count==0) ;

(PP_RD MAILBOX2) ;

/* CFGMODE bit is cleared by FW */

Count = O\n", _ func_);

TORD SCK16 () ;

/* count in words */

(PP_SOCK_STAT 1) ;

count = 10000;
do {
val = IORD REG16
udelay (10);
count --;
} while ((!(val & 0x33)) ||
if (count == 0) {
printk("%s: Fail timeout;
return -1;
}
count=0;
do {
for (i = 0; i < (buf sz / 2); i++) |
plcount+i] =
}
count += (buf sz / 2);
if (count < (sz/2))
do {
udelay (10) ;
val = IORD REG16
} while (! (val& (0Oxl<<sck))):;
} while (count < (sz/2));

/* disable dma */

val = IORD REG16 (PP DMA XFER) ;

Application Note

001-76405 Rev.*K
2021-04-16

48 of 77

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Synchronous ADMux boot

val &= (~DMA ENABLE) ;
IOWR_REG16 (PP DMA XFER, val);

printf ("DMA read completed \n") ;
return PASS;

For troubleshooting the synchronous ADMux boot, please refer to the Appendix B: Troubleshooting steps for
Sync ADMux boot.

9.2 Boot image format

For sync ADMux boot, the bootloader expects the firmware image to be in the format shown in Table 29. The
EZ-USB™ FX3™ SDK provides a software utility that can be used to generate a firmware image in the format
required for sync ADMux boot. Please refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB
FX3SDK\1.3\util\elf2img directory after installing the SDK. For 64-bit systems, the first folder in the path is
Program Files(x86). The number 1.3 in the directory path is the version number of the SDK, and it can vary
based on the latest release of the FX3™ SDK.

Note that the elf2img post-build command generates an .img fie. This then needs to be converted into an array
that can be used for the download example shown previously. Figure 11 shows how the elf2img post-build
command is issued, followed by an example for printing the contents of the .img file into an array in ASCII
format.

Table 29 Boot image format for sync ADMux boot option
Binary image header | Length Description
(16-bit)
wSignature 1 Signature 2 bytes initialize with “CY” ASCII text
blmageCTL; 2 Bit0 = 0: execution binary file; 1: data file type

Bit3:1 Do not use when booting in SPI EEPROM

Bit5:4 (SPI speed):
00: 10 MHz

01:20 MHz

10: 30 MHz

11: Reserved

Bit7:6: Reserved, should be set to '0'

bimageType; 2 blmageType = 0xB0: Normal FW binary image with checksum
blmageType = 0xB2: SPI boot with new VID and PID
dLength 0 2 First section length, in long words (32-bit)

When bimageType = 0xB2, the dLength 0 will contain PID and VID. The
bootloader ignores the rest of the following data.

dAddress 0 2 First section address of Program Code

Note: The internal ARM address is byte addressable, so the address for
each section should be 32-bit aligned.

Application Note 49 of 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=57990

infineon

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

Binary image header | Length Description
(16-bit)
dData[dLength 0] dLength Image Code/Data must be 32-bit aligned.
0*2
More sections
dLength N 0x00000000 (Last record: termination section)
dAddress N Should contain valid Program Entry (Normally, it should be the
startup code, for example, the RESET vector.)
Note:
If bimageCTL.bit0 = 1, the bootloader will not transfer the execution to
this Program Entry.
If blmageCTL.bit0 = 0, the bootloader will transfer the execution to this
Program Entry. This address should be in the ITCM area or SYSTEM
RAM area. The bootloader does not validate the Program Entry.
dCheckSum 2 32-bit unsigned little-endian checksum data will start from the first
section to the termination section. The checksum will not include the
dLength, dAddress, and Image Header.

An example of boot image format organized in long-word format:

Locationl:

0xBO 0x10 'Y’

"C’ //CY Signature, 20 MHz, 0xBO Image

Location2: 0x00000004 //Image length of section 1 = 4

Location3: 0x40008000 //1lst section stored in SYSMEM RAM at 0x40008000
Location4: 0x12345678 //Image starts (Sectionl)

Location5: Ox9ABCDEF1

Location6: 0x23456789

Location7: OxABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 = 2

Location9: 0x40009000 //2nd section stored in SYSMEM RAM at 0x40009000
LocationlO: OxDDCCBBAA //Section 2 starts

Locationll: 0x11223344

Locationl2: 0x00000000 //Termination of Image

Locationl3: 0x40008000 //Jump to 0x40008000 on FX3 System RAM

Location 14: Ox6AF37AF2 //Checksum (0x12345678 + 0x9ABCDEF1 + 0x23456789 +

Application Note

OxABCDEF12 + OxDDCCBBAA + 0x11223344)

001-76405 Rev.*K
2021-04-16

50 of 77

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

& Properties for Fx3BootAppGee

[Eype filter text | | Settings v
Resource
Builders g
(=) C/C++ Build Configuration: |Release [Active] V‘ [Manage Configurations...l
Build Variables
Discovery Options
Environment R om— | o b PRy T 7 = T
Settings | & Tool Settings | / Build Steps | " Buid Artifact | |ord Binary Parsers | @ Error| 4 ¥
Tool Chain Editor Pre-build steps
[# C/C++ General Command:
Project References
Refactoring History 1 Y|
RunjDebug Settings Description:
(- Task Repository ‘ v
WikiText !
Post-build steps
Command:
|
Description:
j Converting ELF to image (.img) format v \
Figure 11 Post-build command in Eclipse IDE

The following is an example of code for printing the contents of the .img file into an array in ASCII format:

#include <stdio.h>
#include <stdint.h>

int main (int argc, char *argvl[])

{
char *filename = "firmware.img";
FILE *fp;
int i = 0;
uint32 t k;
if (argc > 1)
filename = argv[l];
fprintf (stderr, "Opening file %s\n", filename);
fp = fopen (filename, "r");
printf ("const uint8 t fw datal] = {\n\t");
while (!feof (fp))
{
fread (&k, sizeof (uint32 t), 1, fp);
printf ("0x%02x, 0x%02x, 0x%02x, 0x%02x,",
((uint8 t *)&k) [0], ((uint8 t *)&k) [1],
((uint8_ t *)&k) [2], ((uint8 t *)&k) [3]);
i++;
Application Note 510f 77 001-76405 Rev.*K

2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Synchronous ADMux boot

if (1 == 4)
{
i=0;

printf ("\n\t");
else
printf (" "),
printf ("\n};\n");
fclose (fp);

return 0;

}

Application Note 52 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

eMMC boot

10 eMMC boot

The FX3S™ peripheral controller supports booting from the eMMC device. Connect the eMMC device to the SO
storage port of FX3S™ from which the firmware can be booted. FX3S™ also supports eMMC boot with USB fall
back. If no valid firmware is found in the eMMC, FX3S™ will fall back to the USB boot mode. For the PMODE pin
settings that are required to enable eMMC boot, refer to Table 30.

