

Application Note Please read the Important Notice and Warnings at the end of this document 001-76405 Rev.*K

www.infineon.com page 1 of 77 2021-04-16

AN76405

EZ-USB™ FX3™/FX3S™ boot options

About this document

Scope and purpose

AN76405 describes the boot options—over USB, I2C, serial peripheral interface (SPI), and synchronous Address
Data Multiplexed (ADMux) interfaces—available for the EZ-USB™ FX3™ peripheral controller. This application
note is also applicable to FX3S™ and CX3 peripheral controllers.

Intended audience

This application note is primarily intended for EZ-USB™ FX3™/FX3S™/CX3 users.

Associated part family

CYUSB30xx

More code examples? We heard you.

For a consolidated list of USB SuperSpeed Code Examples, visit https://www.cypress.com/101781.

Table of contents

About this document ... 1

Table of contents .. 1

1 Introduction .. 4

2 More information ... 5

2.1 EZ-USB™ FX3™ software development kit .. 5
2.2 GPIF™ II designer ... 5

3 FX3™ boot options .. 7

4 USB boot ... 9
4.1 PMODE pins ... 9

4.2 Features ... 9
4.2.1 Default Silicon ID .. 9
4.2.2 Bootloader revision .. 10

4.2.3 ReNumeration™.. 10

4.2.4 Bus-powered applications ... 10

4.2.5 USB fallback options (--> USB) .. 10
4.2.6 USB with VID/PID options .. 10
4.2.7 USB default device ... 10
4.2.8 USB setup packet ... 10

4.2.9 USB Chapter 9 and Vendor commands ... 11

4.2.10 USB vendor commands ... 11
4.2.11 USB download sample code .. 13
4.3 Checksum calculation ... 14

4.3.1 FX3™ bootloader memory allocation .. 14
4.3.2 Registers/Memory access .. 15
4.3.3 USB eFUSE VID/PID boot option .. 15

http://www.infineon.com/
http://www.cypress.com/products/ez-usb-fx3s

Application Note 2 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Table of contents

4.3.4 USB OTG ... 15
4.3.5 Bootloader limitations ... 15

4.3.6 USB watchdog timer .. 15
4.3.7 USB suspend/resume ... 15

4.3.8 USB device descriptors .. 15
4.4 Boot image format .. 17

4.4.1 Example of boot image format organized in long-word format .. 18

5 I2C EEPROM boot ... 20

5.1 Features ... 20
5.2 Storing firmware image on EEPROM .. 21
5.2.1 Important points on 128-KB EEPROM addressing .. 21

5.3 Boot image format .. 22

5.4 Checksum calculation ... 24

5.4.1 First example boot image .. 24
5.4.2 Second example boot image ... 24
5.4.3 Checksum calculation sample code .. 25

6 I2C EEPROM boot with USB fallback ... 27

6.1 Features ... 27
6.2 Example image for boot with VID and PID .. 27

7 SPI boot ... 28
7.1 Features ... 28

7.2 Selection of SPI flash ... 29

7.3 Storing firmware image on SPI flash/EEPROM ... 29

7.4 Boot image format .. 30
7.5 Checksum calculation ... 31

8 SPI Boot with USB fallback ... 33

8.1 Example image for boot with VID and PID .. 33

9 Synchronous ADMux boot .. 34
9.1.1 Interface signals ... 34
9.1.2 Synchronous ADMux timing ... 35

9.1.3 USB fallback (-->USB) ... 36

9.1.4 Warm boot .. 36

9.1.5 Wakeup/Standby .. 36
9.1.6 GPIF II API protocol .. 38

9.1.7 Firmware download example .. 39

9.1.8 Processor port (P-Port) register map .. 40
9.2 Boot image format .. 49

10 eMMC boot ... 53

11 Default state of I/Os during boot ... 54

12 Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)....................................... 56

12.1 USB boot .. 56
12.2 I2C boot .. 60
12.3 SPI boot ... 64

13 Appendix B: Troubleshooting steps for Sync ADMux boot... 69

13.1 Initialization ... 69
13.2 Test register read/write ... 69
13.3 Test FIFO read/write .. 69

13.4 Test firmware download ... 71

Application Note 3 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Table of contents

14 Appendix C: Using the elf2img utility to generate firmware image .. 72
14.1 Usage ... 72

14.1.1 Image type .. 72
14.1.2 Interrupt vector load .. 72

14.1.3 EEPROM control ... 72
14.1.3.1 I2C parameters .. 73

14.1.3.2 SPI parameters .. 73

References .. 74

Revision history... 75

Application Note 4 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Introduction

1 Introduction

EZ-USB™ FX3™ is the next-generation USB 3.0 peripheral controller, providing highly integrated and flexible
features that enable developers to add USB 3.0 functionality to a wide range of applications. FX3™ supports
several boot options, including booting over USB, I2C, SPI, synchronous and asynchronous ADMux interfaces.

Note: This application note describes the details of only the USB, I2C, SPI, and synchronous ADMux boot
options.

The default state of the FX3™ I/Os during boot is also documented. Appendix A covers the stepwise sequence
for testing the different boot modes using the FX3™ DVK.

http://www.cypress.com/?rID=58321

Application Note 5 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

More information

2 More information

Infineon provides a wealth of data at www.cypress.com to help you to select the right device for your design,
and to help you to integrate the device into your design quickly and effectively.

• Overview: USB Portfolio, USB Roadmap

• USB 3.0 product selectors: FX3™ , FX3S™, CX3, HX3

• Application notes: Infineon offers a large number of USB application notes covering a broad range of topics,
from basic to advanced level. Recommended application notes for getting started with FX3™ are:

− AN75705 – Getting started with EZ-USB™ FX3™

− AN70707 – EZ-USB™ FX3™ /FX3S™ hardware design guidelines and schematic checklist

− AN65974 – Designing with the EZ-USB™ FX3™ slave FIFO interface

− AN75779 – How to implement an image sensor Interface with EZ-USB™ FX3™ in a USB Video Class (UVC)
framework

− AN86947 – Optimizing USB 3.0 throughput with EZ-USB™ FX3™

− AN84868 – Configuring an FPGA over USB using EZ-USB™ FX3™

− AN68829 – Slave FIFO interface for EZ-USB™ FX3™ : 5-bit address mode

− AN76348 – Differences in implementation of EZ-USB™ FX2LP and EZ-USB™ FX3™ applications

− AN89661 – USB RAID 1 disk design using EZ-USB™ FX3S™

• Code examples:

− USB Hi-Speed

− USB Full-Speed

− USB SuperSpeed

• Technical reference manual (TRM):

− EZ-USB™ FX3™ Technical Reference Manual

• Development kits:

− CYUSB3KIT-003, EZ-USB™ FX3™ SuperSpeed Explorer Kit

− CYUSB3KIT-001, EZ-USB™ FX3™ Development Kit

− Models: IBIS

2.1 EZ-USB™ FX3™ software development kit

Infineon delivers the complete software and firmware stack for FX3™ to easily integrate SuperSpeed USB into
any embedded application. The Software Development Kit (SDK) comes with tools, drivers, and application

examples, which help accelerate application development.

2.2 GPIF™ II designer

The GPIF II Designer is a graphical software that allows designers to configure the GPIF II interface of the EZ-
USB™ FX3™ USB 3.0 Device Controller.

The tool allows users the ability to select from one of five Infineon-supplied interfaces, or choose to create their
own GPIF II interface from scratch. Infineon has supplied industry-standard interfaces such as asynchronous

and synchronous Slave FIFO, and asynchronous and synchronous SRAM. Designers who already have one of

these pre-defined interfaces in their system can simply select the interface of choice, choose from a set of

standard parameters such as bus width (x8, 16, x32) endianness, clock settings, and then compile the interface.
The tool has a streamlined three-step GPIF interface development process for users who need a customized

https://www.cypress.com/?source=PSoC5LP_Datasheet
http://www.cypress.com/?id=167
http://www.cypress.com/?rID=94780
http://www.cypress.com/?id=3526
http://www.cypress.com/?id=4833
http://www.cypress.com/cx3/
http://www.cypress.com/hx3
http://www.cypress.com/?rid=59979
http://www.cypress.com/?rid=53203
http://www.cypress.com/?rid=51581
http://www.cypress.com/?rid=62824
http://www.cypress.com/?rID=84341
http://www.cypress.com/?rid=75048
http://www.cypress.com/?rid=59936
http://www.cypress.com/?rid=61948
http://www.cypress.com/?rID=88018
http://www.cypress.com/?rID=61168
http://www.cypress.com/?rID=101782
http://www.cypress.com/?rid=101780
http://www.cypress.com/?rid=101781
http://www.cypress.com/?rID=80775
http://www.cypress.com/documentation/development-kitsboards/cyusb3kit-003-ez-usb-fx3-superspeed-explorer-kit
http://www.cypress.com/documentation/development-kitsboards/cyusb3kit-003-ez-usb-fx3-superspeed-explorer-kit
http://www.cypress.com/documentation/development-kitsboards/ez-usb-fx3-development-kit-cyusb3kit-001?source=search&keywords=CYUSB3KIT-001
http://www.cypress.com/documentation/development-kitsboards/ez-usb-fx3-development-kit-cyusb3kit-001?source=search&keywords=CYUSB3KIT-001
http://www.cypress.com/?rID=68389
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=59628

Application Note 6 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

More information

interface. Users can first select their pin configuration and standard parameters. Secondly, they can design a
virtual state machine using configurable actions. Finally, users can view the output timing to verify that it

matches the expected timing. After this three-step process is complete, the interface can be compiled and
integrated with FX3™.

Application Note 7 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

FX3™ boot options

3 FX3™ boot options

FX3™ integrates a bootloader that resides in the masked ROM. The function of the bootloader is to download
the FX3™ firmware image from various interfaces such as USB, I2C, SPI, or GPIF II (for example, synchronous
ADMux, or asynchronous ADMux).

The FX3™ bootloader uses the three PMODE input pins of FX3™ to determine the boot option to be used. Figure

1 shows the boot options discussed in this application note. Table 1 lists these boot options along with the
required PMODE pin settings.

USB Host
Boot over

USB2.0

Bootloader

ROM

External FPGA/

Processor

PMODE2

PMODE1

PMODE0 SPI

I
2
C

Sync

ADMux

EZ-USB FX3

Sync

ADMux

I
2
C EEPROM

SPI Flash

Boot from an

I
2
C EEPROM

Boot from

SPI Flash

Boot over

Sync ADMux

Figure 1 FX3™ boot options

Table 1 Boot options for FX3™ *

PMODE[2:0] Pins Boot option USB fallback

PMODE[2] PMODE[1] PMODE[0]

Z 0 0 Sync ADMux (16-bit) No

Z 1 1 USB Boot Yes

1 Z Z I2C No

Z 1 Z I2C → USB Yes

0 Z 1 SPI → USB Yes

1 0 0 eMMC** No

0 0 0 eMMC** → USB Yes

Other combinations are reserved.

Note:

* Z = Float. The PMODE pin can be made to float either by leaving it unconnected or by connecting it to an FPGA

I/O and then configuring that I/O as an input to the FPGA.

**: eMMC boot is only supported by FX3S™.

In addition to the boot options listed in Table 1, FX3™ supports booting from asynchronous ADMux interface.

Contact Applications Support for details. The following sections describe the boot options supported by FX3™:

• USB Boot: The FX3™ firmware image is downloaded into the FX3™ system RAM from the USB Host.

https://secure.cypress.com/myaccount/?id=25&techSupport=1

Application Note 8 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

FX3™ boot options

• I2C EEPROM Boot: The FX3™ firmware image is programmed into an external I2C EEPROM, and on reset, the
FX3™ bootloader downloads the firmware over I2C.

• SPI Boot: The FX3™ firmware image is programmed into an external SPI flash or SPI EEPROM, and on reset,
the FX3™ bootloader downloads the firmware over SPI.

• Synchronous ADMux Boot: The FX3™ firmware image is downloaded from an external processor or an FPGA
connected to the FX3™ GPIF II interface.

Application Note 9 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

4 USB boot

Figure 2 shows the system diagram for FX3™ when booting over USB.

EZ-USB FX3

USB Host

Boot over

USB2.0
Bootloader

ROM

External FPGA/

Processor
PMODE2=Z

PMODE1=1

PMODE0=1

Figure 2 FX3™ system diagram

4.1 PMODE pins

For USB boot, the state of the PMODE[2:0] pins should be Z11, as shown in Table 2.

Table 2 PMODE pins for USB boot

PMODE[2] PMODE[1] PMODE[0]

Z 1 1

Note: Z = Float

4.2 Features

The external USB Host can download the firmware image to FX3™ in USB 2.0 mode. FX3™ enumerates as a USB
Vendor class device with bus-powered support.

The state of FX3™ in USB boot mode is as follows:

• USB 3.0 (SuperSpeed) signaling is disabled.

• USB 2.0 (High Speed/Full Speed) is enabled.

• FX3™ uses the vendor command A0h for firmware download/upload. This vendor command is implemented
in the bootloader. (Unlike FX2LP™, the A0h vendor command is implemented in firmware; that is, in the

bootloader code.)

4.2.1 Default Silicon ID

By default, FX3™ has the default Cypress Semiconductor VID=04B4h and PID=00F3h stored in the ROM space.

This VID/PID is used for default USB enumeration unless the eFUSE1 VID/PID is programmed. The default
Cypress ID values should be used only for development purposes. Users must use their own VID/PID for final

products. A VID is obtained through registration with the USB-IF.

1 eFUSE is the technology that allows reprogramming of certain circuits in the chip. Contact your Cypress representative for details on

eFUSE programming.

Application Note 10 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

4.2.2 Bootloader revision

The bootloader revision is stored in the ROM area at the address FFFF_0020h, as shown in Table 3.

Table 3 Bootloader revision

Minor revision FFFF_0020h

Major revision FFFF_0021h

Reserved bytes FFFF_0022h, FFFF_0023h

4.2.3 ReNumeration™

ReNumeration™ feature is supported in FX3™ and is controlled by firmware.

When first plugged into a USB Host, FX3™ enumerates automatically with its default USB descriptors. Once the
firmware is downloaded, FX3™ enumerates again, this time as a device defined by the downloaded USB

descriptor information. This two-step process is called “ReNumeration™.”

4.2.4 Bus-powered applications

The bootloader enumerates in the bus-powered mode. FX3™ can fully support bus-powered designs by

enumerating with less than 100 mA, as required by the USB 2.0 specification.

4.2.5 USB fallback options (--> USB)

When booting over other options with USB fallback enabled, FX3™ will fall back to the same USB boot mode

described in this section. The operating current may be slightly higher than the USB boot mode due to other

clock sources being turned ON.

