Sunday, February 21,2010
5:17 PM

EdSim51 - Notes on the 8051 Page 1 of 15

EdSimo1” The 8051

<-Previous List of Contents Next->

Peripheral Interfacing

The following topics are covered in this section:

« Inputs
o Interfacing Digital Inputs to TTL
o Switches
o Keypads
o ADC Interfacing
e Outputs
o LEDs and 7-segment Displays

o Multiplexing
o DC Motors

Inputs

Interfacing Digital Inputs to TTL
Before we can discuss interfacing digital signals to TTL inputs, we must remind ourselves of the voltage and current levels of a
TTL input.

I'he logic levels for TTL inputs are as follows:

e HIGH - between2 Vand 5V

o LOW - between 0 Vand 0.8 V
When a HIGH is applied to a TTL input it draws very little current (about 40 uA). When a LOW is applied to a TTL input it sources
approximately 1.6 mA.

Therefore, when interfacing a digital input (which will be either HIGH or LOW) to TTL we must ensure it meets the requirements
of a TTL input.
The diagram below shows how to interface a digital input (ie; either high or low) to TTL.

5V

to microcontroller port pin

10k
digital input

When the digital input is HIGH the transistor will be turned on. This results in a direct path from the port pin to ground, therefore
the pin is logic 0. When the digital input is LOW the transistor is off which means there is no path for current from the collector to
the emitter, therefore the port pin will read 5V.

This circuit results in logic inversion, but this should not be a problem as inverting the port pin through software is very casy.

http://www.edsim5 1.com/805 I Notes/interfacing.html 2/21/2010

Unfiled Notes Page 1

EdSim51 - Notes on the 8051 Page 2 of 15

When the transistor is on the port pin is connected directly to ground. Therefore there is a path for the 1.6 mA from the port pin
(TTL current when input is LOW). The 10 K emitter resistor ensures the current from the supply is kept low, an important
consideration in battery powered devices.

When the transistor is ofT the port pin is at 5 V (in reality it will not be exactly 5V because a transistor is never fully ofT and a small
current will flow through the emitter resistor, resulting in a small voltage drop across the resistor - but the voltage level on the
resistor will still be close to 5 V). Since there is very little current flowing, power consumption is kept low. Also, as mentioned
above, a TTL input draws very little current when a HIGH is applied to it, so this circuit satisfies the requirements of a TTL input
and keeps power consumption at a minimum.

The digital HIGH need not be TTL level inputs.

The HIGH voltage applied to the base of the transistor does not have to be 5V. For example, the input circuit could be from
temperature sensor that produces a HIGH voltage when the temperature exceeds a certain value. The voltage level from this circuit
could be any voltage that is high enough to turn on the transistor (say, 12V for example) and the value of the base resistor can be
calculated to suit. Because the voltage applied to the emitter resistor is 5 V the digital HIGH from the sensor circuit is level-shifted
to suit a TTL input.

Switches
The circuit above is actually interfacing an electronic switch, the transistor, to a TTL input. We can interface a physical switch in
exactly the same way, as shown below.

+5V

10k

#+——= to microcontroller port pin

When the switch is open, no current flows through the resistor and therefore the voltage on the microcontroller pin is 5 V. When the
switch is closed the pin is connected directly to ground. As before, when the TTL input is HIGH practically no current flows in the
circuit and when the input is LOW there is a direct current for the 1.6 mA that may flow from the pin.

Switch Bounce
When a physical switch is closed the contacts bounce open and closed rapidly for about 20 to 30 ms, as illustrated below.

—+ 30 ms (typical) +—
bounce

The opening of a switch is clean and without bounce. However, when a switch is closed the contacts bounce open and closed for
about 30 ms. While this is a very short time in human terms it is a very long time for a microcontroller (the basic 8051 running on a
system clock of 12 MHz executes a 1-byte instruction in 1 us). Without switch debouncing, the microcontroller would 'think' the
switch was opened and closed many times. Imagine if a push-button switch was being used to increment the output from a
microcontrolled power supply. If the switch was connected to the microcontroller without switch bounce then a user pressing the
switch once would actually result in the output voltage being increased many times because the microcontroller would respond as if
the switch had been pressed many times.