Table 30 PMODE settings for eMMC boot
PMODE[2] PMODE[1] PMODE[0] Boot option
1 0 0 eMMC
0 0 0 eMMC -> USB

After downloading the FX3™ SDK, refer to cyfwstorprog_usage.txt for detailed instructions on how to
implement eMMC boot. This file is located at:

<FX3 SDK installation path>\Cypress\EZ-USB FX3 SDK\1l.x\util\cyfwstorprog\

Note: eMMC boot is only supported by the FX3S™ peripheral.

Application Note 53 0of 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=57990

o _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Default state of I/Os during boot

11 Default state of 1/Os during boot

Table 31 shows the default state of the FX3™ 1/Os for the different boot modes, while the bootloader is
executing before application firmware download).

Note: The default state of the GPIOs need not be same when FX3™ is in reset and after the boot-loader
finishes the configuration.

Table 31 Default state of I/Os during boot

GPIO SPl boot default state | USB boot 12C boot Sync ADMux boot
default state default state default state

GPIO[0] Tristate Tristate Tristate Tristate
GPIO[1] Tristate Tristate Tristate Tristate
GPIO[2] Tristate Tristate Tristate Tristate
GPIO[3] Tristate Tristate Tristate Tristate
GPI0O[4] Tristate Tristate Tristate Tristate
GPIO[5] Tristate Tristate Tristate Tristate
GPIO[6] Tristate Tristate Tristate Tristate
GPIO[T7] Tristate Tristate Tristate Tristate
GPIO[8] Tristate Tristate Tristate Tristate
GPI0O[9] Tristate Tristate Tristate Tristate
GPI0O[10] Tristate Tristate Tristate Tristate
GPIO[11] Tristate Tristate Tristate Tristate
GPIO[12] Tristate Tristate Tristate Tristate
GPIO[13] Tristate Tristate Tristate Tristate
GPI10[14] Tristate Tristate Tristate Tristate
GPIO[1(5] Tristate Tristate Tristate Tristate
GPIO[16] Tristate Tristate Tristate CLK Input
GPIO[17] Tristate Tristate Tristate Input
GPI0O[18] Tristate Tristate Tristate Input
GPIO[19] Tristate Tristate Tristate Input
GPI10[20] Tristate Tristate Tristate Input
GPIO[21] Tristate Tristate Tristate Output
GPI0[22] Tristate Tristate Tristate Tristate
GPI10[23] Tristate Tristate Tristate Input
GPI10[24] Tristate Tristate Tristate Tristate
GPI0[25] Tristate Tristate Tristate Tristate
GPI0[26] Tristate Tristate Tristate Tristate
GPIO[27] Tristate Tristate Tristate Input
GPI10[28] Tristate Tristate Tristate Tristate
GPI10[29] Tristate Tristate Tristate Tristate

Application Note 54 of 77 001-76405 Rev.*K

2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Default state of I/Os during boot

GPIO SPI boot default state | USB boot 12C boot Sync ADMux boot
default state default state default state
GPIO[30] PMODE[0] I/P to FX3™ PMODE[0] I/P to PMODE[0] I/P to PMODE[0] I/P to
FX3™ FX3™ FX3™
GPIO[31] PMODE[1] I/P to FX3™ PMODE[1] I/P to PMODE[1] I/P to PMODE[1] I/P to
FX3™ FX3™ FX3™
GPIO[32] PMODE[2] I/P to FX3™ PMODE[2] I/P to PMODE[2] I/P to PMODE[2] I/P to
FX3™ FX3™ FX3™
GPIO[33] Tristate Tristate Tristate Tristate
GPIO[34] Tristate Tristate Tristate Tristate
GPIO[35] Tristate Tristate Tristate Tristate
GPI0O[36] Tristate Tristate Tristate Tristate
GPIO[37] Tristate Tristate Tristate Tristate
GPI0O[38] Tristate Tristate Tristate Tristate
GPIO[39] Tristate Tristate Tristate Tristate
GPIO[40] Tristate Tristate Tristate Tristate
GPI10[41] Tristate Tristate Tristate Tristate
GPIO[42] LOW LOW LOW LOW
GPI0[43] Tristate Tristate Tristate Tristate
GPI0O[44] Tristate Tristate Tristate Tristate
GPIO[45] Tristate (HIGH if SPI HIGH HIGH HIGH
boot fails)
GPIO[46] HIGH Tristate Tristate Tristate
GPIO[47] Tristate Tristate Tristate Tristate
GPIO[48] HIGH Tristate Tristate Tristate
GPI10[49] Tristate Tristate Tristate Tristate
GPIO[50] Tristate (LOW if SPI Tristate Tristate Tristate
boot fails)
GPIO[51] LOW LOW LOW LOW
GPI0O[52] HIGH Tristate Tristate Tristate
GPIO[53] LOW (toggles during HIGH HIGH HIGH
SPI transactions)
GPI0[54] HIGH Tristate Tristate Tristate
GPIO[55] Tristate HIGH HIGH HIGH
GPIO[56] LOW Tristate Tristate Tristate
GPIO[57] LOW Tristate Tristate Tristate
GPIO[58] 12C_SCL | Tristate Tristate Tristate (Toggles | Tristate
during
transaction., then
Tristated)
GPIO[59] 12C_SDA | Tristate Tristate Tristate Tristate
Application Note 550of 77 001-76405 Rev.*K

2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options (In fl neon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

12 Appendix A: Steps for booting Using FX3™ DVK board
(CYUSB3KIT-001)

This appendix describes the stepwise sequence for exercising USB boot, I1°C boot, and SPI boot using the FX3™
DVK board. Figure 12 shows a part of the FX3™ DVK board that contains switches and jumpers, which need to be
configured appropriately for each boot option. The required settings for them are also described.

SW40 - Switch to

SW25 - Switch to control EEPROM J101,102,103,104 —
control PMODE address Jumpers to connect
input pins i
putp U4 — with SPI Flash
EEPROM
socket

1
"

aa

23)
i :
_PMOD 3

CON

: CYPRESS '« ‘o %
: FX3 DVK DEVICE BOARD »-

J96,97,97 — Jumpers to
control PMODE input pins

Figure 12 FX3™ DVK board: Essential switches and jumpers to be configured for boot

12.1 USB boot

1. Build the firmware image in the Eclipse IDE as shown in Figure 13, Figure 14, and Figure 15.

001-76405 Rev.*K

Application Note 56 of 77
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

infineon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

[et

B yudlpp ‘ ‘H oid

[EB =3 FeBootAppGec
1; Binaries '
[l Includes Go Into
g [R)EIbUQ Open in New Window
- elease
-[8) eyfx_gee_ste [Z) Copy Ctrl+C
-[£) gpio_test.c Paste Ctel 4
- i2c_test.c 3 Delete Delete
% main.c Remowe from Context Chrl +Alt+Shift+Down
-l spi_test.c
howe,.,
-[g] test_vart.c Rename.. B2
[usb_boot.c

[€ usb_descrip’ jug Import...
2 ofdld £ Export..