4.2.6 USB with VID/PID options

The bootloader supports booting with a new VID/PID that may be stored in the following:

• I2C EEPROM: See the I2C EEPROM boot section of this application note.

• SPI EEPROM: See the SPI boot section of this application note.

• eFUSE (VID/PID): Contact Infineon Sales for custom eFUSE VID/PID programming.

4.2.7 USB default device

The FX3™ bootloader consists of a single USB configuration containing one interface (interface 0) and an

alternative setting of '0'. In this mode, only endpoint 0 is enabled. All other endpoints are turned OFF.

4.2.8 USB setup packet

The FX3™ bootloader decodes the SETUP packet that contains an 8-byte data structure defined in Table 4.

Table 4 Setup Packet

Byte Field Description

0 bmRequestType Request type: Bit7: Direction

Bit6–0: Recipient

1 bRequest This byte will be A0h for firmware download/upload vendor command.

2-3 wValue 16-bit value (little-endian format)

Application Note 11 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

Byte Field Description

4-5 wIndex 16-bit value (little-endian format)

6-7 wLength Number of bytes

Note: Refer to the USB 2.0 Specification for the bitwise explanation.

4.2.9 USB Chapter 9 and Vendor commands

The FX3™ bootloader handles the commands in Table 5.

Table 5 USB commands

bRequest Descriptions

00 GetStatus: Device, Endpoints, and Interface

01 ClearFeature: Device, Endpoints

02 Reserved: Returns STALL

03 SetFeature: Device, Endpoints

04 Reserved: Returns STALL

05 SetAddress: Handle in FX3™ hardware

06 GetDescriptor: Devices’ descriptors in ROM

07 Reserved: Returns STALL

08h GetConfiguration: Returns internal value

09h SetConfiguration: Sets internal value

0Ah GetInterface:Returns internal value

0Bh SetInterface: Sets internal value

0Ch Reserved: Returns STALL

20h-9Fh Reserved: Returns STALL

A0h Vendor Commands: Firmware upload/download and so on

A1h-FFh Reserved: Returns STALL

4.2.10 USB vendor commands

The bootloader supports the A0h vendor command for firmware download and upload. The fields for the
command are shown in Table 6 and Table 7.

Table 6 Command fields for firmware download

Byte Field Value Description

0 BmRequestType 40h Request type: Bit7: Direction

Bit6-0: Recipient.

1 bRequest A0h This byte will be A0 for firmware download/upload vendor

command.

2-3 WValue AddrL (LSB) 16-bit value (little endian format)

4-5 WIndex AddrH (MSB) 16-bit value (little endian format)

6-7 wLength Count Number of bytes

http://www.usb.org/developers/docs/usb20_docs/

Application Note 12 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

Table 7 Command fields for firmware upload

Byte Field Value Description

0 BmRequestType C0h Request type: Bit7: Direction

Bit6-0: Recipient.

1 bRequest A0h This byte will be A0 for firmware download/upload vendor

command.

2-3 WValue AddrL (LSB) 16-bit value (little endian format)

4-5 WIndex AddrH (MSB) 16-bit value (little endian format)

6-7 wLength Count Number of bytes

Table 8 Command fields for transfer of execution to program entry

Byte Field Value Description

0 bmRequestType 40h Request type: Bit7: Direction

Bit6-0: Recipient

1 bRequest A0h This byte will be A0 for firmware download/upload vendor

command.

2-3 wValue AddrL (LSB) 32-bit Program Entry

4-5 wIndex AddrH (MSB) 32-bit Program Entry>>16

6-7 wLength 0 This field must be zero.

In the transfer execution entry command, the bootloader will turn off all the interrupts and disconnect the USB.

Three examples of vendor command subroutines follow.

Example 1. Vendor Command Write Data Protocol With 8-Byte Setup Packet

bmRequestType = 0x40

bRequest = 0xA0;

wValue = (WORD)address;

wIndex = (WORD)(address>>16);

wLength = 1 to 4K-byte max

This command will send DATA OUT packets with a length of transfer equal to wLength and a DATA IN Zero

length packet.

Example 2. Reading Bootloader Revision with Setup Packet

bmRequestType = 0xC0

bRequest = 0xA0;

wValue = (WORD)0x0020;

wIndex = (WORD)0xFFFF;

wLength = 4

Application Note 13 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

This command will issue DATA IN packets with a length of transfer equal to wLength and a DATA OUT Zero
length packet.

Example 3. Jump to Program Entry With 8-Byte Setup Packet (refer to Table 8.)

bmRequestType = 0x40

bRequest = 0xA0;

wValue = Program Entry (16-bit LSB)

wIndex = Program Entry >>16 (16-bit MSB)

wLength = 0

Note: FX3™ uses 32-bit addressing. Addresses should be written to the wValue and wIndex fields of the
command.

4.2.11 USB download sample code

To download the code, the application should read the firmware image file and write 4K sections at a time
using the vendor write command. The size of the section is limited to the size of the buffer used in the

bootloader.

Note: The firmware image must be in the format specified in Table 14.

The following is an example of how the firmware download routine can be implemented.

DWORD dCheckSum, dExpectedCheckSum, dAddress, i, dLen;

WORD wSignature, wLen;

DWORD dImageBuf[512*1024];

BYTE *bBuf, rBuf[4096];

fread(&wSignature,1,2,input_file);/*fread(void *ptr, size_t size, size_t count, FILE

*stream)

 read signature bytes. */

if (wSignature != 0x5943) // check ‘CY’ signature byte

{

 printf(“Invalid image”);

 return fail;

}

fread(&i, 2, 1, input_file); // skip 2 dummy bytes

dCheckSum = 0;

while (1)

{

 fread(&dLength,4,1,input_file); // read dLength

 fread(&dAddress,4,1,input_file); // read dAddress

 if (dLength==0) break; // done

 // read sections

Application Note 14 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

 fread(dImageBuf, 4, dLength, input_file);

 for (i=0; i<dLength; i++) dCheckSum += dImageBuf[i];

 dLength <<= 2; // convert to Byte length

 bBuf = (BYTE*)dImageBuf;

 while (dLength > 0)

 {

 dLen = 4096; // 4K max

 if (dLen > dLength) dLen = dLength;

 VendorCmd(0x40, 0xa0, dAddress, dLen, bBuf); // Write data

 VendorCmd(0xc0, 0xa0, dAddress, dLen, rBuf); // Read data

 // Verify data: rBuf with bBuf

 for (i=0; i<dLen; i++)

 {

 if (rBuf[i] != bBuf) { printf(“Fail to verify image”); return fail; }

 }

 dLength -= dLen;

 bBuf += dLen;

 dAddress += dLen;

 }

}

// read pre-computed checksum data

fread(&dExpectedChecksum, 4, 1, input_file);

if (dCheckSum != dExpectedCheckSum)

{

 printf(“Fail to boot due to checksum error\n”);

 return fail;

}

// transfer execution to Program Entry

VendorCmd(0x40, 0xa0, dAddress, 0, NULL);

input_file is the FILE pointer that points to the firmware image file, which is in the format specified in Table 14.

4.3 Checksum calculation

In USB download, the download tool is expected to handle the checksum computation as shown in the USB
download sample code section.

4.3.1 FX3™ bootloader memory allocation

The FX3™ bootloader allocates 1280 bytes of data tightly-coupled memory (DTCM) from 0x1000_0000 to

0x1000_04FF for its variables and stack. The firmware application can use it as long as this area remains

uninitialized, that is, uninitialized local variables, during the firmware download.

The bootloader allocates the first 16 bytes from 0x4000_0000 to 0x4000_000F for warm boot and standby boot.

These bytes should not be used by firmware applications.

Application Note 15 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

The bootloader allocates about 10K bytes from 0x4000_23FF for its internal buffers. The firmware application
can use this area as the uninitialized local variables/buffers.

The bootloader does not use the instruction tightly-coupled memory (ITCM).

4.3.2 Registers/Memory access

The FX3™ bootloader allows read access from the ROM, MMIO, SYSMEM, ITCM, and DTCM memory spaces. The

bootloader allows write access to the MMIO, SYSMEM, ITCM, and DTCM memory spaces except for the first 1280-
byte of DTCM and first 10K of system memory. When writing to the MMIO space, the expected transfer length for
Bootloader must be four (equal to LONG word), and the address should be aligned by 4 bytes.

4.3.3 USB eFUSE VID/PID boot option

The FX3™ bootloader can boot with your choice of VID and PID by scanning the eFUSE (eFUSE_USB_ID) to see
whether the USB_VID bits are programmed. If they are, the bootloader will use the eFUSE value for VID and PID.

4.3.4 USB OTG

The FX3™ bootloader does not support USB On-The-Go (OTG) protocol. It operates as a USB bus-powered
device.

4.3.5 Bootloader limitations

The FX3™ bootloader handles limited checking of the address range. Accessing non existing addresses can lead

to unpredictable results.

The bootloader does not check the Program Entry. An invalid Program Entry can lead to unpredictable results.

The bootloader allows write access to the MMIO register spaces. Write accesses to invalid addresses can lead to

unpredictable results.

4.3.6 USB watchdog timer

The FX3™ USB hardware requires a 32-kHz clock input to the USB core hardware. The bootloader will configure
the watchdog timer to become the internal 32-kHz clock input for the USB core if the external 32-kHz clock is

not present.

4.3.7 USB suspend/resume

The FX3™ bootloader will enter the suspend mode if there is no activity on USB. It will resume when the PC

resumes the USB operation.

4.3.8 USB device descriptors

The following tables list the FX3™ bootloader descriptors for High Speed and Full-Speed.

Note: The Device Qualifier is not available in the Full-Speed mode.

Table 9 Device descriptor

Offset Field Value Description

0 bLength 12h Length of this descriptor = 18 bytes

1 bDescType 01 Descriptor type = Device

Application Note 16 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

Offset Field Value Description

2-3 wBCDUSB 0200h USB Specification version 2.0

4 bDevClass 00 Device class (No class-specific protocol is implemented.)

5 bDevSubClass 00 Device subclass (No class-specific protocol is implemented.)

6 bDevProtocol 00 Device protocol (No class-specific protocol is implemented.)

7 bMaxPktSize 40h Endpoint0 packet size is 64.

8-9 wVID 04B4h Cypress Semiconductor VID

10-11 wPID 00F3h FX3™ silicon

12-13 wBCDID 0100h FX3™ bcdID

14 iManufacture 01h Manufacturer index string = 01

15 iProduct 02h Serial number index string = 02

16 iSerialNum 03h Serial number index string = 03

17 bNumConfig 01h One configuration

Table 10 Device qualifier

Offset Field Value Description

0 bLength 0Ah Length of this descriptor = 10 bytes

1 bDescType 06 Descriptor type = Device Qualifier

2-3 wBCDUSB 0200h USB Specification version 2.00

4 bDevClass 00 Device class (No class-specific protocol is implemented.)

5 bDevSubClass 00 Device subclass (No class-specific protocol is implemented.)

6 bDevProtocol 00 Device protocol (No class-specific protocol is implemented.)

7 bMaxPktSize 40h Endpoint0 packet size is 64.

8 bNumConfig 01h One configuration

9 bReserved 00h Must be zero

Table 11 Configuration descriptor

Offset Field Value Description

0 bLength 09h Length of this descriptor = 10 bytes

1 bDescType 02h Descriptor type = Configuration

2-3 wTotalLength 0012h Total length

4 bNumInterfaces 01 Number of interfaces in this configuration

5 bConfigValue 01 Configuration value used by SetConfiguration request to select this

interface

6 bConfiguration 00 Index of string describing this configuration = 0

7 bAttribute 80h Attributes: Bus Powered, No Wakeup

8 bMaxPower 64h Maximum power: 200 mA

Application Note 17 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

Table 12 Interface descriptor (Alt. Setting 0)

Offset Field Value Description

0 bLength 09h Length of this descriptor = 10 bytes

1 bDescType 04h Descriptor type = Interface

2 bInterfaceNum 00h Zero-based index of this interface = 0

4 bAltSetting 00 Alternative Setting value = 0

5 bNumEndpoints 00 Only endpoint0

6 bInterfaceClass FFh Vendor Command Class

7 bInterfaceSubClass 00h

8 bInterfaceProtocol 00h

9 iInterface 00h None

Table 13 String descriptors

Offset Field Value Description

0 bLength 04h Length of this descriptor = 04 bytes

1 bDescType 03h Descriptor type = String

2-3 wLanguage 0409h Language = English

4 bLength 10h Length of this descriptor = 16 bytes

5 bDescType 03h Descriptor type = String

6-21 wStringIdx1 – “Cypress”

22 bLength 18h Length of this descriptor = 24 bytes

23 bDescType 03h Descriptor type = String

24-47 wStringIdx2 – “WestBridge”

48 bLength 1Ah Length of this descriptor = 26 bytes

49 bDescType 03h Descriptor type = String

50-75 wStringIdx3 – “0000000004BE”

4.4 Boot image format

For USB boot, the bootloader expects the firmware image file to be in the format shown in Table 14. The EZ-

USB™ FX3™ SDK provides a software utility that can be used to generate a firmware image in the format
required for USB boot. Refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB FX3

SDK\1.3\util\elf2img directory after installing the SDK. For 64-bit systems, the first folder in the path is Program
Files(x86). The number 1.3 in the directory path is the version number of the SDK, and it can vary based on the
latest release of the FX3™ SDK. For more details on using the elf2img utility, see Appendix C in Figure 15
Appendix A.

Table 14 Boot image format

Binary image

header

Length

(16-bit)

Description

wSignature 1 Signature 2 bytes initialize with “CY” ASCII text.

bImageCTL; ½ Bit0 = 0: Execution binary file; 1: data file type

Bit3:1 No use when booting in SPI EEPROM

http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990

Application Note 18 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

Binary image

header

Length

(16-bit)

Description

Bit5:4(SPI speed):

00: 10 MHz

01: 20 MHz

10: 30 MHz

11: Reserved

Bit7:6: Reserved, should be set to zero

bImageType; ½ bImageType = 0xB0: Normal FW binary image with checksum

bImageType = 0xB2: I2C/SPI boot with new VID and PID

dLength 0 2 First section length, in long words (32-bit)

When bImageType = 0xB2, the dLength 0 will contain PID and VID. Bootloader

ignores the rest of the following data.

dAddress 0 2 First section address of Program Code.

Note: Internal ARM address is byte addressable, so the address for each

section should be 32-bit aligned.

dData[dLength

0]

dLength

0*2

Image Code/Data must be 32-bit aligned.

… More sections

dLength N 2 0x00000000 (Last record: termination section)

dAddress N 2 Should contain valid Program Entry (Normally, it should be the Startup code,

that is, the RESET vector.)

Note: If bImageCTL.bit0 = 1, the bootloader will not transfer the execution to

this Program Entry.