Hardware Switch Debounce
One method of hardware debounce is shown below.

http://www.edsim51.com/8051 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 2

EdSim51 - Notes on the 8051 Page 3 of 15

U_ to microcontroller port pin :oﬂwloe“on T IR troaer NT:“_/
trigger | |
output I

(to port pin)

|
-

As can be seen from the waveforms above, when the switch is closed the capacitor voltage drops to 0 V. When the switch bounces
open the capacitor begins to charge back up to 5 V, but due to the RC constant, it cannot charge beyond the schmitt trigger's HIGH
reference voltage before the switch bounces closed again. Once the switch closes, the capacitor again drops to 0 V. Since the
voltage on the capacitor never goes beyond the trigger's HIGH reference voltage during the switch bounce, the output of the trigger
remains LOW and the switch bounce is not seen on the port pin.

When the switch is physically opened the capacitor has plenty of time to charge beyond the trigger's HIGH reference voltage, at
which point the trigger output goes HIGH and this is seen on the port pin.

Software Switch Debounce

Hardware debounce requires extra circuitry. With small devices, this extra hardware may not be tolerated. In most cases, software
debounce is more than adequate. Software debounce simply incorporates a delay of about 30 ms while the switch bounces. In other
words, when a key press is detected, the system delays for about 30 ms before processing the input. By then the switch will have
stopped bouncing and the microcontroller will only process the initial switch contact.

no
key pressed?

yes
[debounce delay of approximately 30 ms |
[
| process key press I
|

| continue with systemn operation I

Delaying for about 30 ms will not be noticed by the user, but the microcontroller could do quite a bit of work in that time.
Therefore, in a multifunction system it is more efficient to initialise a timer and start it so that it will overflow and generate an
interrupt 30 ms after the switch was pressed. In that way, the controller can be doing some other work while the switch bounces.

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 3

EdSim51 - Notes on the 8051 Page 4 of 15

key pressed ISR

'
i
1

I initialise timer for 30 ms timeout]
|

| start timer]
|

| return from interrupt I

process key ISR

I g e |

I process Key press]
|

| S |

In the above flow chart diagrams, processing the key press is handled in the ISR. This may not be the case in a multifunction
system. It is more likely that the ISR would set a flag to let the main program know that a key has been pressed (or, in an RTOS
system, 1o move a process from the waiting state to the ready state).

Keypads
Keypads are assembled in a matrix form, as illustrated below.

o | € | & F

g = b2 P g

i L L

The above diagram shows a 4 X 4 keypad - 16 switches configured in 4 columns and 4 rows.

In the default state (all switches open) there is no connection between the rows and columns. When a switch is pressed a connection
between the switch's row and the switch's column is made.

Keypad Decoder

Many keypads are built with an onboard decoder that scans the keypad and, if a key is pressed, returns a number identifying the
key. Alternatively, a keypad decoder chip can be purchased separately and interfaced with a keypad. The diagram below shows a 4
X 4 keypad interfaced with such a decoder.

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 4

EdSim51 - Notes on the 8051 Page 5 of 15

X4
X3

X2 o1 ——p10

I— X1 02 P11

03 P12

x4 %3 %2 x1 04 P13
Y4
Y3
4] Y2

L3 DA—iNTO
ElBnE Y1

8051
4 X 4 keypad decoder

The decoder is shown connected to the 8051, as a suggestion. Obviously, the outputs from the decoder don't need to go to the LSBs
of P1, nor does the data available line (DA) need to be connected to the external 0 interrupt line. However, the above configuration
is one way of interfacing a 4 X 4 keypad decoder to the 8051.

The decoder has 8 inputs; the 4 X inputs are connected to the 4 keypad columns while the Y inputs are connected to the 4 keypad
rows. Not shown in the diagram are pins for connecting capacitors to the decoder. These capacitors govern the rate at which the
keypad is scanned.

When a key is pressed the 4-bit code for the key (there are 16 keys, therefore there are codes 0000 to 1111 in binary) appears on the
four output lines (and in this case will appear on the 4 LSBs of P1) and the data available line (DA) goes LOW. If connected to an
external interrupt line (in this case, the INTO-bar line) the microcontroller will be interrupted when a key is pressed. The ISR could
then read the 4 LSBs of P1 and process the data.

The decoder chip takes care of switch debounce, therefore the programmer is freed from this responsibility, which is an advantage
of using a decoder chip.