7125 USBAudioClass

525 USBBulkLoopA Restore from Local History...

7[5 USBBulkLoopA:
7-[=% USBBulkLoopA:
125 USBBulkLoopAutoOneToMany

= USBBulkLoopAutaSignal -

Properties Alt+Enter

-2 cyfid.scat

-LZ] fi3_armgec Clean Project

-LZ] fi3_armrvds & Refresh F5

@ f:3_build_co Close Project

- g makefile Close Unrelated Projects
[]--b;:“éi?t:::lltc Exclude from huild..,
-5 GpioApp Build Configurations 3
-5 GpioComplexd, Make Targets 3
-5 SlaveFifoAsync Index v
-5 SlaveFifoAsyncd convert To..
e bz S\aveF?foSyﬂc Run As b
S onone g DR >

- Profile As 3

-5 UartLpDrmaMo:
S UartLpReghod: e '
F Compare With 3
E
E
=
=
=

Figure 13 Right-click on project in Eclipse IDE
2 Properties for Fx3BootappGec | ez -
type filter text Settings =T =S .
- Resource
-Builders —
= C/C++ Build Configuration: ’DEbUQ [Active] '] [Manage Configurations...]
- Build Variables
- Discovery Options
- Environment B Tool Settings | 44 Build Steps Build Artifact | Binary Parsers | @ Error Pa:se:s|
i.. Tool Chain Editor #2 Target Processor Processor ’armglﬁej-s
@-C/Ce+ General | | | - & Debugging 1 Thumb (-mthumb)
- Project References | | | i+ =2 itional Tools .) e
.. Refactoring History =58 ARM Sourcery Windows GCC Assembler [Thumb interwork (-mthumb-interwo
- Run/Debug Settings | | | | i (2 Preprocessor
@ Task Repository [| [§ &= @ Directories
- WikiText (3 Warnings
(3 Miscellaneous
=88 ARM Sourcery Windows GCC C Compiler
. Preprocessor
- Directories L
----- (# Optimization
-2 Wamnings
(2 Miscellaneous
=8 ARM Sourcery Windows GCC C Linker
(2 General
- @ Libraries
----- @ Miscellanecus -
@ [ok][Ccancel
Figure 14 Select Settings

Application Note

57 of 77

001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

& Properties fon Fx3BootAppGoe
Settings 4= -
Resource
Builders
=) 24+ Build Configuration: |Feleass [Active] s [Manage Configurations. ..
Build %arisbles
Discovery Opkions
Ervironrsnt .
Settings B3 Tool Settings Build Steps Build Arkifack Binary Parsers || € Error| % *
Tool Chain Edikar Pre-build steps
CIC++ General Command:
Project References
Refactoring History e
RunfDebug Settings Descripkion:
Task Repositary -
WikiText
Post-build skteps
Command:
IMNSTALL PaTHH U elFZimglelfZimg. exe" -i ${ProjMame}.elf -o ${ProjMame}.img Y
Descripkion:
Convverting ELF to image {.img) Format o
[Restore Defaults] [Apply]
=
',1?,' [Ik] [Cancel]
Figure 15 elf2img command configuration in Post-build steps for USB boot image

2. Enable USB boot by setting the PMODE[2:0] pins to Z11. On the DVK board, this is done by configuring the
jumpers and switches as shown in Table 32.

Table 32 Jumper configurations for USB boot
Jumper/Switch Position State of corresponding PMODE pin
J96 (PMODEO) 2-3 Closed PMODEO controlled by SW25
J97 (PMODE1) 2-3 Closed PMODE1 controlled by SW25
J98 (PMODE2) Open PMODE2 Floats
SW25.1-8 (PMODEDO) Open (OFF position) PMODEO =1
SW25.2-7 (PMODE1) Open (OFF position) PMODE1=1
SW25.3-6 (PMODE?2) Don’t care PMODE?2 Floats

3. When connected to a USB Host, the FX3™ device enumerates in the Control Center as “Cypress USB
BootLoader,” as shown in Figure 16.

Application Note 58 of 77 001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

infineon

File Program Help

& EE 0 nd D URB Stat Abort Pipe ResetPipe X & @
28 Cypress USB BootLoader Descriptor Info | Data Transfers | Device Class Selection |
<DEVICE> -

FriendlyName="Cypress USB BootLoader" B
Manufacturer="Cypress"
Product="WestBridge "
SerialNumber="0000000004BE"
Configurations="1"
MaxPacketSize="64"
VendorlD="04 B4"
Product|D="00 F3"
Class="00h"
SubClass="00h"
Protocol="00h"
BcdDevice="01 00"
BcdUSB="02 00"
<CONFIGURATION>
Configuration="0"
ConfigurationValue="1"
Attributes="80h"
Intefaces="1"
DescriptorType="2"
DescriptorLength="9"
TotallLength="18"
MaxPower="100"
<INTERFACE>
Interface="0"
InterfaceNumber="0"
AltSetting="0"
Class="FFh"
Subclass="00h"
Protocol="0"
Endpoints="0" =
DescriptorType="4"
DescriptorLength="9"
</INTERFACE> -

aF

Figure 16 Cypress USB BootLoader Enumeration in control center

4. Inthe Control Center, select the FX3™ device by choosing Program > FX3 > RAM, as shown in Figure 17.

File | Program | Help
@ [2 v BD URBStat AbortPipe ResetPipe X & @& #
=28 | FE | RAM |='iDt°|' Infa |Data Transfers | Device Class Selection
12C E2PROM VICE> T
FriendlyName="Cypress USB BootLoader" il
Sl Manufacturer="Cypress"

Product="VestEridge "
SerialNumber="
Corfigurations="1"
MaxPacket Size="64"
VendorlD="04 B4"
Product|D="00 F3"
Class="00h"
SubClass="00h"
Protocol="00h"
BedDevice="01 00"
BedUSE="02 00"
<CONFIGURATION:
Configuration="0"
ConfigurationValue="1"
Attributes="80h"
Interfaces="1"
Descriptor Type="2"
DescriptorLength="59"
Totallength="18"
MaxPower="100"
<INTERFACE>
Inteface="0"
Inteface Number="0"
Alt Setting="0"
Class="FFh"
Subclass="00h"
Protocol="0"
Endpoirts="0" |
Descriptor Type="4"
DescriptorLength="9"
</INTERFACE> -

m

Figure 17 Select the device from the control center

5. Next, browse to the .img file to be programmed into the FX3™ RAM. Double-click on the .img file, as shown in

Figure 18.

Application Note 59 of 77

001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

infineon

300 USB 0
File:
Y- RN

Cypre: Q)

My Recent
Cocuments

)

Desktop

Look

ty Camputer

by Metwork,
Places

il Select file to download . . .

My Documents

i | £ Releass

Fx3BookAppGee.img

File name: || v |

[Open

Filez of type: | Firmware Image files [*.img) v |

[Cancel

[Open az read-anly

Figure 18 Select .img file

6. A“Programming Succeeded” message is displayed on the bottom left of the Control Center, and the FX3™
device re-enumerates with the programmed firmware.