If bImageCTL.bit0 = 0, the bootloader will transfer the execution to this

Program Entry. This address should be in the ITCM area or SYSTEM RAM area.

The bootloader does not validate the Program Entry.

dCheckSum 2 32-bit unsigned little-endian checksum data will start from the first section to
the termination section. The checksum will not include the dLength,

dAddress, and Image Header.

4.4.1 Example of boot image format organized in long-word format

Location1: 0xB0 0x10 ’Y’ ’C’ //CY Signature, 20 MHz, 0xB0 Image

Location2: 0x00000004 //Image length of section 1 = 4

Location3: 0x40008000 //1st section stored in SYSMEM RAM at 0x40008000

Location4: 0x12345678 //Image starts (Section1)

Location5: 0x9ABCDEF1

Location6: 0x23456789

Location7: 0xABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 = 2

Location9: 0x40009000 //2nd section stored in SYSMEM RAM at 0x40009000

Location10: 0xDDCCBBAA //Section 2 starts

Location11: 0x11223344

Location12: 0x00000000 //Termination of Image

Application Note 19 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

USB boot

Location13: 0x40008000 //Jump to 0x40008000 on FX3 System RAM

Location14: 0x6AF37AF2 //Checksum (0x12345678 + 0x9ABCDEF1 + 0x23456789 +

0xABCDEF12+ 0xDDCCBBAA +0x11223344)

The stepwise sequence for testing the USB boot mode using the FX3™ DVK is shown in the USB Boot section of
Appendix A.

http://www.cypress.com/?rID=58321

Application Note 20 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot

5 I2C EEPROM boot

Figure 3 shows the system diagram for FX3™ when booting over I2C.

I
2
C

EZ-USB FX3
USB Host

USB3.0/

USB2.0

Bootloader

ROM

External FPGA/

Processor
PMODE2=1

PMODE1=Z

PMODE0=Z

I
2
C EEPROM

I
2
C

On Reset, FX3 bootloader

downloads firmware over I
2
C

Figure 3 FX3™ system diagram for I2C boot

For I2C EEPROM boot, the state of the PMODE[2:0] pins should be 1ZZ, as shown Table 15.

Table 15 PMODE pins for I2C boot

PMODE[2] PMODE[1] PMODE[0]

1 Z Z

The pin mapping of the FX3™ I2C interface is shown in Table 16.

Table 16 Pin mapping of I2C interface

EZ-USB™ FX3™ pin I2C interface

I2C_GPIO[58] I2C_SCL

I2C_GPIO[59] I2C_SDA

5.1 Features

• FX3™ boots from I2C EEPROM devices through a two-wire I2C interface.

• EEPROM2 device sizes supported are:

− 32 kilobit (Kb) or 4 kilobyte (KB)

− 64 Kb or 8 KB

− 128 Kb or 16 KB

− 256 Kb or 32 KB

− 512 Kb or 64 KB

− 1024 Kb or 128 KB

− 2048 Kb or 256 KB

2 Only 2-byte I2C addressees are supported. Single-byte address is not supported for any I2C EEPROM size less than 32 Kb.

Application Note 21 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot

Note: It is recommended to use the firmware image built in Release mode, as the size of the generated
image file in the Release version is smaller than that in the Debug version.

• ATMEL, Microchip, and ST Electronics devices have been tested.

• 100 kHz, 400 kHz, and 1 MHz I2C frequencies are supported during boot. Note that when VIO5 is 1.2 V, the

maximum operating frequency supported is 100 kHz. When VIO5 is 1.8 V, 2.5 V, or 3.3 V, the operating
frequencies supported are 400 kHz and 1 MHz. (VIO5 is the I/O voltage for I2C interface).

• Boot from multiple I2C EEPROM devices of the same size is supported. When the I2C EEPROM is smaller than
the firmware image, multiple I2C EEPROM devices must be used. The bootloader supports loading the image

across multiple I2C EEPROM devices. SuperSpeed Explorer CYUSB3KIT-003 uses a 256 KB EEPROM (M24M02)
from ST Electronics. The bootloader can support up to eight I2C EEPROM devices smaller than 128 KB. The
bootloader can support up to four I2C EEPROM devices of 128 KB.

• Only one firmware image can be stored on I2C EEPROM. No redundant images are allowed.

• The bootloader does not support the multimaster I2C feature of FX3™ . Therefore, during the FX3™ I2C

booting process, other I2C masters should not perform any activity on the I2C bus.

5.2 Storing firmware image on EEPROM

The FX3™ bootloader supports a master I2C interface for external serial I2C EEPROM devices. The serial I2C
EEPROM can be used to store application-specific code and data. Figure 4 shows the pin connections of a

typical I2C EEPROM.

The I2C EEPROM interface consists of two active wires: serial clock line (SCL) and serial data line (SDA).

The Write Protect (WP) pin should be pulled LOW while writing the firmware image to EEPROM.

The A0, A1, and A2 pins are the address lines. They set the slave device address from 000 to 111. This makes it

possible to address eight I2C EEPROMs of the same size. These lines should be pulled HIGH or LOW based on the
address required.

I
2
C EEPROM

A0

A1

A2

WP

VCC

GND

VIO5

SCL

SDA

VIO5 VIO5

2.2 KΩ

2.2 KΩ

10 KΩ10 KΩ10 KΩ

Figure 4 Pin connections of a typical I2C EEPROM

5.2.1 Important points on 128-KB EEPROM addressing

In the case of a 128-KB I2C EEPROM, the addressing style is not standard across EEPROMs. For example,

Microchip EEPROMs use pins A1 and A0 for chip select, and pin A2 is unused. However, Atmel EEPROMs use A2
and A1 for chip select, and A0 is unused. Both these cases are handled by the bootloader. The addressing style
can be indicated in the firmware image header.

Application Note 22 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot

Table 17 shows how four Microchip 24LC1025 EEPROM devices can be connected.

Table 17 Microchip 24LC1025 EEPROM device connections

Device No. Address Range A2 A1 A0 Size

1 0x00000-0x1FFFF Vcc 0 0 128 KB

2 0x20000-0x3FFFF Vcc 0 1 128 KB

3 0x40000-0x5FFFF Vcc 1 0 128 KB

4 0x60000-0x7FFFF Vcc 1 1 128 Kbytes

Table 18 shows how four Atmel 24C1024 EEPROM devices can be connected.

Table 18 ATMEL 24C1024 EEPROM device connections

Device

No.

Address Range A2 A1 A0 Size

1 0x00000-0x1FFFF 0 0 NC 128 KB

2 0x20000-0x3FFFF 0 1 NC 128 KB

3 0x40000-0x5FFFF 1 0 NC 128 KB

4 0x60000-0x7FFFF 1 1 NC 128 KB

Note: NC indicates no connection.

For example, if the firmware code size is greater than 128 KB, then you must use two I2C EEPROMs, with the

addressing schemes corresponding to that EEPROM, as shown in the previous two tables. The firmware image

should be stored across the EEPROMs as a contiguous image as in a single I2C EEPROM.

5.3 Boot image format

The bootloader expects the firmware image file to be in the format shown in Table 19. The EZ-USB™ FX3™ SDK

provides a software utility that can be used to generate a firmware image in the format required for I2C EEPROM
boot. Refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB FX3 SDK\1.3\util\elf2img
directory after installing the SDK. For 64-bit systems, the first folder in the path is Program Files(x86). The

number 1.3 in the directory path is the version number of the SDK, and it can vary based on the latest release of
the FX3™ SDK. For more details on using the elf2img utility, see Appendix C and Figure 21 in Appendix A.

Table 19 Firmware image storage format

Binary image

header

Length (16-

bit)

Description

WSignature 1 Signature 2 bytes initialize with “CY” ASCII text

bImageCTL; ½ Bit0 = 0: execution binary file; 1: data file type

Bit3:1 (I2C size)

7: 128 KB (microchip)

6: 64 KB (128K ATMEL and 256K ST Electronics)

5: 32 KB

4: 16 KB

3: 8 KB

2: 4 KB

http://www.cypress.com/?rID=57990

Application Note 23 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot

Binary image

header

Length (16-

bit)

Description

Notes:

Options 1 and 0 are reserved for future usage. Unpredicted results will

occur when booting in these modes.

Bit5:4 (I2C speed):

00: 100 kHz

01: 400 kHz

10: 1 MHz

11: Reserved

Notes:

The bootloader power-up default will be set at 100 kHz, and it will adjust

the I2C speed if needed.

Bit7:6: Reserved; should be set to zero

bImageType; ½ bImageType = 0xB0: Normal FW binary image with checksum

bImageType = 0xB2: I2C boot with new VID and PID

dLength 0 2 First section length, in long words (32-bit)

When bImageType = 0xB2, the dLength 0 will contain PID and VID. The

bootloader will ignore the rest of the following data.

dAddress 0 2 First section address of Program Code, not the I2C address

Notes:

The internal ARM address is byte addressable, so the address for each

section should be 32-bit aligned.

dData[dLength 0] dLength 0*2 All image code/data also must be 32-bit aligned.

… More sections

dLength N 2 0x00000000 (Last record: termination section)

dAddress N 2 Should contain valid Program Entry (Normally, it should be the startup

code, that is, the RESET vector.)

Notes:

If bImageCTL.bit0 = 1, the bootloader will not transfer the execution to

this Program Entry.

If bImageCTL.bit0 = 0, the bootloader will transfer the execution to this
Program Entry. This address should be in the ITCM area or SYSTEM RAM

area.

The bootloader does not validate the Program Entry

dCheckSum 2 The 32-bit unsigned little-endian checksum data will start from the First
sections to the termination section. The checksum will not include the

dLength, dAddress, and Image Header.

Example: The binary image file is stored in the I2C EEPROM in the following order:

Byte0: “C”

Byte1: “Y”

Byte2: bImageCTL

Byte3: bImageType

Application Note 24 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot

…..

Byte N: Checksum of Image

Attention:

• Bootloader default boot speed = 100 kHz; to change the speed from 100 kHz to 1 MHz, bImageCTL<5:4>
should be set to 10.

• To select the I2C EEPROM size, bImageCTL[3:1]should be used.

• The addressing for the Microchip EEPROM 24LC1026 is different from the addressing of other 128-KB
Microchip EEPROMs. If using Microchip EEPROM 24LC1026, the I2C EEPROM size field, for example,
bImageCTL[3:1], should be set to 6.

5.4 Checksum calculation

The bootloader computes the checksum when loading the binary image in the I2C EEPROM. If the checksum
does not match the one in the image, the bootloader does not transfer execution to the Program Entry.

The bootloader operates in little-endian mode; for this reason, the checksum must also be computed in little-
endian mode.

The 32-bit unsigned little-endian checksum data starts from the first sections to the termination section. The

checksum does not include the dLength, dAddress, and Image Header.

5.4.1 First example boot image

The following image is stored only at one section in the system RAM of FX3™ at the location 0x40008000:

Location1: 0xB0 0x1A ’Y’ ’C’ //CY Signature, 32KB EEPROM,400Khz,0xB0 Image

Location2: 0x00000004 //Image length =4

Location3: 0x40008000 // 1st section stored in FX3 System RAM at 0x40008000

Location4: 0x12345678 //Image starts

Location5: 0x9ABCDEF1

Location6: 0x23456789

Location7: 0xABCDEF12

Location8: 0x00000000 //Termination of Image

Location9: 0x40008000 //Jump to 0x40008000 in FX3 System RAM

Location 10: 0x7C048C04 //Check sum (0x12345678 + 0x9ABCDEF1 + 0x23456789 +

 0xABCDEF12)

5.4.2 Second example boot image

The following image is stored at two sections in the system RAM of FX3™ at the locations 0x40008000 and
0x40009000:

Location1: 0xB0 0x1A ’Y’ ’C’ //CY Signature, 32KB EEPROM,400Khz,0xB0 Image

Location2: 0x00000004 //Image length of section 1 =4

Location3: 0x40008000 //1st section stored in FX3 System RAM at 0x40008000

Location4: 0x12345678 //Image starts (Section1)

Location5: 0x9ABCDEF1

Location6: 0x23456789

Application Note 25 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot

Location7: 0xABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 =2

Location9: 0x40009000 //2nd section stored in FX3 System RAM at 0x40009000

Location10: 0xDDCCBBAA //Section 2 starts

Location11: 0x11223344

Location12: 0x00000000 //Termination of Image

Location13 0x40008000 //Jump to 0x40008000 in FX3 System RAM

Location 14: 0x6AF37AF2 //Check sum (0x12345678 + 0x9ABCDEF1 + 0x23456789 +

 0xABCDEF12 + 0xDDCCBBAA + 0x11223344)

Similarly, you can have N sections of an image stored using one boot image.

The stepwise sequence for testing the USB boot mode using the FX3™ DVK is shown in the I2C Boot section of

Appendix A.

5.4.3 Checksum calculation sample code

The following is the checksum sample code:

// Checksum sample code

DWORD dCheckSum, dExpectedCheckSum;

WORD wSignature, wLen;

DWORD dAddress, i;

DWORD dImageBuf[512*1024];

fread(&wSignature,1,2,input_file); // read signature bytes

if (wSignature != 0x5943) // check ‘CY’ signature byte

{

 printf(“Invalid image”);

 return fail;

}

fread(&i, 2, 1, input_file); // skip 2 dummy bytes

dCheckSum = 0;

while (1)

{

 fread(&dLength,4,1,imput_file); // read dLength

 fread(&dAddress,4,1,input_file); // read dAddress

 if (dLength==0) break; // done

 // read sections

 fread(dImageBuf, 4, dLength, input_file);

 for (i=0; i<dLength; i++) dCheckSum += dImageBuf[i];

}

// read pre-computed checksum data

fread(&dExpectedChecksum, 4, 1, input_file);

if (dCheckSum != dExpectedCheckSum)

http://www.cypress.com/?rID=58321

Application Note 26 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot

{

 printf(“Fail to boot due to checksum error\n”);

 return fail;

}

This section described the details of the I2C boot option. The next section describes the I2C boot option with
USB fallback enabled.

Application Note 27 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

I2C EEPROM boot with USB fallback

6 I2C EEPROM boot with USB fallback

For the I2C EEPROM boot with USB fallback, the state of the PMODE[2:0] pins should be Z1Z, as shown in Table
20.

Table 20 PMODE Pins for I2C boot with USB fallback

PMODE[2] PMODE[1] PMODE[0]

Z 1 Z

In all USB fallback modes (denoted as “--> USB”), USB enumeration occurs if 0xB2 boot is selected or an error
occurs. After USB enumeration, the external USB Host can boot FX3™ using USB boot. I2C EEPROM boot with
USB fallback (I2C --> USB) may also be used to store only Vendor Identification (VID) and Product Identification

(PID) for USB boot.