Software Decoder
The above decoder function can be implemented in software. The keypad could be interfaced with the 8051 as detailed below.

sV

M7
P16
Ps
P4

x4 x3%2 x1

PM3

3 3 P12
wEED P11
E/BnE PO

With the above configuration, an interrupt is generated on the INTO-bar line when a key is pressed. We will deal with how this
works in a moment. Firstly, let's see how the keyboard is scanned.
The steps are:

e Scanrow 1

e Scan row 2

e Scanrow 3

e Scanrow 4
Scanning a row is achieved by applying 0 V to the port pin for that row and 5 V to the other three rows, then scanning each
individual column to see if one of them is LOW. If it is, then the key at the junction between the current row and column being
scanned is the pressed key.

e Clear row 1, set other 3
o Scan column 1
o Scan column 2
o Scan column 3
o Scan column 4

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 5

EdSim51 - Notes on the 8051

e Clear row 2, set other 3
o Scan column 1
o Scan column 2
o Scan column 3
o Scan column 4

e Clear row 3, set other 3
o Scan column 1
o Scan column 2
o Scan column 3
o Scan column 4

e Clear row 4, set other 3
o Scan column 1
o Scan column 2
o Scan column 3
o Scan column 4

Page 6 of 15

For example, let's say the key being pressed is key 6. When scanning the first row, P1.0 will be cleared while the other 3 rows
(P1.1, P1.2 and P1.3) are set, as detailed in the diagram below.

sV

I

I

<

Low

Since no key in this row is closed there is no path for current through any of the pull-up resistors and all 4 columns (on P1.4 to

P1.7) are HIGH. Therefore, the key pressed was not found while scanning row 1.
The diagram below illustrates scanning row 2. (Note that key 6 is still closed.)

http://www.edsim5 1.com/805 1 Notes/interfacing.html

Unfiled Notes Page 6

2/21/2010

EdSim51 - Notes on the 8051 Page 7 of 15

o 8

A
A
A

;;i-/ / f/ ’/ -
4 %4 v 4

-5!./ '/ _fi-'/ ‘/ -
/:/ - /r‘ /f

7 vaRya
7 /‘“/“" 7 7

~51-/ // / / -
4 7 ’)

In this case, column 3 is connected through the closed switch to row 2. Since row 2 is LOW, column 3 is LOW.

A series of flowcharts for implementing software keypad scan is given below:

-

| initialise and enable INTO as low-level activated |
[

intialise keypad by clearing all rows (P1.0 to P1.3) and by
setting P1.4 to P1.7 as inputs

http://www.edsim51.com/8051 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 7

EdSim51 - Notes on the 8051 Page 8 of 15

keyPressedISR

C:::D

| disable INTO interrupt]
| call debounce (al delay of 30 ms) |
| call st.arllKeypad. |
| call waitFaneyRelease]
| clear INTE! flag (IED) |
| set pml:clsl{cyl-'h.g |
| enable [N‘l!o interrupt]

—
—

[clear RO |
|
! clear P1.0; set P1.1; set P1.2; set P1.3 (scanning row 1)]

I

(call columnScan |

T

o

scanKeypad subroutine

[set P1.0; clear P1.1; set P1.2; set P1.3 (scanning row 2)]

I

[call columnScan |

i set P1.0; set P1.1; clear P1.2; set P1.3 (scanning row 3) ‘

I call columnScan |

[set P1.0; set P1.1; set P1.2; clear P1.3 (scanning row 4) |

|
; call columnScan |

e

http://www.edsim51.com/8051 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 8

EdSim51 - Notes on the 8051 Page 9 of 15

columnScan subroutine

Pl4=07

increment R0

P15=07?

{

increment RO

P16=07

{

mncrement R0

P17=07 =
no
l erenit R D I I set keyFound flag
I |
=
waitForKeyRelease subroutine
[clear rows (ie; P1.0, P11, P1.2and P1.3) |

L

The keypad is initialised in the main program; all rows are cleared. Therefore, when a key is pressed, since all rows are LOW, then
one of the columns (the one containing the key that has been pressed) will be connected to 0 V. This logic 0 into the AND gate will
result in a logic 0 out. Since the output of the AND gate is connected to INTO-bar, a key press will result in an external 0 interrupt.