12.2 1C boot

1. Build the firmware image in the Eclipse IDE as shown in Figure 19, Figure 20, and Figure 21.

e S

T cy3lpp ‘ H‘ void

(a8~ F-cBootAppGec
-4 Binaries New '
- Includes Ezinim
-& Debug Open in New Window
(= Release
- (8] cyfx_gee st [i2) Copy Ctrl+C
€| gpio_test.c Paste Ctrl+
-] i2citast.c 3¢ Delete Delete
| main.c Rermowve from Context Ctrl+2lt+Shift+ Dowen
- [£] spi_test.c Iowe
-|.€] test_vart.c Rename... P2
-[£] usb_boot.c
- [£] usb_descrip £2g Import...
2| cyb3.ld &3 Export...
[Z] cyfd.scat
\; £3_armgec Clean Project
(2] f3_armrvds| 2| Refresh =
{21 f3_build_c Close Project
| & makefile Close Unrelated Projects
L@ g
- [F] readmetd E
S F3BootAppRy Exclude from build...
S GpioApp Build Cenfigurations D
1 GpioComplexsy ~ Make Targets ,
S SlaveFifoAsync| Index '
TS SIaveF?FnA;ynL Tl T
'bz SIaveF!FnSync Run As L4
bc SlaveFifoSynch Debug As 3
'bc standalone_bsp Profile As 3
1= UartLpDmaMo
- Team 4
1= VartLpRegMod c With »
2 USBAudioClass| _omPare Wi !
= USBBulkLoopA Restore from Local History...
=5 USBBulkLooph Properties Alt~Enter
=5 USBBulkLooph
125 USBBulkLoopAuteOneToMany
=5 USBBulkLoopAutoSignal -

Figure 19

Application Note

Right-click on project in Eclipse IDE

60 of 77

001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

infineon

= Properties for FXSBDDt_Apchc E‘ﬁl&
type filter text Settings fe=10 4 v v
+ Resource
Builders
2 CfC++ Build Configuration: lDEbug [Active] 'I [Manage Configurations.”]

Build Variables
Discovery Options

Environment

i Tool Chain Editor
C/C++ General

- Project References
Refactoring History

- Run/Debug Settings

3 Tool Settings ‘ 4 Build Steps

Build Amfactl BmaryParsersl a ErrorParsErsl

@ Target Processor
@ Debugging
(2 Additional Toals
=55 ARM Sourcery Windows GCC Assembler
@ Preprocessor

Task Repository @ Directories
- WikiText (2 Warnings

Processor | arm926ej-s

[T1Thumb (-mthumb)
[#] Thumb interwork (-mthumb-interwo

-2 Miscellaneous
=583 ARM Sourcery Windows GCC C Compiler
(% Preprocessor
(2 Directories
-2 Optimization
~ (% Wamings
—(® Miscellaneous
-5 ARM Sourcery Windows GCC C Linker
-~ General
~ (2 Libraries
—(# Miscellaneous

@

Figure 20

Properties of FX3™ BootAppGcc

& Properties for Fx3BootAppGec L'@
Lpelleien] settings G-

Resource
Euilders
[=1- CfC++ Build Configuration: |Release [Active]
Build Yariables
Discovery Opkions

Environment . =

Settings B8 Tool Settings 4 Build Steps | Euild Artifact Einary Parsers | € Error] 4 ®

Tool Chain Editor
=) CIC++ General

h ‘ [Manage Configurations. .,

Pre-build steps

Command:
Code Style
Documentation ‘ i |
Filz Types Description:

Indexer ‘
Language Mappings
Paths and Symbols
Project References
Refactaring History

Post-build steps
Cornrnand:

RunyDebug Settings
Task Repository Descripkion:
WikiText
Canverting ELF o image {.img) farmat ~

[Restore Defau\ts] [Apply]

@

Figure 21

elf2img command configuration in post-build steps for I°C boot image

2. Enable USB boot, by setting the PMODE[2:0] pins to Z11. On the DVK board, this is done by configuring the
jumpers and switches as shown in Table 33.

Application Note

61 of 77

001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

infineon

Table 33 Jumper configurations for USB boot
Jumper/Switch Position State of corresponding PMODE pin
J96 (PMODEO) 2-3 Closed PMODEO controlled by SW25
J97 (PMODE1) 2-3 Closed PMODE1 controlled by SW25
J98 (PMODE2) Open PMODE2 Floats
SW25.1-8 (PMODEO) Open (OFF) PMODEO =1
SW25.2-7 (PMODE1) Open (OFF) PMODE1=1
SW25.3-6 (PMODE?2) Don’t care PMODE?2 Floats

3. When connected to a USB Host, the FX3™ device enumerates in the Control Center as “Cypress USB
BootLoader,” as shown in Figure 22.

#r USB Control Center

=

File Program Help

& & [@ o
R Cypress USB BootLoader]

URB Stat Abort Pipe ResetPipe X & @ 7

| Descriptor Info | Data Transfers | Device Class Selection |

<DEVICE>

Class="00h"

FriendlyName="Cypress USB BootLoader"
Manufacturer="Cypress”
Product="WestBridge "
SerialNumber="0000000004BE"
Configurations="1"

MaxPacketSize="64"

VendorlD="04 B4"

Product|D="00 F3"

SubClass="00h"

Protocol="00h"

BcdDevice="01 00"

BcdUSB="02 00"

<CONFIGURATION>
Configuration="0"
ConfigurationValue="1"
Attributes="80h"
Interfaces="1"
Des
DescriptorLength="9"
TotalLength="18"
MaxPower="100"
<INTERFACE>

criptorType="2"

Interface="0"
InterfaceNumber="0"
AltSetting="0"
Class="FFh"
Subclass="00h"
Protocol="0"
Endpoints="0"
Descriptor Type="4"
DescriptorLength="9"

</INTERFACE>

Figure 22

Cypress USB BootLoader enumeration in Control Center

4. Before attempting to program the EEPROM, ensure that the address signals of the EEPROM are configured
correctly using switch SW40 (For Microchip part 24AA1025, 1-8 ON, 2-7 ON, 3-6 OFF). Also, the 1°C Clock
(SCL) and data Line (SDA) jumpers J42 and J45 pins 1-2 should be shorted on the DVK
board. Inthe Control Center, select the FX3™ device. Next, choose Program > FX3 > [2C E2PROM, as shown
in Figure 23. This causes a special I?’C boot firmware to be programmed into the FX3™ device, which then
enables programming of the I°C device connected to FX3™. Now the FX3™ device re-enumerates as “Cypress
USB BootProgrammer,” as shown in Figure 24.