The I2C EEPROM boot fails under the following conditions:

• I2C address cycle or data cycle error

• Invalid signature in FX3™ firmware image

• Invalid image type

A special image type is used to denote that instead of the FX3™ firmware image, data on EEPROM is the VID and
PID for USB boot. This helps in having a new VID and PID for USB boot.

6.1 Features

• In case of USB boot, the bootloader supports only USB 2.0. USB 3.0 is not supported.

• If the 0xB2 boot option is specified, the USB descriptor uses the customer-defined VID and PID stored as part
of the 0xB2 image in the I2C EEPROM.

• On USB fallback, when any error occurs during I2C boot, the USB descriptor uses the VID=0x04B4 and
PID=0x00F3.

• The USB device descriptor is reported as bus-powered, which will consume about 200 mA. However, the

FX3™ chip is typically observed to consume about 100 mA.

6.2 Example image for boot with VID and PID

Location1: 0xB2 0x1A ’Y’ ’C’ //CY Signature,32k EEPROM,400Khz,0xB2 Image

Location2: 0x04B40008 //VID = 0x04B4 | PID=0x0008

Application Note 28 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

SPI boot

7 SPI boot

Figure 5 shows the system diagram for FX3™ when booting over SPI.

SPI

EZ-USB FX3 USB Host

USB3.0/

USB2.0

Bootloader

ROM

External FPGA/

Processor
PMODE2=0

PMODE1=Z

PMODE0=1

SPI Flash/

EEPROM

SPI

Figure 5 System diagram for SPI boot

For SPI boot, the state of the PMODE[2:0] pins should be 0Z1, as shown in Table 21.

Table 21 MODE pins for SPI boot

PMODE[2] PMODE[1] PMODE[0]

0 Z 1

The pin mapping of the FX3™ SPI interface is shown in Table 22.

Table 22 Pin mapping of SPI interface

EZ-USB™ FX3™ pin SPI interface

GPIO[53] SPI_SCK

GPIO[54] SPI_SSN

GPIO[55] SPI_MISO

GPIO[56] SPI_MOSI

7.1 Features

FX3™ boots from SPI flash/EEPROM devices through the 4-wire SPI interface.

• SPI flash/EEPROM devices from 1 Kb to 128 Mb in size are supported for boot.

 Supported SPI Flash parts:

− SPI Flash (S25FS064S (64-Mbit), S25LFL064L (64-Mbit) and S25FS128S (128-Mbit))

− Winbond W25Q32FW (32-Mbit)

• SPI frequencies supported during boot are ~10 MHz, ~20 MHz, and ~30 MHz.

• Note that the SPI frequency may vary due to a rounding off on the SPI clock divider and clock input.

− When the crystal or clock input to FX3™ is 26 MHz or 52 MHz, the internal PLL runs at 416 MHz. SPI
frequencies with PLL_CLK = 416 MHz can be 10.4 MHz, 20.8 MHz, or 34.66 MHz.

− When the crystal or clock input to FX3™ is 19.2 MHz or 38.4 MHz, the internal PLL runs at 384 MHz. SPI

frequencies with PLL_CLK = 384 MHz can be 9.6 MHz, 19.2 MHz, and 32 MHz.

• Operating voltages supported are 1.8 V, 2.5 V, and 3.3 V.

• Only one firmware image is stored on an SPI flash/EEPROM. No redundant image is allowed.

Application Note 29 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

SPI boot

• For SPI boot, the bootloader sets CPOL=0 and CPHA=0. (For the timing diagram of this SPI mode, refer to the
SPI timing in the FX3™ datasheet.)

• USB fallback is supported and used for storing new VID/PID information for USB boot. See the SPI Boot with
USB fallback section in this application note for more information.

7.2 Selection of SPI flash

SPI flash should support the following commands to support FX3™ boot.

• Read data: 03h with 3-byte addressing

• Read Status register: 05h

• Write Enable: 06h

• Write data (Page Program): 02h

• Sector Erase: D8h

SPI flash can be used for FX3™ boot as long as the read commands match. If there are any differences in the
write commands, then programming of that SPI flash will not be successful with the provided
CyBootProgrammer.img (located at C:\Program Files (x86)\Cypress\Cypress USBSuite\application\c_sharp\

controlcenter); it requires changing the SPI write commands used in the USBFlashProg example project of the

FX3™ SDK. The image file created after building the modified USBFlashProg project should replace the provided

CyBootProgrammer.img (with the same name) for successful programming of the SPI flash.

7.3 Storing firmware image on SPI flash/EEPROM

The FX3™ bootloader supports a master SPI controller for interfacing with external serial SPI flash/EEPROM

devices. The SPI flash/EEPROM can be used to store application-specific code and data. Figure 6 shows the

pinout of a typical SPI flash/EEPROM.

The SPI EEPROM interface consists of four active wires:

• CS#: Chip Select

• SO: Serial Data Output (master in, slave out (MISO))

• SI: Serial Data Input (master out, slave in (MOSI))

• SCK: Serial Clock input

The HOLD# signal should be tied to VCC while booting or reading from the SPI device

The Write Protect (WP#) and HOLD# signals should be tied to VCC while writing the image onto EEPROM.

Note that external pull-ups should not be connected on the MOSI and MISO signals, as shown in Figure 6.

SPI Flash
VIO4

SPI_MOSI

SPI_MISO

SPI_CLK

SPI_HOLD#

SPI_SSN#

SPI_WP#

100 KΩ

4.7 KΩ

4.7 KΩ

4.7 KΩ

SI

SO

CK

HOLD#

CS#

WP#

VCC

VSS

Figure 6 Pin connections of a typical SPI flash

http://www.cypress.com/documentation/datasheets/cyusb301x-cyusb201x-ez-usb-fx3-superspeed-usb-controller?source=search&cat=technical_documents

Application Note 30 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

SPI boot

7.4 Boot image format

For SPI boot, the bootloader expects the firmware image file to be in the format shown in Table 23. The EZ-
USB™ FX3™ SDK provides a software utility that can be used to generate a firmware image in the format

required for SPI boot. Refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB FX3
SDK\1.3\util\elf2img directory after installing the SDK. For 64-bit systems, the first folder in the path is Program
Files(x86). The number 1.3 in the directory path is the version number of the SDK, and it can vary based on the
latest release of the FX3™ SDK. For more details on using the elf2img utility, see Appendix C and Figure 29 in

Appendix A.

Table 23 Boot image format for SPI boot option

Binary image header Length (16-

bit)

Description

wSignature 1 Signature 2 bytes initialize with “CY” ASCII text

bImageCTL ½ Bit0:0: execution binary file; 1: data file type

Bit3:1 Not used when booting from SPI

Bit5:4 (SPI speed):

00: 10 MHz

01: 20 MHz

10: 30 MHz

11: Reserved

Note: Bootloader power-up default is set to 10 MHz, and it will
adjust the SPI speed if needed. The FX3™ SPI hardware can run only

up to 33 MHz.

Bit7:6: Reserved. Should be set to zero.

bImageType ½ bImageType = 0xB0: Normal firmware binary image with checksum

bImageType = 0xB2: SPI boot with new VID and PID

dLength 0 2 First section length, in long words (32-bit)

When bImageType = 0xB2, the dLength 0 will contain PID and VID.

Bootloader ignores the rest of any following data.

dAddress 0 2 First section address of program code

Note: The internal ARM address is byte-addressable, so the address

for each section should be 32-bit aligned.

dData[dLength 0] dLength 0*2 Image Code/Data must be 32-bit aligned.

… More sections

dLength N 2 0x00000000 (Last record: termination section)

dAddress N 2 Should contain valid Program Entry (Normally, it should be the

Startup code, that is, the RESET vector.)

Note:

If bImageCTL.bit0 = 1, the bootloader will not transfer the execution

to this Program Entry.

If bImageCTL.bit0 = 0, the bootloader will transfer the execution to
this Program Entry: This address should be in the ITCM area or

SYSTEM RAM area.

Bootloader does not validate the Program Entry.

http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=57990

Application Note 31 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

SPI boot

Binary image header Length (16-

bit)

Description

dCheckSum 2 32-bit unsigned little-endian checksum data will start from the first
section to the termination section. The checksum will not include

the dLength, dAddress, and Image Header.

Example: The binary image file is stored in the SPI EEPROM in the following order:

Byte0: “C”

Byte1: “Y”

Byte2: bImageCTL

Byte3: bImageType

…..

Byte N: Checksum of Image

Important Point to Note:

Bootloader default boot speed = 10 MHz; to change the speed from 10 MHz to 20 MHz, the bImageCTL[5:4]

should be set to 01.

7.5 Checksum calculation

The bootloader computes the checksum when loading the binary image over SPI. If the checksum does not

match the one in the image, the bootloader will not transfer the execution to the Program Entry.

The bootloader operates in little-endian mode; for this reason, the checksum must also be computed in little-

endian mode.

The 32-bit unsigned little-endian checksum data starts from the first section to the termination section. The

checksum will not include the dLength, dAddress, and Image Header. Refer to the Checksum calculation

sample code section for the sample code to calculate the checksum.

Example 1. The following is an example of a firmware image stored only at one section in the system RAM of
FX3™ at location 0x40008000.

Location1: 0xB0 0x10 ’Y’ ’C’ //CY Signature, 20 MHz, 0xB0 Image

Location2: 0x00000004 //Image length = 4

Location3: 0x40008000 //1st section stored in FX3 System RAM at 0x40008000

Location4: 0x12345678 //Image starts

Location5: 0x9ABCDEF1

Location6: 0x23456789

Location7: 0xABCDEF12

Location8: 0x00000000 //Termination of Image

Location9: 0x40008000 //Jump to 0x40008000 in FX3 System RAM

Location 10: 0x7C048C04 //Checksum (0x12345678 + 0x9ABCDEF1 + 0x23456789 +

 0xABCDEF12)

Application Note 32 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

SPI boot

Example 2. The following is an example of a firmware image stored at two sections in the system RAM of FX3™
at location 0x40008000 and 0x40009000.

Location1: 0xB0 0x10 ’Y’ ’C’ //CY Signature, 20MHz, 0xB0 Image

Location2: 0x00000004 //Image length of section 1 = 4

Location3: 0x40008000 //1st section stored in FX3 System RAM at 0x40008000

Location4: 0x12345678 //Image starts (Section1)

Location5: 0x9ABCDEF1

Location6: 0x23456789

Location7: 0xABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 = 2

Location9: 0x40009000 //2nd section stored in FX3 System RAM at 0x40009000

Location10: 0xDDCCBBAA //Section 2 starts

Location11: 0x11223344

Location12: 0x00000000 //Termination of Image

Location13: 0x40008000 //Jump to 0x40008000 in FX3 System RAM

Location 14: 0x6AF37AF2 //Checksum (0x12345678 + 0x9ABCDEF1 + 0x23456789 +

 0xABCDEF12 + 0xDDCCBBAA + 0x11223344)

Similarly, you can have 'N' sections of an image stored using one boot image.

The stepwise sequence for testing the USB boot mode using the FX3™ DVK is shown in the SPI Boot section of

Appendix A.

http://www.cypress.com/?rID=58321

Application Note 33 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

SPI Boot with USB fallback

8 SPI Boot with USB fallback

In all USB fallback (“-->USB”) modes, USB enumeration occurs if 0xB2 boot is selected or an error occurs. After
USB enumeration occurs, the external USB Host can boot FX3™ using USB boot. SPI boot with USB fallback (SPI
--> USB) is also used to store VID and PID for USB boot.

SPI boot fails under the following conditions:

• SPI address cycle or data cycle error

• Invalid signature on FX3™ firmware. Invalid image type

A special image type is used to denote that instead of the FX3™ firmware image, data on SPI flash/EEPROM is

the VID and PID for USB boot. This helps in having a new VID and PID for USB boot.

• In the case of USB boot, the bootloader supports only USB 2.0. USB 3.0 is not supported.

• If the 0xB2 boot option is specified, the USB descriptor uses the customer-defined VID and PID stored as part
of the 0xB2 image in the SPI flash/ EEPROM.

• On USB fallback, when any error occurs during I2C boot, the USB descriptor uses the VID=0x04B4 and

PID=0x00F3.

• The USB Device descriptor is reported as bus-powered, which will consume about 200 mA. However, the

FX3™ chip is typically observed to consume about 100 mA.

8.1 Example image for boot with VID and PID

Location1: 0xB2 0x10 ’Y’ ’C’ //CY Signature, 20 MHz, 0xB2 Image

Location2: 0x04B40008 //VID = 0x04B4 | PID = 0x0008

The next section describes the details of the synchronous ADMux interface and booting over the synchronous
ADMux interface.

Application Note 34 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

9 Synchronous ADMux boot

Figure 7 shows the FX3™ system diagram when booting over the synchronous ADMux interface.

EZ-USB FX3

USB Host

USB3.0/

USB2.0

Bootloader

ROM

External FPGA/

Processor

PMODE2=Z

PMODE1=0

PMODE0=0

Sync

ADMux

Sync

ADMux

Figure 7 System diagram for synchronous ADMux boot

For booting over the synchronous ADMux interface, the state of the PMODE[2:0] pins should be Z00, as shown in

Table 24.

Table 24 PMODE pins for sync ADMux boot

PMODE[2] PMODE[1] PMODE[0]

Z 0 0

The FX3™ GPIF II interface supports a synchronous ADMux interface, which may be used for downloading a

firmware image from an external processor or FPGA. The synchronous ADMux interface configured by the

bootloader consists of the following signals:

• PCLK: This must be a clock input to FX3™ . The maximum frequency supported for the clock input is 100

MHz.

• DQ[15:0]: 16-bit data bus

• A[7:0]: 8-bit address bus

• CE#: Active LOW chip enable

• ADV#: Active LOW address valid

• WE#: Active LOW write enable

• OE#: Active LOW output enable

• RDY: Active HIGH ready signal

9.1.1 Interface signals

Figure 8 shows the typical interconnect diagram for the sync ADMux interface configured by the bootloader

and connected with an external processor.

Application Note 35 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

External

Processor
EZ-USB FX3

CLK

CE#

ADV#

A[7:0]/DQ[15:0]

WE#

OE#

RDY

Figure 8 Sync ADMUX interface

For read operations, both CE# and OE# must be asserted.

For write operations, both CE# and WE# are asserted.

ADV# must be LOW during the address phase of a read/write operation. ADV# must be HIGH during the data

phase of a read/write operation.

The RDY output signal from the FX3™ device indicates that data is valid for read transfers.

The pin mapping of the FX3™ sync ADMux interface is shown in Table 25.