The keyPressedISR is the ISR for dealing with an external 0 interrupt. The first thing this ISR does is disable the external 0
interrupt and call a 30 ms (typical) delay subroutine. When the delay subroutine returns the key will have stopped bouncing and the
keypad can now be scanned.

In this example, the value of the key pressed (0 to 15) will be stored in RO. Therefore, at the start of the scanKeypad subroutine R0
is set to 0. Row 1 is cleared while the other three rows are set. The columnScan subroutine is then called. It tests the status of each
column. If the first column is 0 then, since we are currently scanning row 1, key 0 was pressed and its value is in R0. Therefore the
keyFound flag is set and the subroutine returns.

If the first column is not 0, RO is incremented (it now holds 1) and the next column is tested. If it is O then key 1 was pressed and
this value is in RO - therefore the keyFound flag is set and the subroutine returns.

This is repeated for all columns until the key is found.
If none of the four columns is 0 then the key pressed is not in this row and the subroutine returns without setting the keyFound flag.

When columnScan returns, the keyFound flag is tested. If it is not 1 then the key was not found and the scanKeypad subroutine
continues with the next row. Throughout this process, R0 is incremented so that when the key is finally found RO will contain the
value of that key.

When scanKeypad returns to the ISR the value of the key is in R0. The ISR then calls a subroutine to wait for the key to be

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 9

EdSim51 - Notes on the 8051 Page 10 of 15

released. If we do not wait for the key to be released and immediately enable the external 0 interrupt, then the system will react as if
the key was pressed again. Even if a user presses and releases the key as quickly as possible, the microcontroller will have executed
the ISR and enabled the INTO interrupt before the user actually released the key. Therefore we wait for the user to release the key
before proceeding.

The waitForKeyRelease subroutine is quite simple. All four rows are cleared so that no matter which key is pressed, one of the
columns will be 0 which will result in a 0 out of the AND gate to the INTO-bar line. Therefore, while the key is held down this line
will be 0. Once the key is released then all four columns will be 1 resulting in a 1 at INTO-bar and the subroutine returns.

The external 0 interrupt flag (IE0) is then cleared because it may have been set as the key bounces and as we scanned the keyboard
(remember, disabling an interrupt does not prevent the interrupt from occurring - a 0 on INTO will still set the flag, IEO). If we did
not clear this flag, once we again enable the external 0 interrupt the system would again vector to keyPressedISR.

The processKeyFlag is then set to alert the main program to the fact that a key was pressed. The main program can then retrieve the
value of the key from RO and process it in whatever way the system design requires.

Separate Debounce Interrupt

One of the problems with the above implementation is the fact that the system is held in a 30 ms delay while the key bounces. The
microcontroller could be doing something a lot more useful in that time (remember, a basic 8051 running on a system clock of 12
MHz could execute 30,000 1-byte instructions in that time). One way would be to set one of the timers to overflow in 30 ms, enable
the timer's interrupt, start the timer and exit the keyPressedISR. The timer’s ISR could then execute the rest of the keypad scan
process (ie; what's left in keyPressedISR above goes into the timer's ISR instead).

Doing Nothing While the Key is Held Down

In the above implementation the system is held up doing nothing as it waits for the key to be released. Even in the short space of
time of an ordinary key press, the controller could be doing something useful, but it is even more wasteful if you imagine a user
holding the key down for a long time. One solution with the 8051 would be to initialise the external 0 interrupt as negative-edge
activated rather than low-level activated. In this case, the waitForKeyRelease subroutine would not be needed at all. Once the
external O interrupt is again enabled in keyPressedISR another external 0 interrupt could not occur until the key was released and
another (or the same one) pressed; only this would result in a negative edge on INTO-bar.

Note: there is one other task performed by waitForKeyRelease - in performing its function it resets all four rows. If this subroutine
is removed, as suggested, then the code for clearing the rows (ie; CLR P1.0; CLR P1.1; CLR P1.2; CLR P1.3) must be included in
keyPressedISR so that the system is then ready for the next key press.

ADC Interfacing

The schematic symbol for a typical analogue-to-digital converter is shown below. On the right is an illustration of how the ADC
may be interfaced with the 8051.