‘s USB Control Center

File | Program | Help

=l Interface 0

Daw D URE
= m| Fi3 » | RLAM Dl
=I- Configuratian 1 | I2C E2PROM
Control endpaint
SPI FLASH

Altemate Setting 0

Buytes to Transfer

Figure 23

Application Note

Choose Program > FX3 > 12C E2PROM

62 of 77

001-76405 Rev.*K

2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

¥ USB Control Center

File Program Help

=R Copress USE EootProgrammer
(=) Configuration 1
Control endpoint [0=00]
Interface O

Figure 24 FX3™ re-enumerates as “Cypress USB BootProgrammer”

5. After the FX3™ DVK board enumerates as “Cypress USB BootProgrammer,” the Control Center application
prompts you to select the firmware binary to download. Browse to the .img file that is to be programmed
into the 1°C EEPROM, as shown in Figure 25.

Fle Program Help
Pew 5[. dE [URB Stat AbortPipe ResstPips X & @ 7
Cypress USE BootProgiammer Dieseriptor Info | Data Transfers | Deviee Class Selection

Select file to dowmnload . . .

Lock in: | (7 Peleass 5 0fF P @E

E = Fx3Boct Apper img

My Recent
Documents

Deskiop

My Documents

o
My Computer
< File name \ v o=
My Metwork
Places Files oftype: | Fimware Image fies ["img) v [caneat |
] Open as isad-only
Figure 25 Select firmware image to download

After programming is complete, the bottom left corner of the window displays “Programming of I2C EEPROM
Succeeded,” as shown in Figure 26.

¢ USB Control Center El@lg‘

Fle Program Help

- | URB Stat AbortPipe ResstPipe X & (B #7
C

Descriptor Info | Data Transfers | Device Class Selection

<DEVICE> A
FriendlyM ame="Cypress USE BootProgrammer"'
Manufacture=""

SenalNumber='
Configurations:
M axPacketSiz
WendorlD:
ProductiD="47
Class="00h"
SublClass="00h"
Frotocol="00k"
BedDevice="00 200
BedUSE="02 00"
<COMFIGURATION:
Configuration="0"
Configurationl/alue="1"
Attributes="% *
Interfaces="
DescriptorType="2"
DescriptorLength="3"
Totallength="32"
I axPower="50"
<INTERFALCE>
Interface="0"
Interfacetumbe

B4"
a0

Subclass="FFh"
Frotocol="255"
Endpaints="2'
DescriptorType="4"
Descriptor_ength="3"

<ENDPOINT > v

[1
Programming of 12C E2PROM in Progress...

Figure 26 I?’C EEPROM programming update in Control Center

Application Note 63 0f 77 001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

infineon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

6. Change the PMODE pins on the DVK board to Z1Z to enable I*C boot. On the DVK board, this is done by
configuring the jumpers and switches as shown in Table 34.

Table 34 Jumper configurations for I>°C boot
Jumper/Switch Position State of corresponding PMODE pin
J96 (PMODEOQ) Open PMODEO Floats
J97 (PMODE1) 2-3 Closed PMODE1 controlled by SW25
J98 (PMODE2) Open PMODE?2 Floats
SW25.1-8 (PMODEDO) Don’t care PMODEQ Floats

SW25.2-7 (PMODEL1)

Open (OFF position)

PMODE1=1

SW25.3-6 (PMODE?2)

Don’t care

PMODE2 Floats

7. Reset the DVK. Now the FX3™ device boots from the I1°C EEPROM.

12.3

SPI boot

1. Build the firmware image in the Eclipse IDE as shown in Table 27, Table 28, and Figure 29.

- eyudlpp void
=R F3BootAppGe
--«#v? Binaries D
-l Includes Go Into
(& Debug Open in New Window
(= Release
oyfx_gee stz = Copy Ctrl+C
-[€] gpio_test.c
-[g] i2c test.c ¥ Delete Delete
- main.c
-[€ spi_test.c
| test_uart.c
- [ush_boot.c Ename.. 2
€] ush_deserip gug Import...
B ofdld | A Eport..
2] oybd.scat
; £3_armgec, Clean Project
5 f3_armrvds & | Refresh F5
o] f3 build_cq Close Project
- makefile Close Unrelated Projects
El readme.td
<
E E)jlzizt:ppva Build Configurations 4

125 GpioComplexd|
125 SlaveFifoAsync
125 SlaveFifolsynct
125 SlaveFifoSync

2% SlaveFifoSyncSE
125 standalone_bsp
125 UartlpDmaMec
125 UartLpRegMod:
125 USBAudioClass
125 USBBulkLoopAl

Make Targets
Index

Convert To...
Run As
Debug As
Profile As
Team
Compare With

Restore fram Local History...

-5 USBBulkLoopA [T Alt+Enter

2% USBBulkLoopAutomzm ryroun 5

125 USBBulkLoopAutoOneToMany
125 USBBulkLoepAuteSignal -

Figure 27

Application Note

Right-click on project in Eclipse IDE

64 of 77

001-76405 Rev.*K
2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

infineon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

= Properties for FXBEDDtApp(-i' u

T

PR

-

-

type filter text Settings

+ Resource

i Builders

& C/C++ Build Configuration: [Debug [Active]

'] [Managa Configurations..‘] I

g---BUI|d Variables
iscovery Options

nvironment @) Tool Settings |.ﬁ- Build Step;l

Build Artifact | Binary Parsers | (x] ErrorParser;|

@ Target Processor

@ Debugging
- Additional Tools

. Toal Chain Editor
- C/C++ General
-~ Project References
Refactoring History

- Run/Debug Settings (¥ Preprocessor

- Task Repository (2 Directories
WikiText - Warnings

@ Miscellaneous
-
- @ Preprocessor

@ Directories
-2 Optimization
@ Warnings

@ Miscellanecus
=
@ General

@ Libraries
(2 Miscellaneous

=--E3 ARM Sourcery Windows GCC Assembler

ARM Sourcery Windows GCC € Compiler

ARM Sourcery Windows GCC C Linker

Processor |arm326e)-s

[Thumb (-mthumb)
[¥] Thumb interwark (-mthumb-interwa

OK Cancel

Figure 28 Select settings
type filter text Settings - v v
Resource N
Builders -
C/C++ Build Cenfiguration: [Debug [Active | '] [Manage Configurations‘..]
Build Variables
Discovery Options
Environment 5 Tool Settings # Build Steps | Build Amfactl Binary Parsarsl a ErrorParsers|
Settings .
Tool Chain Editor Pre-build steps
C/C++ General Command:
Project References -
Refactaring History -
D tion:
Run/Debug Settings Ssenphon
Task Repository v
WikiText
Post-build steps
Command:
L_PATHRutil\elf2img\elf2img.exe” -i ${ProjName}.elf -o ${ProjName}img - E
Description:
Cenverting ELF to image (.img) format -
Figure 29 elf2img command configuration in post-build steps for SPI boot image

2. Enable USB boot by setting the PMODE[2:0] pins to Z11. On the DVK board, this is done by configuring the
jumpers and switches as shown in Table 35.