Table 25 Pin Mapping of sync ADMux interface

EZ-USB™ FX3™ pin Sync ADMux interface

GPIO[7:0]/GPIO[15:0] A[7:0]/DQ[15:0]

GPIO[16] CLK

GPIO[17] CE#

GPIO[18] WE#

GPIO[19] OE#

GPIO[25] RDY

GPIO[27] ADV#

9.1.2 Synchronous ADMux timing

For details on the sync ADMux timing diagrams (synchronous ADMux interface—read cycle timing and write

cycle timing) and timing parameters, see Figure 9, Figure 10, and Table 26.

Sync ADMUX Mode Power-Up Delay

On power-up or a hard reset on the RESET# line, the bootloader will take some time to configure GPIF II for the

sync ADMux interface. This process can take a few hundred microseconds. Read/write access to FX3™ should be
performed only after the bootloader has completed the configuration. Otherwise, data corruption can result.

To avoid it, use one of the following schemes:

• Wait for 1 ms after RESET# deassertion.

• Keep polling the PP_IDENTIFY register until the value 0x81 is read back.

• Wait for the INT# signal to assert, and then read the RD_MAILBOX registers and verify that the value

readback equals 0x42575943 (that is, ‘CYWB’).

Application Note 36 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

9.1.3 USB fallback (-->USB)

The USB fallback will not be active during sync ADMUX boot even if an error occurs on the commands.

9.1.4 Warm boot

When a warm boot is detected, the bootloader will transfer execution to the previously stored “Program Entry,”
which could be the user’s RESET vector. In this case, the GPIF II configuration is preserved.

9.1.5 Wakeup/Standby

After a wakeup from standby, the application firmware is responsible for configuring and restoring the
hardware registers, GPIF II configuration, ITCM, or DTCM.

After a wakeup from standby, the bootloader checks that both ITCM and DTCM are enabled.

Note: When the bootloader wakes up from the standby mode or a warm boot process, the bootloader
jumps to the reset interrupt service subroutine and does the following:

• Invalidates both DCACHE and ICACHE

• Turns ON ICACHE

• Disables MMU

• Turns ON DTCM and ITCM

• Sets up the stack using the DTC

The bootloader allocates 0x500 bytes from 0x1000_0000 – 0x1000_04FF, so 0x1000_0500 – 0x1000_1FFF is

available for downloading firmware. When the download application takes over, the memory from
0x1000_0000 – 0x1000_04FF can be used for other purposes.

Figure 9 Synchronous ADMux interface – read cycle timing

Application Note 37 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

Note:

1. The External P-Port processor and FX3S™ operate on the same clock edge.

2. The External processor sees RDY assert two cycles after OE# asserts and sees RDY deassert a cycle after the data
appears on the output.

3. Valid output data appears two cycles after OE# is asserted. The data is held until OE# deasserts.

4. Two-cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less

than 50 MHz. (This 1-cycle latency is not supported by the bootloader.)

Figure 10 Synchronous ADMux interface – write cycle timing

Note:

1. The External P-Port processor and FX3S™ operate on the same clock edge.

2. The External processor sees RDY assert two cycles after WE# asserts and deasserts three cycles after the edge
sampling the data.

3. Two-cycle latency is shown for 0-100 MHz operation. Latency can be reduced by 1 cycle for operations at less

than 50 MHz. (This 1-cycle latency is not supported by the bootloader.)

Table 26 Synchronous ADMux timing parameters

Parameter Description Min Max Unit

FREQ Interface Clock frequency - 100 MHz

tCLK Clock period 10 - ns

tCLKH Clock HIGH time 4 - ns

tCLKL Clock LOW time 4 - ns

tS CE#/WE#/DQ setup time 2 - ns

tH CE#/WE#/DQ hold time 0.5 - ns

tCH Clock to data output hold time 0 - ns

tDS Data input setup time 2 - ns

tDH Clock to data input hold time 0.5 - ns

Application Note 38 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

Parameter Description Min Max Unit

tAVDOE ADV# HIGH to OE# LOW 0 - ns

tAVDWE ADV# HIGH to WE# LOW 0 - ns

tHZ CE# HIGH to Data HI-Z - 8 ns

tOHZ OE# HIGH to Data HI-Z - 8 ns

tOLZ OE# LOW to Data HI-Z 0 - ns

tKW Clock to RDY valid - 8 ns

9.1.6 GPIF II API protocol

This protocol is used only in GPIF II boot mode. After reset, the external application processor (AP)
communicates with the bootloader using the command protocol defined in Table 27.

Table 27 GPIF II API protocol

Field Description

bSignature[2] 2-byte

Sender initialize with “CY”

The bootloader responds with “WB”

bCommand Sender: 1-byte Command

0x00: NOP

0x01: WRITE_DATA_CMD: Write Data Command

0x02: Enter Boot mode

0x03: READ_DATA_CMD: Read Data Command

The bootloader treats all others as no operation and return error code in bLenStatus

bLenStatus Input: (1-byte)

For bCommand 00: bLenStatus = 0 (the bootloader will jump to addr in dAddr if

bCommand is WRITE_DATA_CMD and ignore value for all other commands)

bCommand 01: Length in Long Word (Max = (512-8)/4)

bCommand 02: Number of 512 byte blocks (Max = 16)

bCommand 03: Length in Long Word (Max = (512-8)/4)

Bootloader responds with the following data in the PIB_RD_MAILBOX1 register:

0x00: Success

0x30: Fail on Command process encounter error

0x31: Fail on Read process encounter error

0x32: Abort detection

0x33: PP_CONFIG.BURSTSIZE mailbox notification from the bootloader to application.

The PIB_RD_MAILBOX0 will contain the GPIF_DATA_COUNT_LIMIT register.

0x34: The bootloader detects DLL _LOST_LOCK. The PIB_RD_MAILBOX0 will contain the

PIB_DLL_CTRL register.

0x35: The bootloader detects PIB_PIB_ERR bit. The PIB_RD_MAILBOX0 will contain the

PIB_PIB_ERROR register.

0x36: The bootloader detects PIB_GPIF_ERR bit. The PIB_RD_MAILBOX0 will contain the

PIB_PIB_ERROR register.

dAddr 4-byte

Application Note 39 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

Field Description

Sender: Address used by command 1 and 3

dData[bLenStatus] Data length determine by bLenStatus

Sender: Data to be filled by the Sender

Note:

1. The error code bLenStatus will be reported on the mailbox of the GPIF II.

2. When downloading firmware to FX3™ using sync ADMUX, the external AP should ensure the following:

a) Command block length is exactly 512 bytes

b) Response block length is exactly 512 bytes

c) The bootloader binary image is converted to a data stream that is segmented in multiples of 512 bytes.

d) The data chunk of the bootloader image is not larger than 8K. For instance, on the command 0x02, the
bLenStatus should not be larger than 16 blocks (8K bytes). The limitation stated above is due to the

maximum DMA buffer size. The maximum DMA_SIZE that the bootloader supports is 8K and thus, the AP
can send only 8K data (max) per transfer. If the firmware size is greater than 8K, multiple transfers are

needed to download the complete firmware to FX3™ . i.e, step 4 of section 13.4 should be repeated for

each transfer until the complete firmware is transferred

e) The host does not send more than the total image size.

3. The bootloader does not support queuing commands. Therefore, every time a command is sent, the host must
read the response.

4. To prevent the corruption of the API structure during the downloading process ,the host should not download

firmware to the reserved bootloader SYSTEM address (0x4000_0000 to 0x4000_23FF). An error will be returned

if the firmware application attempts to use this space. The first 1280 bytes of DTCM should also not be used

(0x1000_0000 – 0x1000_04FF).

5. On the WRITE_DATA_CMD: When bLenStatus = 0, the bootloader jumps to the Program Entry of the dAddr.

9.1.7 Firmware download example

This section describes a simple way to implement the firmware download from a host processor to FX3™ via the
16-bit synchronous ADMux interface.

The host processor communicates with the FX3™ bootloader to perform the firmware download. The

communication requires the host processor to read and write FX3™ registers and data sockets.

Note: Refer to the “FX3™ Terminology” section in the Getting Started with EZ-USB™ FX3™ application

note to learn about the concept of sockets in FX3™ .

The host processor uses available GPIF II sockets to transfer blocks of data into and out of FX3™ . The FX3™

bootloader maintains three data sockets to handle the firmware download protocol: one each for command,
response, and firmware data.

#define CY_WB_DOWNLOAD_CMD_SOCKET (0x00) // command block write only socket

#define CY_WB_DOWNLOAD_DATA_SOCKET (0x01) // data block read/write socket

#define CY_WB_DOWNLOAD_RESP_SOCKET (0x02) // response read only socket

The host processor communicates with the FX3™ bootloader via these data sockets to carry out the firmware
download. The command and response are data structures used for the firmware download protocol. Both are

http://www.cypress.com/?rID=59979

Application Note 40 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

512 bytes in size. The bit fields are defined in these data structures to perform various functions by the FX3™
bootloader. In the simple example implementation given in this document, only the first four bytes of both

command and response are actually used. The rest of the data bytes in the command and response are don't
cares.

From the high-level FX3™ firmware, the download requires the host processor to perform the following

sequence of socket accesses:

1. One command socket writes with command block initialized as:

command[0] = 'C';

command[1] = 'Y'; /* first two bytes are signature bytes with

 constant value of "CY" */

command[2] = 0x02; /* 0x2 is value for boot mode command. */

command[3] = 0x01; /* 1 data block */

2. One response socket reads that expects response block data as:

response[0] = 'W';

response[1] = 'B'; /* first two bytes are signature bytes with

 constant value of "WB" */

//response[2] = 0x0; /* this byte is don't care. */

response[3] = 0x0; /* indicate command is accepted */

3. One data socket writes that transfers the entire firmware image in terms of byte array into FX3™ .

Note that once the firmware image has been completely transferred, the FX3™ bootloader automatically jumps

to the entry point of the newly downloaded firmware and starts executing. Before the host process can
communicate with the downloaded firmware, it is recommended to wait for a certain amount of time

(depending on the firmware implementation) to allow the firmware to be fully initialized. An even better option
is to implement in the firmware a status update via mailbox registers after the initialization. In this case, the

host processor is notified whenever the firmware is ready.

9.1.8 Processor port (P-Port) register map

The register list shown in Table 28 indicates how the PP_xxx registers are mapped on the external P-Port

address space. Addresses in this space indicate a word, not a byte address. The sync ADMux interface provides

eight address lines to access these registers.

Table 28 Processor port register map

Register name Address Width

(bits)

Description

PP_ID 0x80 16 P-Port Device ID Register. Provides device ID information

PP_INIT 0x81 16 P-Port reset and power control. This register is used for reset and

power control and determines the endian orientation of the P-Port.

PP_CONFIG 0x82 16 P-Port configuration register

PP_IDENTIFY 0x83 16 P-Port identification register. The lower 8 bits of this register are

read-only and defaulted to 0x81.

PP_INTR_MASK 0x88 16 P-Port Interrupt Mask Register. This register has the same layout as

PP_EVENT and masks the events that lead to assertion of interrupt.

Application Note 41 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

Register name Address Width

(bits)

Description

PP_DRQR5_MASK 0x89 16 P-Port DRQ/R5 Mask Register. This register has the same layout as
PP_EVENT and masks the events that lead to assertion of interrupt

or DRQ/R5 respectively.

PP_ERROR 0x8C 16 P-Port error indicator register

PP_DMA_XFER 0x8E 16 P-Port DMA transfer register. This register is used to set up and

control a DMA transfer.

PP_DMA_SIZE 0x8F 16 P-Port DMA Transfer Size Register. This register indicates the

(remaining) size of the transfer.

PP_WR_MAILBOX 0x90 64 P-Port Write Mailbox Registers. These registers contain a message of

up to eight bytes from the AP to FX3™ firmware.

PP_MMIO_ADDR 0x94 32 P-Port MMIO Address Registers. These registers together form a 32-

bit address for accessing the FX3™ internal MMIO space.

PP_MMIO_DATA 0x96 32 P-Port MMIO Data Registers. These registers together form a 32-bit

data for accessing the FX3™ internal MMIO space.

PP_MMIO 0x98 16 P-Port MMIO Control Register. This register controls the access to

the FX3™ MMIO space.

PP_EVENT 0x99 16 P-Port Event Register. This register indicates all types of events that

can cause interrupt or DRQ to assert.

PP_RD_MAILBOX 0x9A 64 P-Port Read Mailbox Registers. These registers contain a message of

up to eight bytes from FX3™ firmware to the AP.

PP_SOCK_STAT 0x9E 32 P-Port Socket Status Register. These registers contain 1 bit for each

of the 32 sockets in the P-port, indicating the buffer availability of

each socket.

Refer to the “Registers” chapter in the EZ-USB™ FX3™ TRM for the bit field definitions of these registers.

Before delving into the details of the FX3™ firmware download, note that the following functions are frequently

used in the example implementation in this document and are platform-dependent. Contact Cypress Support
for more information on how these can be implemented on a specific platform.

IORD_REG16(); // 16-bit read from GPIF II

IOWR_REG16(); // 16-bit write to GPIF II

IORD_SCK16(); // 16-bit read from active socket set in PP_DMA_XFER. The address

driven on

 // on the Sync ADMux bus during the address phase is treated as a

 // don’t-care

IOWR_SCK16(); // 16-bit write to active socket set in PP_DMA_XFER. The address driven

on

 // on the Sync ADMux bus during the address phase is treated as a

 // don’t-care

Note: While performing register access, the most significant bit of the 8-bit address should be 1, notifying
FX3™ that it is register access operation. Similarly, for performing socket access, the most
significant bit should be set to 0.

http://www.cypress.com/?rID=80775
https://secure.cypress.com/myaccount/?id=25&techSupport=1

Application Note 42 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

mdelay(); // millisecond delay

udelay(); // microsecond delay

The following is the example implementation of the fx3_firmware_download() function that takes a pointer to
the firmware data array and the size of the firmware as parameters.