—d= TR o— - NTR fo———— NTO

FD fo— RD o———{P20
data ines — data lines port 1

Vi— v

— analogue — — oL

—inputs " —]inputs
R o— WR fo——P21

analogue to digital rter logue to digital

The function of the ADC pins are as follows:

o CS-bar is the chip select

o INTR-bar is the interrupt line - goes low when a conversion is complete.

o RD-bar enables the data lines.

o WR-bar is cleared and then set to start a conversion.
In the above example of interfacing the ADC to the 8051, the CS-bar line is connected to ground to permanently enable the chip.
The INTR-bar line goes LOW once a conversion is complete, therefore it is connected to one of the external interrupt pins on the
8051. In this way, the 8051 will be interrupted when a conversion is complete and data is ready for reading.

The data lines are tri-state (hence the inverted triangle symbol) which means this chip can be memory mapped and the data lines can
be connected directly to the data bus. In the above example the data lines are connected to port 1, but since they are tri-state the port

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 10

EdSim51 - Notes on the 8051 Page 11 of 15

can also be used for something else. Only when the conversion is complete is P2.0 cleared which enables the data lines and the
analogue conversion appears on port 1.

The WR-bar line is used for starting a conversion. Clearing this line resets the internal successive-approximation register and the 8-
bit shift register. When the line is set conversion begins.

Therefore, taking a reading from the ADC is a two step process:

1. Clear and then set WR-bar to initiate a conversion.
2. Sometime later (typically 100 us), the INTR-bar line will go LOW to indicate the conversion is complete. This will cause an
external 0 interrupt and it is up to the external 0 ISR to read the data by clearing P2.0 and reading the data from port 1.

Using an interrupt allows the microcontroller to do some work during the 100 us it takes to convert the analogue input into digital.

Outputs

We will now look at interfacing output devices to microcontroller ports, focusing on the following topics:
e LEDs

o 7-segment LED displays

o Multiplexing 7-segment LED displays

« DC motors

TTL Compatibility

When discussing interfacing to TTL inputs above, we noted the current sinked by a TTL input when the input is HIGH is
approximately 40 uA. Since the fan-out of TTL is 10, the maximum current sourced by a TTL output HIGH is 400 uA.

The current sourced by a TTL input when the input is LOW is 1.6 mA, therefore (with a fan-out of 10) the maximum current
sinking for a TTL output LOW is 16 mA.

LEDS
Therefore, when interfacing an LED to a TTL output, the maximum current through the LED is 16 mA. The circuit below shows
how to interface an LED to a microcontroller port pin.

sy

sv

from micr port pin PNP

o LED

from port pin v LED

Basic LED interface providing max. LED on

currentof 16 A LED interface to provide extra LED on current

The value for the resistor is calculated to result in the The values of both resistors are calculated, using the
desired LED on current - most LEDs have a forward transistor B value, to achieve the desired LED on current.
voltage drop of about 2 V. <

As explained, this limits the LED on current to 16 mA, which in most cases is adequate. However, if more current is required, the
second circuit shown above may be used. Note that both circuits result in the microcontroller port pin sinking current when the LED
is on, which is desirable as port pins will sink a lot more current than they will source.

7-segment Displays

Interfacing a single 7-segment display to a microcontroller port is done in the same manner as interfacing a single LED. Again, the
LEDs can be connected directly to the port pins or, if high current LEDs are being used, they can be connected through p-n-p
transistors. Both methods are detailed below.

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 11

EdSim51 - Notes on the 8051 Page 12 of 15

sV
= microcontrolier
oc
i S
_MJ.‘
port
[e—— common-cathode E
display .
<
Haxic 7-sepuont daplay Wites face providing sax, 7-segment interface to provide extra LED-on current

LED-on current of 16 mA
The complete configuration for only one segment and the
decimal point is shown. However, the configuration for the
other 6 segments is exactly the same.

Multiplexing
It is often necessary to interface a number of 7-segment displays to a microcontroller. Rather than use a separate port for each
display, all of the displays are connected to the same port and other port pins are used for switching on one display at a time.

sv
port pins
Ut
all displays are
«| common-anode
1 4]a

port

(data)
microcontroller

As long as the displays are turned on and off fast enough, to the eye it will seem as if they are all on together. A timer interrupt
could be used to switch from one display to the next. For example, timer zero could be set to interrupt once every five milliseconds.
The operation of the timer zero ISR would be:

o Turn off all displays by setting the display enable port pins.
o Send data for next display to the data port.
o Turn on next display (if current display is 4, next display is 1) by clearing the appropriate enable port pin.