Table 35 Jumper configurations for USB boot
Jumper/Switch Position State of corresponding PMODE Pin
J96 (PMODEO) 2-3 Closed PMODEO controlled by SW25
J97 (PMODE1) 2-3 Closed PMODEL1 controlled by SW25
J98 (PMODE2) Open PMODE?2 Floats
SW25.1-8 (PMODEO) Open (OFF position) PMODEO=1
SW25.2-7 (PMODE1) Open (OFF position) PMODE1=1

SW25.3-6 (PMODE2)

Don’t care

PMODE2 Floats

Application Note

65 of 77

001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

3. When connected to a USB Host, the FX3™ device enumerates in the Control Center as “Cypress USB
BootLoader, as shown in Figure 30.

I

File Program Help

&EHE o 2d@D URBStat Abort Pipe ResetPipe X & @ #
528 Cypress USB BootLoader| Descriptor Info | Data Transfers | Device Class Selection |
<DEVICE> -~

FriendlyName="Cypress USB BootLoader" B
Manufacturer="Cypress"
Product="WestBridge "
SerialNumber="0000000004BE"
Configurations="1"
MaxPacketSize="64"
VendorlD="04 B4"
ProductID="00 F3"
Class="00h"
SubClass="00h
Protocol='
BedDevice="01 00"
BedUSB="02 00"
<CONFIGURATION>
Configuration="0"
ConfigurationValue="1"
Attributes="80h"
Interfaces="1"
DescriptorType="2"
DescriptorLength="9"
TotalLength="18"
MaxPower="100"
<INTERFACE>
Interface="0"
InterfaceNumber="0"
AltSetting="0"
Class="FFh"
Subclass="00h"
Protocol="0"
Endpoints="0" =
Descriptor Type="4"
DescriptorLength="9"
</INTERFACE> -~

.

Figure 30 Cypress USB BootLoader enumeration in Control Center

4. Inthe Control Center, select the FX3™ device and then choose Program > FX3 > SPI FLASH, as shown in
Figure 31. Browse to the .img file to be programmed into the SPI flash, as shown in Figure 32.

File | Program | Help
= M v i URB Stat Abort Pipe ResetPipe X & @ £
= F3 » RAM sriptor Info | Data Transfers I Device Class Selection
12C E2PROM ICE> -
FriendlyName="Cypress USB BootLoader” ¥
| JHIFLSE | Manufacturer="Cypress”

Product="WestBridge "
SeralNumber="0000000004BE™
Configurations="1"
MaxPacketSize="64"
VendorlD="04 B4"
Product|D="00 F3"
Class="00h"
SubClass="00h"
Protocol="00h"
BecdDevice="0100"
BcdUSB="02 00"
<CONFIGURATION:
Corfiguration="0"
CorfigurationValue="1"
Attributes="80h"
Interfaces="1"
DescriptorType="2"
DescriptorLength="9"
TotalLength="18"
MaxPower="100"
<INTERFACE>
Interface="0"
Inteface Number="0"
AltSetting="0"

m

Endpoints="0" .
DescriptorType="4"
DescriptorLength="9"

</INTERFACE> -

Figure 31 Choose Program > FX3 > SPI FLASH in Control Center

Application Note 66 of 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

File Program Help

Pk o] [8 [URB Stat AbortFipe ResetPpe X @ @ £

Cypress USE BootProgrammer Desciiptor Info | Data Transfers | Device Class Selection

Select file to download . . .

Look in: |Lj Release v| €] ? L

_‘b Fx3BootAppGoc.img

My Recent
Documents

Desktop

®

ty Documents

(&l

4y Camputer

‘g File name: || v | [open |
My Mehwark

Places Files of bype: | Firmware Image files [".img] v | [Cancel]

[] Open as read-only

Figure 32 Double-click on the .img file to be programmed into SPI flash

Cypress Book Programmer Device Found

5. After programming is complete, the bottom left corner of the window displays “Programming of SPI FLASH
Succeeded,” as shown in Figure 33.

¢ USB Control Center,
File Program Help
leR E [e | URE Stat Abort Pipe ResetPpe X & @ £
L gramnmer Descriptor Info | Data Transfers | Devies Class Selection
<DEVICE> ~
FriendlyM ame="Cypress USE BootProgrammer 7
Manufacturer=""
Froduct=""
SenalMumber=""

Configurations="1"
M auPacketSize="64"
Wendorl D="04 B4"
ProductlD="47 20"
Clazs="00h"
SubClazs="00k"
Frotocol="00h"
BrodDevice="00 20"
BcdUSB="02 00"
<COMFIGURATION:
Configuration="0"
Configurationt’ alue=""1
Attributes="80h"
Interfaces="1"
DescriptorType="2"
DescriptorLength="3"
TotalLength="32"
@ oveer="50"
<INTERFACE>
Interface="0"
Interfaceumber="0"
AltSetting="0"

285"
Endpoints="2"
DescriptarType="4
DescriptorLength="3"
<EMDPOINT: v

Programming of SPI FLASH Succesded

Figure 33 Successful programming of SPI flash indicated at bottom left of Control Center

6. Change the PMODE[2:0] pins on the DVK board to 0Z1 to enable SPI boot. On the DVK board, this is done by
configuring the jumpers and switches as shown in Table 36.

Application Note 67 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Table 36 Jumper configurations for SPI boot
Jumper/Switch Position State of corresponding PMODE pin
J96 (PMODEO) 2-3 Closed PMODEO controlled by SW25
J97 (PMODE1) Open PMODEL1 Floats
J98 (PMODE2) 2-3 Closed PMODE2 controlled by SW25
SW25.1-8 (PMODEO) Open (OFF position) PMODEO=1
SW25.2-7 (PMODE1) Don’t care PMODE]1 Floats
SW25.3-6 (PMODE?2) Closed (ON position) PMODE2=0

Reset the DVK. Now the FX3™ boots from the SPI flash.

Application Note 68 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options < Infineon

Appendix B: Troubleshooting steps for Sync ADMux boot

13 Appendix B: Troubleshooting steps for Sync ADMux boot

This appendix describes the step-wise instructions on how to test and debug various sequences for sync ADmux
boot.
13.1 Initialization

1. Configure the memory interface on the master side to meet FX3™’s timing requirements.

2. Ifrequired (in cases like Linux), memory-map the address region corresponding to the FX3™ interface to a
region of virtual memory.

3. Write 0x0000 to the PP_INIT register at the address (FX3 address = 0x81).
4. Write 0x0040 to the PP_CONFIG register at the address (FX3 address = 0x82).

13.2 Test register read/write

1. Write to the PP_SOCK_MASK_H (0x8B) and PP_SOCK_MASK_L (0x8A) registers with various values and read
them back for testing and verification.

2. Write to the PP_INTR_MASK (0x88) register with various values and read them back for verification. Note
that this register has a number of reserved bits: Value read = Value written and OxF8FF.