/* Register addresses and the constants used in the code shown below. */

#define CY_WB_DOWNLOAD_CMD_SOCKET 0x00 // command block write only socket

#define CY_WB_DOWNLOAD_DATA_SOCKET 0x01 // data block read/write socket

#define CY_WB_DOWNLOAD_RESP_SOCKET 0x02 // response read only socket

// All register addresses defined with bit 7 set to indicate Register access (not

Socket)

#define PP_CONFIG 0x82

 #define CFGMODE 0x0040

int fx3_firmware_download(const u8 *fw, u16 sz)

{

 u8 *command=0, *response=0;

 u16 val;

 u32 blkcnt;

 u16 *p = (u16 *)fw;

 int i=0;

 printf("FX3 Firmware Download with size = 0x%x\n", sz);

 /* Check PP_CONFIG register and make sure FX3 device is configured */

 /* When FX3 bootloader is up with correct PMODE, bootloader configures */

 /* the GPIF II into proper interface and sets the CFGMODE bit on PP_CONFIG

*/

 val = IORD_REG16(PP_CONFIG);

 if ((val & CFGMODE)== 0) {

 printf("ERROR: WB Device CFGMODE not set !!! PP_CONFIG=0x%x\n", val);

 return FAIL;

 }

 /* A good practice to check for size of image */

 if (sz > (512*1024)) {

 printf("ERROR: FW size larger than 512kB !!!\n");

 return FAIL;

 }

Application Note 43 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

 /* Allocate memory for command and response */

 /* Host processor may use DMA sequence to transfer the command and response

*/

 /* In that case make sure system is allocating contiguous physical memory

area */

 command = (u8 *) malloc(512);

 response = (u8 *) malloc(512);

 memset(command, 0, 512);

 memset(response, 0, 512);

 if (command==0 || response==0) {

 printf("ERROR: Out of memory !!!\n");

 return FAIL;

 }

 /* Initialize the command block */

 command[0] = 'C';

 command[1] = 'Y';

 command[2] = 0x02; /* Enter boot mode command. */

 command[3] = 0x01; /* 1 data block */

 /* Print the command block if you like to see it */

 for (i=0; i<512; i++) {

 if (!(i%16))

 printf("\n%.3x: ", i);

 printf("%.2x ",command[i]);

 }

 printf("\n");

 /* write boot command into command socket */

 sck_bootloader_write(CY_WB_DOWNLOAD_CMD_SOCKET, 512, (u16 *)command);

 /* read the response from response socket */

 sck_bootloader_read(CY_WB_DOWNLOAD_RESP_SOCKET, 512, (u16 *)response);

 /* Check if correct response */

 if (response[3]!=0 || response[0]!='W' || response[1]!='B') {

 printf("ERROR: Incorrect bootloader response = 0x%x

!!!\n",response[3]);

 for (i=0; i<512; i++) {

 if (!(i%16))

 printf("\n%.3x: ", i);

 printf("%.2x ",response[i]);

 }

Application Note 44 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

 printf("\n");

 kfree(command);

 kfree(response);

 return FAIL;

 }

 /* Firmware image transfer must be multiple of 512 byte */

 /* Here it rounds up the firmware image size */

 /* and write the array to data socket */

 blkcnt = (sz+511)/512;

 sck_bootloader_write(CY_WB_DOWNLOAD_DATA_SOCKET, blkcnt*512, p);

 /* Once the transfer is completed, bootloader automatically jumps to */

 /* entry point of the new firmware image and start executing */

 kfree(command);

 kfree(response);

 mdelay(2); /* let the new image come up */

 return PASS;

}

The following is an example implementation of the socket write and socket read functions. Besides the data
direction, function implementations for both socket write and read are based on the following command,
configuration, and status bits on the PP_* register interface:

• PP_SOCK_STAT.SOCK_STAT[N]. For each socket, this status bit indicates that a socket has a buffer available
to exchange data (it has either data or space available).

• PP_DMA_XFER.DMA_READY. This status bit indicates whether the GPIF II is ready to service reads from or

writes to the active socket (the active socket is selected through the PP_DMA_XFER register).

PP_EVENT.DMA_READY_EV mirrors PP_DMA_XFER.DMA_READY with a short delay of a few cycles.

• PP_EVENT.DMA_WMARK_EV. This status bit is similar to DMA_READY, but it deasserts a programmable
number of words before the current buffer is completely exchanged. It can be used to create flow control

signals with offset latencies in the signaling interface.

• PP_DMA_XFER.LONG_TRANSFER. This config bit indicates if long (multibuffer) transfers are enabled. This bit

is set by the application processor as part of transfer initiation.

• PP_CONFIG.BURSTSIZE and PP_CONFIG.DRQMODE. These config bits define and enable the size of the DMA

burst. Whenever the PP_CONFIG register is updated successfully, the FX3™ bootloader responds with a value

0x33 in the PP_RD_MAILBOX register.

• PP_DMA_XFER.DMA_ENABLE. This command and status indicates that DMA transfers are enabled. This bit is
set by the host processor as part of transfer initiation and cleared by FX3™ hardware upon transfer
completion for short transfers and by the application processor for long transfers.

Application Note 45 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

/* Register addresses and the constants used in the code shown below. */

#define PP_CONFIG 0x82

 #define CFGMODE 0x0040

#define PP_DRQR5_MASK 0x89

 #define DMA_WMARK_EV 0x0800

#define PP_DMA_XFER 0x8E

 #define LONG_TRANSFER 0x0400

 #define DMA_DIRECTION 0x0200

 #define DMA_ENABLE 0x0100

#define PP_EVENT 0x99

 #define DMA_READY_EV 0x1000

#define PP_RD_MAILBOX0 0x9A // 64 Bit register accessed as 4 x 16 bit

registers

#define PP_RD_MAILBOX1 0x9B

#define PP_RD_MAILBOX2 0x9C

#define PP_RD_MAILBOX3 0x9D

#define PP_SOCK_STAT_L 0x9E // LSB 16 bits of 32 bit register

#define PP_SOCK_STAT_H 0x9F // MSB 16 bits of 32 bit register

static u32 sck_bootloader_write(u8 sck, u32 sz, u16 *p)

{

 u32 count;

 u16 val, buf_sz;

 int i;

 buf_sz = 512;

 /* Poll for PP_SOCK_STAT_L and make sure socket status is ready */

 do {

 val = IORD_REG16(PP_SOCK_STAT_L);

 udelay(10);

 } while(!(val&(0x1<<sck)));

 /* write to pp_dma_xfer to configure transfer

 socket number, rd/wr operation, and long/short xfer modes */

 val = (DMA_ENABLE | DMA_DIRECTION | LONG_TRANSFER | sck);

 IOWR_REG16(PP_DMA_XFER, val);

 /* Poll for DMA_READY_EV */

Application Note 46 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

 count = 10000;

 do {

 val = IORD_REG16(PP_EVENT);

 udelay(10);

 count--;

 } while ((!(val & DMA_READY_EV)) && (count != 0));

 if (count == 0) {

 printf("%s: Fail timeout; Count = 0\n", __func__);

 return FAIL;

 }

 /* enable DRQ WMARK_EV for DRQ assert */

 IOWR_REG16(PP_DRQR5_MASK, DMA_WMARK_EV);

 /* Change FX3 FW to single cycle mode */

 val = IORD_REG16(PP_CONFIG);

 val = (val&0xFFF0)|CFGMODE;

 IOWR_REG16(PP_CONFIG, val);

 /* Poll for FX3 FW config init ready */

 count = 10000;

 do {

 val = IORD_REG16 (PP_RD_MAILBOX2);

 udelay(10);

 count --;

 } while ((!(val & 0x33)) || count==0); /* CFGMODE bit is cleared by FW */

 if (count == 0) {

 printk("%s: Fail timeout; Count = 0\n", __func__);

 return FAIL;

 }

 count=0;

 do {

 for (i = 0; i < (buf_sz / 2); i++)

 IOWR_SCK16(*p++); /* Write 512 bytes of data continuously to

data socket 16 bits at a time (Sync ADMux has 16 data lines) */

 count += (buf_sz / 2);

 if (count < (sz/2))

 do {

 udelay(10);

Application Note 47 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

 val = IORD_REG16 (PP_SOCK_STAT_L); /* After writing 512

bytes to data socket of the device, P-Port Socket Status Register is read to check if

the Socket is available for reading or writing next set of 512 bytes data */

 } while(!(val&(0x1<<sck)));/* You remain in this Do-while loop

till PP_SOCK_STAT_L register makes the bit corresponding to the socket as 1

indicating socket is now available for next read/write */

 } while (count < (sz/2)); /* sz is the total size of data to be written. In

case of firmware_download, sz will be total size of the firmware */

 /* disable dma */

 val = IORD_REG16(PP_DMA_XFER);

 val &= (~DMA_ENABLE);

 IOWR_REG16(PP_DMA_XFER, val);

 printf("DMA write completed\n");

 return PASS;

}

static u32 sck_bootloader_read(u8 sck, u32 sz, u16 *p)

{

 u32 count;

 u16 val, buf_sz;

 int i;

 buf_sz = 512;

 /* Poll for PP_SOCK_STAT_L and make sure socket status is ready */

 do {

 val = IORD_REG16(PP_SOCK_STAT_L);

 udelay(10);

 } while(!(val&(0x1<<sck)));

 /* write to PP_DMA_XFER to configure transfer

socket number, rd/wr operation, and long/short xfer modes */

 val = (DMA_ENABLE | LONG_TRANSFER | sck);

 IOWR_REG16(PP_DMA_XFER, val);

 /* Poll for DMA_READY_EV */

 count = 10000;

 do {

 val = IORD_REG16 (PP_EVENT);

 udelay(10);

 count--;

 } while ((!(val & DMA_READY_EV)) && (count != 0));

Application Note 48 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

 if (count == 0) {

 printk("%s: Fail timeout; Count = 0\n", __func__);

 return FAIL;

 }

 /* enable DRQ WMARK_EV for DRQ assert */

 IOWR_REG16(PP_DRQR5_MASK, DMA_WMARK_EV);

 /* Change FX3 FW to single cycle mode */

 val = IORD_REG16(PP_CONFIG);

 val = (val&0xFFF0)|CFGMODE;

 IOWR_REG16(PP_CONFIG, val);

 /* Poll for FX3 FW config init ready */

 count = 10000;

 do {

 val = IORD_REG16 (PP_RD_MAILBOX2);

 udelay(10);

 count --;

 } while ((!(val & 0x33)) || count==0); /* CFGMODE bit is cleared by FW */

 if (count == 0) {

 printk("%s: Fail timeout; Count = 0\n", __func__);

 return -1;

 }

 count=0;

 do {

 for (i = 0; i < (buf_sz / 2); i++) {

 p[count+i] = IORD_SCK16();

 }

 count += (buf_sz / 2); /* count in words */

 if (count < (sz/2))

 do {

 udelay(10);

 val = IORD_REG16 (PP_SOCK_STAT_L);

 } while(!(val&(0x1<<sck)));

 } while (count < (sz/2));

 /* disable dma */

 val = IORD_REG16(PP_DMA_XFER);

Application Note 49 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

 val &= (~DMA_ENABLE);

 IOWR_REG16(PP_DMA_XFER, val);

 printf("DMA read completed\n");

 return PASS;

}

For troubleshooting the synchronous ADMux boot, please refer to the Appendix B: Troubleshooting steps for
Sync ADMux boot.

9.2 Boot image format

For sync ADMux boot, the bootloader expects the firmware image to be in the format shown in Table 29. The
EZ-USB™ FX3™ SDK provides a software utility that can be used to generate a firmware image in the format

required for sync ADMux boot. Please refer to the elf2img utility located in the C:\Program Files\Cypress\EZ-USB
FX3SDK\1.3\util\elf2img directory after installing the SDK. For 64-bit systems, the first folder in the path is
Program Files(x86). The number 1.3 in the directory path is the version number of the SDK, and it can vary

based on the latest release of the FX3™ SDK.

Note that the elf2img post-build command generates an .img fie. This then needs to be converted into an array

that can be used for the download example shown previously. Figure 11 shows how the elf2img post-build

command is issued, followed by an example for printing the contents of the .img file into an array in ASCII
format.

Table 29 Boot image format for sync ADMux boot option

Binary image header Length

(16-bit)

Description

wSignature 1 Signature 2 bytes initialize with “CY” ASCII text

bImageCTL; ½ Bit0 = 0: execution binary file; 1: data file type

Bit3:1 Do not use when booting in SPI EEPROM

Bit5:4 (SPI speed):

00: 10 MHz

01: 20 MHz

10: 30 MHz

11: Reserved

Bit7:6: Reserved, should be set to '0'

bImageType; ½ bImageType = 0xB0: Normal FW binary image with checksum

bImageType = 0xB2: SPI boot with new VID and PID

dLength 0 2 First section length, in long words (32-bit)

When bImageType = 0xB2, the dLength 0 will contain PID and VID. The

bootloader ignores the rest of the following data.

dAddress 0 2 First section address of Program Code

Note: The internal ARM address is byte addressable, so the address for

each section should be 32-bit aligned.

http://www.cypress.com/?rID=57990

Application Note 50 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

Binary image header Length

(16-bit)

Description

dData[dLength 0] dLength

0*2
Image Code/Data must be 32-bit aligned.

… More sections

dLength N 2 0x00000000 (Last record: termination section)

dAddress N 2 Should contain valid Program Entry (Normally, it should be the

startup code, for example, the RESET vector.)

Note:

If bImageCTL.bit0 = 1, the bootloader will not transfer the execution to

this Program Entry.

If bImageCTL.bit0 = 0, the bootloader will transfer the execution to this
Program Entry. This address should be in the ITCM area or SYSTEM

RAM area. The bootloader does not validate the Program Entry.

dCheckSum 2 32-bit unsigned little-endian checksum data will start from the first
section to the termination section. The checksum will not include the

dLength, dAddress, and Image Header.

An example of boot image format organized in long-word format:

Location1: 0xB0 0x10 ’Y’ ’C’ //CY Signature, 20 MHz, 0xB0 Image

Location2: 0x00000004 //Image length of section 1 = 4

Location3: 0x40008000 //1st section stored in SYSMEM RAM at 0x40008000

Location4: 0x12345678 //Image starts (Section1)

Location5: 0x9ABCDEF1

Location6: 0x23456789

Location7: 0xABCDEF12 //Section 1 ends

Location8: 0x00000002 //Image length of section 2 = 2

Location9: 0x40009000 //2nd section stored in SYSMEM RAM at 0x40009000

Location10: 0xDDCCBBAA //Section 2 starts

Location11: 0x11223344

Location12: 0x00000000 //Termination of Image

Location13: 0x40008000 //Jump to 0x40008000 on FX3 System RAM

Location 14: 0x6AF37AF2 //Checksum (0x12345678 + 0x9ABCDEF1 + 0x23456789 +

 0xABCDEF12 + 0xDDCCBBAA + 0x11223344)

Application Note 51 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

Figure 11 Post-build command in Eclipse IDE

The following is an example of code for printing the contents of the .img file into an array in ASCII format:

#include <stdio.h>

#include <stdint.h>

int main (int argc, char *argv[])

{

 char *filename = "firmware.img";

FILE *fp;

 int i = 0;

 uint32_t k;

 if (argc > 1)

 filename = argv[1];

 fprintf (stderr, "Opening file %s\n", filename);

 fp = fopen (filename, "r");

 printf ("const uint8_t fw_data[] = {\n\t");

 while (!feof(fp))

 {

 fread (&k, sizeof (uint32_t), 1, fp);

 printf ("0x%02x, 0x%02x, 0x%02x, 0x%02x,",

 ((uint8_t *)&k)[0], ((uint8_t *)&k)[1],

 ((uint8_t *)&k)[2], ((uint8_t *)&k)[3]);

 i++;

Application Note 52 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Synchronous ADMux boot

 if (i == 4)

 {

 i = 0;

 printf ("\n\t");

 }

 else

 printf (" ");

 }

 printf ("\n};\n");

 fclose (fp);

 return 0;

 }

Application Note 53 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

eMMC boot

10 eMMC boot

The FX3S™ peripheral controller supports booting from the eMMC device. Connect the eMMC device to the S0
storage port of FX3S™ from which the firmware can be booted. FX3S™ also supports eMMC boot with USB fall
back. If no valid firmware is found in the eMMC, FX3S™ will fall back to the USB boot mode. For the PMODE pin

settings that are required to enable eMMC boot, refer to Table 30.