DC Motors

An interfacing method for turning on and off a DC motor via a microcontroller is shown below.

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 12

EdSim51 - Notes on the 8051 Page 13 of 15

from mi port pin

5 ¥ DC motor

However, the above circuit will only work for a 5 V motor. If the supply voltage is changed (for example, if the supply is changed
to 12 V to run a 12 V motor) then the motor will be on all the time because 5 V applied to the base of the p-n-p transistor is not
enough to turn it off.

To interface to larger motors the following circuit may be used.

sV 12zv

Rt ©

from microcontrolier port pin =

—E—

In the above example a 12 V DC motor is interfaced to a microcontroller. When the port pin is set (ie; is equal to 5 V) the p-n-p
transistor is off which means the n-p-n transistor is also off. Therefore there is no path for current through the motor and the motor
is off.

When the port pin is cleared the p-n-p transistor is on. This turns on the n-p-n transistor which allows current to flow through the
motor to ground; the motor is on.

The value of R2 needs to be carefully chosen; too high and the current into the base of the n-p-n transistor will not be enough to
turn on the transistor, too low and the circuit draws too much current.

Bi-directional DC Motor
A circuit diagram for interfacing a 12V DC motor to a microcontroller in a way that allows the controller to not only tum on and off’
the motor but also to set the direction in which the motor runs when it is on, is given below.

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 13

EdSim51 - Notes on the 8051 Page 14 of 15

Y N
111 LI

The circuit is made up of a bridge. If both sides of the motor are at the same voltage the motor is off. So, if T1 and T3 are on, both
sides of the motor are connected to 12 V and the motor is off. If T2 and T4 are on both sides of the motor are connected to ground
and, again, the motor is off.

If T1 and T4 are on then the left side of the motor is at 12 V and the right side is at ground, therefore the motor runs in one
direction. We will call this forward.

If T3 and T2 are on then the left side of the motor is at ground and the right side is at 12 V, therefore the motor runs in the opposite
direction; ie, reverse.

The circuit is designed so that T1 and T2 cannot be on at the same time and T3 and T4 cannot be on at the same time. This is very
important; if T1 and T2 were on at the same time there would be a short circuit between 12 V and ground and the transistors would
burn out. The same is true for T3 and T4.

The truth table for the circuit with its two inputs, 4 and B, is given below.

[la B [Motor
|fo 0 off
0 1(5V) Ireverse
1(5V) 0 |[forward
1(5V) 1(5V) Jlotr
An explanation of the four entries in the table is given below:
e Entry 1:

o With A at 0 (ie; ground) TS5 is on which turns on T2; left side of motor is at ground. A at 0 also means T6 is off. Since
there is no path for current through R3 and R4 there is no voltage drop across them which in turn means the base of T1
is at 12V, hence it is off.

o The right-hand side of the circuit is a mirror image of the left, therefore with B at 0, T4 is on and T3 is off - hence the
right side of the motor is also at ground; the motor is off.

e Entry 2:

o Ais still at 0 which means T1 is still off and T2 is still on; the left side of the motor is at ground.

o With B at 5V (ie: logic 1 on the port pin which is being used for B) T7 is off which means T4 is off. But T8 is on
which generates a path for current through T8 to ground and also through R9 to the base of T3. There is a certain
amount of voltage dropped across R9, but the base of T3 is close enough to ground for T3 to turn on; the right side of
the motorisat 12 V.

o The motor is therefore on and we stated above that ground on the left of the motor and 12 V on the right would be
called reverse.

e Entry 3:

o This is the mirror image of entry 2, resulting in T1 on, T2 off, T3 off and T4 on: hence the left side of the motor is at 12

V and the right side is at ground - the motor runs forward.
o Entry 4:

o Asinentry 3, with A at 5 V the left side of the motorisat 12V,

o As in entry 2, with B at 5 V the right side of the motor is at 12 V.

o Therefore the motor is off.

http://www.edsim5 1.com/805 1 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 14

EdSim51 - Notes on the 8051 Page 15 of 15

<-Previous List of Contents Next->

Copyright (c) 2005-2006 James Rogers

http://www.edsim51.com/8051 Notes/interfacing.html 2/21/2010

Unfiled Notes Page 15