3. Write the following values to these registers to set up for FIFO access testing:
PP_SOCK_MASK_H = 0x0000
PP_SOCK_MASK_L =0x0007
PP_INTR_MASK = 0x2001

13.3 Test FIFO read/write

Memory write and read debug commands provided by the FX3™ bootloader are used to test the FIFO access,
verify that the interface is working properly, and it can be used for firmware download.

1. Write a data pattern to the memory address 0x40003000:
a) Wait until bit 0 (Socket 0 Available) of PP_SOCK_STAT_L register (0x9E) is set.
b) Write 0x0300 to the PP_DMA_XFER register (0x8E)
c) Wait until Bit 12 and Bit 15 of the PP_DMA_XFER register are set.

d) Write 512 bytes of data with the following format™ to the FX3™ device address 0 (SOCKET 0):

Byte 0 = 0x43

Byte 1 =0x59

Byte 2 = 0x01 (write command)

Byte 3 =0x7E

Byte 4 = 0x00 (LSB of address)

Byte 5=0x30

Byte 6 = 0x00

Byte 7 = 0x40 (MSB of address)

3 Refer to USB 2.0 Specification for more details about the packet structure.

Application Note 69 of 77 001-76405 Rev.*K
2021-04-16

http://www.usb.org/developers/docs/usb20_docs/

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Appendix B: Troubleshooting steps for Sync ADMux boot

Bytes 8 to 511 can contain random data

2. Read back the status of the write operation:

a) Wait until bit 2 (Socket 2 Available) of PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0102 to the PP_DMA_XFER register (Ox8E).

c) Wait until Bit 12 of the PP_DMA_XFER register is set.

d) Read the PP_DMA_SIZE register (0x8F) and verify that the value is 0x0200.

e) Read 512 bytes of data (256 cycles) from the FX3 address 0x02.

f) Verify that the first four bytes contain the pattern 0x57, 0x42, 0x01 (don’t care), and 0x00.
3. Initiate a FIFO read command to read the data from address 0x40003000:

a) Wait until bit 0 of PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0300 to the PP_DMA_XFER register (OX8E).

c) Wait until Bit 12 and Bit 15 of the PP_DMA_XFER register are set.

d) Write 512 bytes of data with the following format to the FX3™ device address 0 (SOCKET 0):

Byte 0 = 0x43
Byte 1 =0x59
Byte 2 = 0x03 (read command)
Byte 3=0x7E
Byte 4 = 0x00 (LSB of address)
Byte 5=0x30
Byte 6 = 0x00
Byte 7 = 0x40 (MSB of address)
Bytes 8 to 511 are don’t cares.

4. Read back the memory data from socket 2:

a) Wait until bit 2 of PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0102 to the PP_DMA_XFER register (OX8E).

c) Wait until Bit 12 of the PP_DMA_XFER register is set.

d) Read the PP_DMA_SIZE register (0x8F) and verify that the value is 0x0200.

e) Read 512 bytes of data (256 cycles) from FX3 address 0x02.

f) Verify that the first 4 bytes contain the pattern 0x57, 0x42, 0x03, 0x00.

g) Verify that bytes 8 to 511 match the random data written in step 1 above.
5. Repeat steps 1to 4 for other memory addresses and data patterns.

4 “If the correct response is not received while reading back the status of the write operation, read 256 bytes of data (128 cycles) from
the FX3 Response Socket (address 0x02) instead of 512 bytes.

Application Note 70 of 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options In fl neon

Appendix B: Troubleshooting steps for Sync ADMux boot

13.4 Test firmware download

If all of the above checks are good, you can proceed with the firmware download testing. The following
sequence is to be used for firmware download®:

1. Read the content of the img file with the target firmware into a memory buffer. Pad the data to a multiple of
512bytes as required. This is because bootloader is designed to support only full packets. The size of a full
packet is specified in the bLenStatus field.

2. Follow step 1in Section 13.3 to write the following data to socket 0: 0x43, 0x59, 0x02, 0x01, ... (remaining
508 bytes are don’t care).

3. Follow step 2 in Section 13.3 to read the firmware download command status from socket 2. Verify that byte
3 (status) has the value 0x00.

4. Now, write the complete firmware content to socket 1, 512 bytes at a time. Follow the procedure given
below to write each 512 bytes to socket 1.

a) Wait until bit 1 of the PP_SOCK_STAT_L register (0x9E) is set.
b) Write 0x0301 to the PP_DMA_XFER register (Ox8E).
c) Wait until Bit 12 and Bit 15 of the PP_DMA_XFER register are set.

d) Write 512 bytes of data to the FX3 device address 1.

5 The steps mentioned in this section are based on bLenStatus=1 (single 512-byte block). If the bLenStatus is greater than 1, the data
chunk size per transfer mentioned in steps 1-4 must be changed accordingly. Note that 512 bytes < Data chunk size per transfer <
8 KB.

Application Note 710f77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options < Infineon

Appendix C: Using the elf2img utility to generate firmware image

14 Appendix C: Using the elf2img utility to generate firmware
image

This appendix describes how to use the elf2img utility (in the util\elf2img folder in the SDK installation path) to
generate the firmware image for boot options mentioned in this application note.

14.1 Usage

The utility is a console application that needs to be invoked with the following options:

elf2img.exe -i <elf filename> -o <image filename> [-i2cconf <eeprom control>]

[-vectorload <vecload>] [-imgtype <image type>] [-v] [-h]

where,

<elf filename>:InputELF file name with path

<image filename>: Output file name with path

<eeprom control>:[2C/SPI EEPROM control word in hexadecimal form
<image type>:Image type bytein hexadecimal form

-v: Enable verbose logs during the conversion process

—h: Print help information

14.1.1 Image type

The <image type>should be 0xBO for all firmware applications. Other values are reserved.

14.1.2 Interrupt vector load

The ARM926EJ-S core on the FX3™ device has its reset and interrupt vectors stored in the first 256 bytes of the
memory (address range 0x00-0x100). It is not advisable to load any code directly into this address range
because it may interfere with the boot loader or active firmware operation. The FX3™ firmware library and
default linker settings ensure that no valid code is loaded directly into this address range. The interrupt vectors
are safely copied into this area once the firmware starts running.

The elf2img utility in default mode removes any data in the 0x00-0x100 address range while generating the
boot image. This is safe because the recommended linker settings ensure that no valid code/data is placed in
this address range. This behavior can be overridden using the -vectorload command line option.

The <vecload> valueis a yes/no string, which when set to "yes" causes the tool to retain any data in this
address range in the boot image. The default value for this parameter is "no".

14.1.3 EEPROM control

This parameter is only applicable in the case of boot from I12C EEPROM or SPI FLASH. If the FX3™ is being
booted via USB or the GPIF port, this field is not used and can be omitted while generating the img file.

In the case of 12C boot, the <eeprom control> byte specifies the type and speed of the EEPROM used.

Application Note 720f 77 001-76405 Rev.*K
2021-04-16

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Appendix C: Using the elf2img utility to generate firmware image

In the case of SPI boot, the <eeprom control> byte specifies the speed at which the SPI boot from EEPROM
should be performed. This byte is a don't care when any other boot mode is used.