Table 30 PMODE settings for eMMC boot

PMODE[2] PMODE[1] PMODE[0] Boot option

1 0 0 eMMC

0 0 0 eMMC -> USB

After downloading the FX3™ SDK, refer to cyfwstorprog_usage.txt for detailed instructions on how to
implement eMMC boot. This file is located at:

<FX3 SDK installation path>\Cypress\EZ-USB FX3 SDK\1.x\util\cyfwstorprog\

Note: eMMC boot is only supported by the FX3S™ peripheral.

http://www.cypress.com/?rID=57990

Application Note 54 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Default state of I/Os during boot

11 Default state of I/Os during boot

Table 31 shows the default state of the FX3™ I/Os for the different boot modes, while the bootloader is
executing before application firmware download).

Note: The default state of the GPIOs need not be same when FX3™ is in reset and after the boot-loader

finishes the configuration.

Table 31 Default state of I/Os during boot

GPIO SPI boot default state USB boot

default state

I2C boot

default state

Sync ADMux boot

default state

GPIO[0] Tristate Tristate Tristate Tristate

GPIO[1] Tristate Tristate Tristate Tristate

GPIO[2] Tristate Tristate Tristate Tristate

GPIO[3] Tristate Tristate Tristate Tristate

GPIO[4] Tristate Tristate Tristate Tristate

GPIO[5] Tristate Tristate Tristate Tristate

GPIO[6] Tristate Tristate Tristate Tristate

GPIO[7] Tristate Tristate Tristate Tristate

GPIO[8] Tristate Tristate Tristate Tristate

GPIO[9] Tristate Tristate Tristate Tristate

GPIO[10] Tristate Tristate Tristate Tristate

GPIO[11] Tristate Tristate Tristate Tristate

GPIO[12] Tristate Tristate Tristate Tristate

GPIO[13] Tristate Tristate Tristate Tristate

GPIO[14] Tristate Tristate Tristate Tristate

GPIO[1(5] Tristate Tristate Tristate Tristate

GPIO[16] Tristate Tristate Tristate CLK Input

GPIO[17] Tristate Tristate Tristate Input

GPIO[18] Tristate Tristate Tristate Input

GPIO[19] Tristate Tristate Tristate Input

GPIO[20] Tristate Tristate Tristate Input

GPIO[21] Tristate Tristate Tristate Output

GPIO[22] Tristate Tristate Tristate Tristate

GPIO[23] Tristate Tristate Tristate Input

GPIO[24] Tristate Tristate Tristate Tristate

GPIO[25] Tristate Tristate Tristate Tristate

GPIO[26] Tristate Tristate Tristate Tristate

GPIO[27] Tristate Tristate Tristate Input

GPIO[28] Tristate Tristate Tristate Tristate

GPIO[29] Tristate Tristate Tristate Tristate

Application Note 55 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Default state of I/Os during boot

GPIO SPI boot default state USB boot

default state

I2C boot

default state

Sync ADMux boot

default state

GPIO[30] PMODE[0] I/P to FX3™ PMODE[0] I/P to

FX3™

PMODE[0] I/P to

FX3™

PMODE[0] I/P to

FX3™

GPIO[31] PMODE[1] I/P to FX3™ PMODE[1] I/P to

FX3™

PMODE[1] I/P to

FX3™

PMODE[1] I/P to

FX3™

GPIO[32] PMODE[2] I/P to FX3™ PMODE[2] I/P to

FX3™

PMODE[2] I/P to

FX3™

PMODE[2] I/P to

FX3™

GPIO[33] Tristate Tristate Tristate Tristate

GPIO[34] Tristate Tristate Tristate Tristate

GPIO[35] Tristate Tristate Tristate Tristate

GPIO[36] Tristate Tristate Tristate Tristate

GPIO[37] Tristate Tristate Tristate Tristate

GPIO[38] Tristate Tristate Tristate Tristate

GPIO[39] Tristate Tristate Tristate Tristate

GPIO[40] Tristate Tristate Tristate Tristate

GPIO[41] Tristate Tristate Tristate Tristate

GPIO[42] LOW LOW LOW LOW

GPIO[43] Tristate Tristate Tristate Tristate

GPIO[44] Tristate Tristate Tristate Tristate

GPIO[45] Tristate (HIGH if SPI

boot fails)

HIGH HIGH HIGH

GPIO[46] HIGH Tristate Tristate Tristate

GPIO[47] Tristate Tristate Tristate Tristate

GPIO[48] HIGH Tristate Tristate Tristate

GPIO[49] Tristate Tristate Tristate Tristate

GPIO[50] Tristate (LOW if SPI

boot fails)

Tristate Tristate Tristate

GPIO[51] LOW LOW LOW LOW

GPIO[52] HIGH Tristate Tristate Tristate

GPIO[53] LOW (toggles during

SPI transactions)

HIGH HIGH HIGH

GPIO[54] HIGH Tristate Tristate Tristate

GPIO[55] Tristate HIGH HIGH HIGH

GPIO[56] LOW Tristate Tristate Tristate

GPIO[57] LOW Tristate Tristate Tristate

GPIO[58] I2C_SCL Tristate Tristate Tristate (Toggles
during

transaction., then

Tristated)

Tristate

GPIO[59] I2C_SDA Tristate Tristate Tristate Tristate

Application Note 56 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

12 Appendix A: Steps for booting Using FX3™ DVK board

(CYUSB3KIT-001)

This appendix describes the stepwise sequence for exercising USB boot, I2C boot, and SPI boot using the FX3™

DVK board. Figure 12 shows a part of the FX3™ DVK board that contains switches and jumpers, which need to be
configured appropriately for each boot option. The required settings for them are also described.

SW25 – Switch to

control PMODE

input pins
U44 –

EEPROM

socket

J101,102,103,104 –

Jumpers to connect

with SPI Flash

J96,97,97 – Jumpers to

control PMODE input pins

SW40 – Switch to

control EEPROM

address

Figure 12 FX3™ DVK board: Essential switches and jumpers to be configured for boot

12.1 USB boot

1. Build the firmware image in the Eclipse IDE as shown in Figure 13, Figure 14, and Figure 15.

Application Note 57 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 13 Right-click on project in Eclipse IDE

Figure 14 Select Settings

Application Note 58 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 15 elf2img command configuration in Post-build steps for USB boot image

2. Enable USB boot by setting the PMODE[2:0] pins to Z11. On the DVK board, this is done by configuring the

jumpers and switches as shown in Table 32.

Table 32 Jumper configurations for USB boot

Jumper/Switch Position State of corresponding PMODE pin

J96 (PMODE0) 2-3 Closed PMODE0 controlled by SW25

J97 (PMODE1) 2-3 Closed PMODE1 controlled by SW25

J98 (PMODE2) Open PMODE2 Floats

SW25.1-8 (PMODE0) Open (OFF position) PMODE0 = 1

SW25.2-7 (PMODE1) Open (OFF position) PMODE1 = 1

SW25.3-6 (PMODE2) Don’t care PMODE2 Floats

3. When connected to a USB Host, the FX3™ device enumerates in the Control Center as “Cypress USB
BootLoader,” as shown in Figure 16.

Application Note 59 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 16 Cypress USB BootLoader Enumeration in control center

4. In the Control Center, select the FX3™ device by choosing Program > FX3 > RAM, as shown in Figure 17.

Figure 17 Select the device from the control center

5. Next, browse to the .img file to be programmed into the FX3™ RAM. Double-click on the .img file, as shown in
Figure 18.

Application Note 60 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 18 Select .img file

6. A “Programming Succeeded” message is displayed on the bottom left of the Control Center, and the FX3™
device re-enumerates with the programmed firmware.

12.2 I2C boot

1. Build the firmware image in the Eclipse IDE as shown in Figure 19, Figure 20, and Figure 21.

Figure 19 Right-click on project in Eclipse IDE

Application Note 61 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 20 Properties of FX3™ BootAppGcc

Figure 21 elf2img command configuration in post-build steps for I2C boot image

2. Enable USB boot, by setting the PMODE[2:0] pins to Z11. On the DVK board, this is done by configuring the
jumpers and switches as shown in Table 33.

Application Note 62 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Table 33 Jumper configurations for USB boot

Jumper/Switch Position State of corresponding PMODE pin

J96 (PMODE0) 2-3 Closed PMODE0 controlled by SW25

J97 (PMODE1) 2-3 Closed PMODE1 controlled by SW25

J98 (PMODE2) Open PMODE2 Floats

SW25.1-8 (PMODE0) Open (OFF) PMODE0 = 1

SW25.2-7 (PMODE1) Open (OFF) PMODE1 = 1

SW25.3-6 (PMODE2) Don’t care PMODE2 Floats

3. When connected to a USB Host, the FX3™ device enumerates in the Control Center as “Cypress USB

BootLoader,” as shown in Figure 22.

Figure 22 Cypress USB BootLoader enumeration in Control Center

4. Before attempting to program the EEPROM, ensure that the address signals of the EEPROM are configured

correctly using switch SW40 (For Microchip part 24AA1025, 1-8 ON, 2-7 ON, 3-6 OFF). Also, the I2C Clock

(SCL) and data Line (SDA) jumpers J42 and J45 pins 1–2 should be shorted on the DVK

board. In the Control Center, select the FX3™ device. Next, choose Program > FX3 > I2C E2PROM, as shown

in Figure 23. This causes a special I2C boot firmware to be programmed into the FX3™ device, which then

enables programming of the I2C device connected to FX3™. Now the FX3™ device re-enumerates as “Cypress
USB BootProgrammer,” as shown in Figure 24.

Figure 23 Choose Program > FX3 > I2C E2PROM

Application Note 63 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 24 FX3™ re-enumerates as “Cypress USB BootProgrammer”

5. After the FX3™ DVK board enumerates as “Cypress USB BootProgrammer,” the Control Center application
prompts you to select the firmware binary to download. Browse to the .img file that is to be programmed

into the I2C EEPROM, as shown in Figure 25.

Figure 25 Select firmware image to download

After programming is complete, the bottom left corner of the window displays “Programming of I2C EEPROM

Succeeded,” as shown in Figure 26.

Figure 26 I2C EEPROM programming update in Control Center

Application Note 64 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

6. Change the PMODE pins on the DVK board to Z1Z to enable I2C boot. On the DVK board, this is done by
configuring the jumpers and switches as shown in Table 34.

Table 34 Jumper configurations for I2C boot

Jumper/Switch Position State of corresponding PMODE pin

J96 (PMODE0) Open PMODE0 Floats

J97 (PMODE1) 2-3 Closed PMODE1 controlled by SW25

J98 (PMODE2) Open PMODE2 Floats

SW25.1-8 (PMODE0) Don’t care PMODE0 Floats

SW25.2-7 (PMODE1) Open (OFF position) PMODE1 = 1

SW25.3-6 (PMODE2) Don’t care PMODE2 Floats

7. Reset the DVK. Now the FX3™ device boots from the I2C EEPROM.

12.3 SPI boot

1. Build the firmware image in the Eclipse IDE as shown in Table 27, Table 28, and Figure 29.

Figure 27 Right-click on project in Eclipse IDE

Application Note 65 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 28 Select settings

Figure 29 elf2img command configuration in post-build steps for SPI boot image

2. Enable USB boot by setting the PMODE[2:0] pins to Z11. On the DVK board, this is done by configuring the

jumpers and switches as shown in Table 35.

Table 35 Jumper configurations for USB boot

Jumper/Switch Position State of corresponding PMODE Pin

J96 (PMODE0) 2-3 Closed PMODE0 controlled by SW25

J97 (PMODE1) 2-3 Closed PMODE1 controlled by SW25

J98 (PMODE2) Open PMODE2 Floats

SW25.1-8 (PMODE0) Open (OFF position) PMODE0 = 1

SW25.2-7 (PMODE1) Open (OFF position) PMODE1 = 1

SW25.3-6 (PMODE2) Don’t care PMODE2 Floats

Application Note 66 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

3. When connected to a USB Host, the FX3™ device enumerates in the Control Center as “Cypress USB
BootLoader, as shown in Figure 30.

Figure 30 Cypress USB BootLoader enumeration in Control Center

4. In the Control Center, select the FX3™ device and then choose Program > FX3 > SPI FLASH, as shown in

Figure 31. Browse to the .img file to be programmed into the SPI flash, as shown in Figure 32.

Figure 31 Choose Program > FX3 > SPI FLASH in Control Center

Application Note 67 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Figure 32 Double-click on the .img file to be programmed into SPI flash

5. After programming is complete, the bottom left corner of the window displays “Programming of SPI FLASH
Succeeded,” as shown in Figure 33.

Figure 33 Successful programming of SPI flash indicated at bottom left of Control Center

6. Change the PMODE[2:0] pins on the DVK board to 0Z1 to enable SPI boot. On the DVK board, this is done by
configuring the jumpers and switches as shown in Table 36.

Application Note 68 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)

Table 36 Jumper configurations for SPI boot

Jumper/Switch Position State of corresponding PMODE pin

J96 (PMODE0) 2-3 Closed PMODE0 controlled by SW25

J97 (PMODE1) Open PMODE1 Floats

J98 (PMODE2) 2-3 Closed PMODE2 controlled by SW25

SW25.1-8 (PMODE0) Open (OFF position) PMODE0 = 1

SW25.2-7 (PMODE1) Don’t care PMODE1 Floats

SW25.3-6 (PMODE2) Closed (ON position) PMODE2 = 0

Reset the DVK. Now the FX3™ boots from the SPI flash.

Application Note 69 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix B: Troubleshooting steps for Sync ADMux boot

13 Appendix B: Troubleshooting steps for Sync ADMux boot

This appendix describes the step-wise instructions on how to test and debug various sequences for sync ADmux
boot.

13.1 Initialization

1. Configure the memory interface on the master side to meet FX3™ ’s timing requirements.

2. If required (in cases like Linux), memory-map the address region corresponding to the FX3™ interface to a
region of virtual memory.

3. Write 0x0000 to the PP_INIT register at the address (FX3 address = 0x81).

4. Write 0x0040 to the PP_CONFIG register at the address (FX3 address = 0x82).

13.2 Test register read/write

1. Write to the PP_SOCK_MASK_H (0x8B) and PP_SOCK_MASK_L (0x8A) registers with various values and read

them back for testing and verification.

2. Write to the PP_INTR_MASK (0x88) register with various values and read them back for verification. Note

that this register has a number of reserved bits: Value read = Value written and 0xF8FF.

3. Write the following values to these registers to set up for FIFO access testing:

PP_SOCK_MASK_H = 0x0000

PP_SOCK_MASK_L = 0x0007

PP_INTR_MASK = 0x2001

13.3 Test FIFO read/write

Memory write and read debug commands provided by the FX3™ bootloader are used to test the FIFO access,

verify that the interface is working properly, and it can be used for firmware download.

1. Write a data pattern to the memory address 0x40003000:

a) Wait until bit 0 (Socket 0 Available) of PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0300 to the PP_DMA_XFER register (0x8E)

c) Wait until Bit 12 and Bit 15 of the PP_DMA_XFER register are set.

d) Write 512 bytes of data with the following format[3] to the FX3™ device address 0 (SOCKET 0):

Byte 0 = 0x43

Byte 1 = 0x59

Byte 2 = 0x01 (write command)

Byte 3 = 0x7E

Byte 4 = 0x00 (LSB of address)

Byte 5 = 0x30

Byte 6 = 0x00

Byte 7 = 0x40 (MSB of address)

3 Refer to USB 2.0 Specification for more details about the packet structure.

http://www.usb.org/developers/docs/usb20_docs/

Application Note 70 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix B: Troubleshooting steps for Sync ADMux boot

Bytes 8 to 511 can contain random data

2. Read back the status of the write operation:

a) Wait until bit 2 (Socket 2 Available) of PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0102 to the PP_DMA_XFER register (0x8E).

c) Wait until Bit 12 of the PP_DMA_XFER register is set.

d) Read the PP_DMA_SIZE register (0x8F) and verify that the value is 0x0200.

e) Read 512[4] bytes of data (256 cycles) from the FX3 address 0x02.

f) Verify that the first four bytes contain the pattern 0x57, 0x42, 0x01 (don’t care), and 0x00.

3. Initiate a FIFO read command to read the data from address 0x40003000:

a) Wait until bit 0 of PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0300 to the PP_DMA_XFER register (0x8E).

c) Wait until Bit 12 and Bit 15 of the PP_DMA_XFER register are set.

d) Write 512 bytes of data with the following format to the FX3™ device address 0 (SOCKET 0):

Byte 0 = 0x43

Byte 1 = 0x59

Byte 2 = 0x03 (read command)

Byte 3 = 0x7E

Byte 4 = 0x00 (LSB of address)

Byte 5 = 0x30

Byte 6 = 0x00

Byte 7 = 0x40 (MSB of address)

Bytes 8 to 511 are don’t cares.

4. Read back the memory data from socket 2:

a) Wait until bit 2 of PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0102 to the PP_DMA_XFER register (0x8E).

c) Wait until Bit 12 of the PP_DMA_XFER register is set.

d) Read the PP_DMA_SIZE register (0x8F) and verify that the value is 0x0200.

e) Read 512 bytes of data (256 cycles) from FX3 address 0x02.

f) Verify that the first 4 bytes contain the pattern 0x57, 0x42, 0x03, 0x00.

g) Verify that bytes 8 to 511 match the random data written in step 1 above.

5. Repeat steps 1 to 4 for other memory addresses and data patterns.

4 “If the correct response is not received while reading back the status of the write operation, read 256 bytes of data (128 cycles) from

the FX3 Response Socket (address 0x02) instead of 512 bytes.

Application Note 71 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix B: Troubleshooting steps for Sync ADMux boot

13.4 Test firmware download

If all of the above checks are good, you can proceed with the firmware download testing. The following

sequence is to be used for firmware download5:

1. Read the content of the img file with the target firmware into a memory buffer. Pad the data to a multiple of
512 bytes as required. This is because bootloader is designed to support only full packets. The size of a full
packet is specified in the bLenStatus field.

2. Follow step 1 in Section 13.3 to write the following data to socket 0: 0x43, 0x59, 0x02, 0x01, ... (remaining
508 bytes are don’t care).

3. Follow step 2 in Section 13.3 to read the firmware download command status from socket 2. Verify that byte

3 (status) has the value 0x00.

4. Now, write the complete firmware content to socket 1, 512 bytes at a time. Follow the procedure given

below to write each 512 bytes to socket 1.

a) Wait until bit 1 of the PP_SOCK_STAT_L register (0x9E) is set.

b) Write 0x0301 to the PP_DMA_XFER register (0x8E).

c) Wait until Bit 12 and Bit 15 of the PP_DMA_XFER register are set.

d) Write 512 bytes of data to the FX3 device address 1.

5 The steps mentioned in this section are based on bLenStatus=1 (single 512-byte block). If the bLenStatus is greater than 1, the data

chunk size per transfer mentioned in steps 1-4 must be changed accordingly. Note that 512 bytes < Data chunk size per transfer <

8 KB.

Application Note 72 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix C: Using the elf2img utility to generate firmware image

14 Appendix C: Using the elf2img utility to generate firmware

image

This appendix describes how to use the elf2img utility (in the util\elf2img folder in the SDK installation path) to

generate the firmware image for boot options mentioned in this application note.

14.1 Usage

The utility is a console application that needs to be invoked with the following options:

elf2img.exe -i <elf filename> -o <image filename> [-i2cconf <eeprom control>]

[-vectorload <vecload>] [-imgtype <image type>] [-v] [-h]

where,

<elf filename>: Input ELF file name with path

<image filename>: Output file name with path

<eeprom control>: I2C/SPI EEPROM control word in hexadecimal form

<image type>: Image type byte in hexadecimal form

-v: Enable verbose logs during the conversion process

-h: Print help information

14.1.1 Image type

The <image type> should be 0xB0 for all firmware applications. Other values are reserved.

14.1.2 Interrupt vector load

The ARM926EJ-S core on the FX3™ device has its reset and interrupt vectors stored in the first 256 bytes of the
memory (address range 0x00–0x100). It is not advisable to load any code directly into this address range

because it may interfere with the boot loader or active firmware operation. The FX3™ firmware library and

default linker settings ensure that no valid code is loaded directly into this address range. The interrupt vectors
are safely copied into this area once the firmware starts running.

The elf2img utility in default mode removes any data in the 0x00–0x100 address range while generating the

boot image. This is safe because the recommended linker settings ensure that no valid code/data is placed in
this address range. This behavior can be overridden using the -vectorload command line option.

The <vecload> value is a yes/no string, which when set to "yes" causes the tool to retain any data in this

address range in the boot image. The default value for this parameter is "no".

14.1.3 EEPROM control

This parameter is only applicable in the case of boot from I2C EEPROM or SPI FLASH. If the FX3™ is being
booted via USB or the GPIF port, this field is not used and can be omitted while generating the img file.

In the case of I2C boot, the <eeprom control> byte specifies the type and speed of the EEPROM used.

Application Note 73 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Appendix C: Using the elf2img utility to generate firmware image

In the case of SPI boot, the <eeprom control> byte specifies the speed at which the SPI boot from EEPROM

should be performed. This byte is a don't care when any other boot mode is used.

14.1.3.1 I2C parameters

The encoding in the case of I2C boot is as follows:

Bit 0 Must be zero

Bits 3 - 1 EEPROM size [7 = 128 KB, 6 = 64 KB, 5 = 32 KB, 4 = 16 KB, 3 = 8 KB, 2 = 4 KB]

Bits 5 - 4 EEPROM speed [0 = 100 KHz, 1 = 400 KHz, 2 = 1 MHz]

Bits 7 - 6 Must be zero

For example, a value of 0x1C corresponds to the use of 64 KB EEPROM at a frequency of 400 kHz.

14.1.3.2 SPI parameters

The encoding in the case of SPI boot is as follows:

Bit 0 Must be zero

Bits 3 - 1 Don't care

Bits 5 - 4 SPI operating frequency [0 = 10 MHz, 1 = 20 MHz, 2 = 30 MHz]

Bits 7 - 6 Must be zero.

For example, a value of 0x1C will generate .img for SPI operating frequency of 20 MHz.

Application Note 74 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

References

References

[1] AN75705 - Getting started with EZ-USB™ FX3™

[2] EZ-USB™ FX3™ TRM

http://www.cypress.com/AN75705
http://www.cypress.com/?rID=80775
http://www.cypress.com/?rID=80775

Application Note 75 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Revision history

Revision history

Document

version

Date of release Description of changes

** 2012-05-14 New application note

*A 2012-11-19 Merged the following application notes into AN76405: AN73150,

AN70193, AN68914, and AN73304

Clarified the SPI Flash parts tested for boot

Added an example for Sync ADMux firmware download implementation

Added a step-by-step-sequence of instructions for testing boot options

on the DVK

Added a table with the default state of the GPIOs during boot

*B 2012-12-10 Table 26 – Updated default state of GPIO[33] for all boot modes

Updated default states of GPIO[51], GPIO[55]-[57] for SPI boot mode.

Updated to new template.

*C 2013-04-12 Updated GPIO[55] in Table 31.

*D 2014-06-27 Added Figure 1 to show all the boot options discussed in this

application note.

Added pin mapping for I2C, SPI, and sync ADMux interfaces.

Added command set of supported SPI flashes.

Added the Processor Port register map.

Pointed to FX3S datasheet for sync ADMux timing diagrams.

*E 2015-07-28 Added SPI flash part numbers supported by FX3

Updated the I2C EEPROM part number that is in production

Added more information in Sync ADMux boot options

Added read and write waveforms for Sync ADMux boot

Updated GPIO[45] and GPIO[50] in Table 30.

Corrected the RDY pin mapping for Sync ADMux.

Removed secure boot (0xB1) format

Added eMMC boot details

Added FX3S and CX3 parts

Changed the AN title by including FX3S

Updated to new template.

*F 2017-01-20 Updated to new template.

Added Appendix for ADMux troubleshooting.

Completing Sunset Review.

*G 2017-04-18 Updated logo and copyright

*H 2018-07-24 Removed KBA Link (Design with FX3/FX3S)

Removed Benicia References

Removed Obsolete app note references

Modified SPI flash limit to 128 Mbit

Added supported SPI Flash parts

Removed Ez-detect section

Added Appendix C to provide more details on the elf2img utility

http://www.cypress.com/?rID=76832

Application Note 76 of 77 001-76405 Rev.*K

 2021-04-16

EZ-USB™ FX3™/FX3S™ boot options

Revision history

Document

version

Date of release Description of changes

*I 2018-10-10 Updated Appendix B.

*J 2019-01-08 Updated GPIF II API Protocol section

Updated Appendix B.

*K 2021-04-16 Removed mentions of asynchronous SRAM boot option

Updated to Infineon template

Trademarks
All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-04-16

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2021 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this

document?

Go to www.cypress.com/support

Document reference

001-76405 Rev.*K

IMPORTANT NOTICE
The information contained in this application note is
given as a hint for the implementation of the product
only and shall in no event be regarded as a
description or warranty of a certain functionality,
condition or quality of the product. Before
implementation of the product, the recipient of this
application note must verify any function and other
technical information given herein in the real
application. Infineon Technologies hereby disclaims
any and all warranties and liabilities of any kind
(including without limitation warranties of non-
infringement of intellectual property rights of any
third party) with respect to any and all information
given in this application note.

The data contained in this document is exclusively
intended for technically trained staff. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
respect to such application.

For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies office
(www.infineon.com).

WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies office.

Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon
Technologies, Infineon Technologies’ products may
not be used in any applications where a failure of the
product or any consequences of the use thereof can
reasonably be expected to result in personal injury.

https://www.cypress.com/support
http://www.infineon.com/

	About this document
	Table of contents
	1 Introduction
	2 More information
	2.1 EZ-USB™ FX3™ software development kit
	2.2 GPIF™ II designer

	3 FX3™ boot options
	4 USB boot
	4.1 PMODE pins
	4.2 Features
	4.2.1 Default Silicon ID
	4.2.2 Bootloader revision
	4.2.3 ReNumeration™
	4.2.4 Bus-powered applications
	4.2.5 USB fallback options (--> USB)
	4.2.6 USB with VID/PID options
	4.2.7 USB default device
	4.2.8 USB setup packet
	4.2.9 USB Chapter 9 and Vendor commands
	4.2.10 USB vendor commands
	4.2.11 USB download sample code

	4.3 Checksum calculation
	4.3.1 FX3™ bootloader memory allocation
	4.3.2 Registers/Memory access
	4.3.3 USB eFUSE VID/PID boot option
	4.3.4 USB OTG
	4.3.5 Bootloader limitations
	4.3.6 USB watchdog timer
	4.3.7 USB suspend/resume
	4.3.8 USB device descriptors

	4.4 Boot image format
	4.4.1 Example of boot image format organized in long-word format

	5 I2C EEPROM boot
	5.1 Features
	5.2 Storing firmware image on EEPROM
	5.2.1 Important points on 128-KB EEPROM addressing

	5.3 Boot image format
	5.4 Checksum calculation
	5.4.1 First example boot image
	5.4.2 Second example boot image
	5.4.3 Checksum calculation sample code

	6 I2C EEPROM boot with USB fallback
	6.1 Features
	6.2 Example image for boot with VID and PID

	7 SPI boot
	7.1 Features
	7.2 Selection of SPI flash
	7.3 Storing firmware image on SPI flash/EEPROM
	7.4 Boot image format
	7.5 Checksum calculation

	8 SPI Boot with USB fallback
	8.1 Example image for boot with VID and PID

	9 Synchronous ADMux boot
	9.1.1 Interface signals
	9.1.2 Synchronous ADMux timing
	9.1.3 USB fallback (-->USB)
	9.1.4 Warm boot
	9.1.5 Wakeup/Standby
	9.1.6 GPIF II API protocol
	9.1.7 Firmware download example
	9.1.8 Processor port (P-Port) register map
	9.2 Boot image format

	10 eMMC boot
	11 Default state of I/Os during boot
	12 Appendix A: Steps for booting Using FX3™ DVK board (CYUSB3KIT-001)
	12.1 USB boot
	12.2 I2C boot
	12.3 SPI boot

	13 Appendix B: Troubleshooting steps for Sync ADMux boot
	13.1 Initialization
	13.2 Test register read/write
	13.3 Test FIFO read/write
	13.4 Test firmware download

	14 Appendix C: Using the elf2img utility to generate firmware image
	14.1 Usage
	14.1.1 Image type
	14.1.2 Interrupt vector load
	14.1.3 EEPROM control
	14.1.3.1 I2C parameters
	14.1.3.2 SPI parameters

	References
	Revision history