14.1.3.1 12C parameters

The encoding in the case of 12C boot is as follows:

Bit0 Must be zero

Bits3-1 | EEPROMsize[7=128KB,6=64KB,5=32 KB, 4 =16 KB, 3=8KB, 2 =4 KB]
Bits5-4 EEPROM speed [0 =100 KHz, 1 =400 KHz, 2 = 1 MHz]

Bits 7-6 Must be zero

For example, a value of 0x1C corresponds to the use of 64 KB EEPROM at a frequency of 400 kHz.

14.1.3.2 SPIl parameters

The encoding in the case of SPI boot is as follows:

Bit0 Must be zero

Bits3-1 Don't care

Bits5-4 SPI operating frequency [0 = 10 MHz, 1 =20 MHz, 2 =30 MHZz]
Bits7-6 Must be zero.

For example, a value of 0x1C will generate .img for SPI operating frequency of 20 MHz.

Application Note 730f 77 001-76405 Rev.*K
2021-04-16

o~ _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

References

References
[1] AN75705 - Getting started with EZ-USB™ FX3™
[2] EZ-USB™ FX3™ TRM

Application Note T4 of 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/AN75705
http://www.cypress.com/?rID=80775
http://www.cypress.com/?rID=80775

o _.
EZ-USB™ FX3™/FX3S™ boot options { Inflneon

Revision history

Revision history

Document Date of release Description of changes

version

o 2012-05-14 New application note

*A 2012-11-19 Merged the following application notes into AN76405: AN73150,

AN70193, AN68914, and AN73304
Clarified the SPI Flash parts tested for boot
Added an example for Sync ADMux firmware download implementation

Added a step-by-step-sequence of instructions for testing boot options
on the DVK

Added a table with the default state of the GPIOs during boot
*B 2012-12-10 Table 26 - Updated default state of GPIO[33] for all boot modes
Updated default states of GPIO[51], GPIO[55]-[57] for SPI boot mode.
Updated to new template.

*C 2013-04-12 Updated GPIO[55] in Table 31.

*D 2014-06-27 Added Figure 1 to show all the boot options discussed in this
application note.

Added pin mapping for 12C, SPI, and sync ADMux interfaces.
Added command set of supported SPI flashes.

Added the Processor Port register map.

Pointed to FX3S datasheet for sync ADMux timing diagrams.

*E 2015-07-28 Added SPI flash part numbers supported by FX3

Updated the 12C EEPROM part number that is in production
Added more information in Sync ADMux boot options

Added read and write waveforms for Sync ADMux boot
Updated GPI0O[45] and GPIO[50] in Table 30.

Corrected the RDY pin mapping for Sync ADMux.

Removed secure boot (0xB1) format

Added eMMC boot details

Added FX3S and CX3 parts

Changed the AN title by including FX3S
Updated to new template.

*F 2017-01-20 Updated to new template.

Added Appendix for ADMux troubleshooting.
Completing Sunset Review.

*G 2017-04-18 Updated logo and copyright

*H 2018-07-24 Removed KBA Link (Design with FX3/FX3S)
Removed Benicia References

Removed Obsolete app note references
Modified SPI flash limit to 128 Mbit

Added supported SPI Flash parts

Removed Ez-detect section

Added Appendix C to provide more details on the elf2img utility

Application Note 750f 77 001-76405 Rev.*K
2021-04-16

http://www.cypress.com/?rID=76832

EZ-USB™ FX3™/FX3S™ boot options

Revision history

(infineon

Document Date of release Description of changes

version

*| 2018-10-10 Updated Appendix B.

*J 2019-01-08 Updated GPIF Il API Protocol section
Updated Appendix B.

*K 2021-04-16 Removed mentions of asynchronous SRAM boot option
Updated to Infineon template

Application Note

76 0f 77

001-76405 Rev.*K
2021-04-16

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-04-16
Published by

Infineon Technologies AG
81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?

Go to www.cypress.com/support

Document reference
001-76405 Rev.*K

IMPORTANT NOTICE

The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS

Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.cypress.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	2 More information
	2.1 EZ-USB™ FX3™ software development kit
	2.2 GPIF™ II designer

	3 FX3™ boot options
	4 USB boot
	4.1 PMODE pins
	4.2 Features
	4.2.1 Default Silicon ID
	4.2.2 Bootloader revision
	4.2.3 ReNumeration™
	4.2.4 Bus-powered applications
	4.2.5 USB fallback options (--> USB)
	4.2.6 USB with VID/PID options
	4.2.7 USB default device
	4.2.8 USB setup packet
	4.2.9 USB Chapter 9 and Vendor commands
	4.2.10 USB vendor commands
	4.2.11 USB download sample code

	4.3 Checksum calculation
	4.3.1 FX3™ bootloader memory allocation
	4.3.2 Registers/Memory access
	4.3.3 USB eFUSE VID/PID boot option
	4.3.4 USB OTG
	4.3.5 Bootloader limitations
	4.3.6 USB watchdog timer
	4.3.7 USB suspend/resume
	4.3.8 USB device descriptors

	4.4 Boot image format
	4.4.1 Example of boot image format organized in long-word format

	5 I2C EEPROM boot
	5.1 Features
	5.2 Storing firmware image on EEPROM
	5.2.1 Important points on 128-KB EEPROM addressing

	5.3 Boot image format
	5.4 Checksum calculation
	5.4.1 First example boot image
	5.4.2 Second example boot image
	5.4.3 Checksum calculation sample code

	6 I2C EEPROM boot with USB fallback
	6.1 Features
	6.2 Example image for boot with VID and PID

	7 SPI boot
	7.1 Features
	7.2 Selection of SPI flash
	7.3 Storing firmware image on SPI flash/EEPROM
	7.4 Boot image format
	7.5 Checksum calculation

	8 SPI Boot with USB fallback
	8.1 Example image for boot with VID and PID

	9 Synchronous ADMux boot
	9.1.1 Interface signals
	9.1.2 Synchronous ADMux timing
	9.1.3 USB fallback (-->USB)
	9.1.4 Warm boot
	9.1.5 Wakeup/Standby
	9.1.6 GPIF II API protocol
	9.1.7 Firmware download example
	9.1.8 Processor port (P-Port) register map
	9.2 Boot image format

	10 eMMC boot
	11 Default state of I/Os during boot
	12 Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)
	12.1 USB boot
	12.2 I2C boot
	12.3 SPI boot

	13 Appendix B: Troubleshooting steps for Sync ADMux boot
	13.1 Initialization
	13.2 Test register read/write
	13.3 Test FIFO read/write
	13.4 Test firmware download

	14 Appendix C: Using the elf2img utility to generate firmware image
	14.1 Usage
	14.1.1 Image type
	14.1.2 Interrupt vector load
	14.1.3 EEPROM control
	14.1.3.1 I2C parameters
	14.1.3.2 SPI parameters

	References
	Revision history

