

 www.cypress.com Document No. 001-60024 Rev. *J 1

AN60024

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5
Author: Mark Ainsworth
Associated Project: Yes

Associated Part Family: All PSoC® 3 and PSoC 5 parts
Software Version: PSoC Creator™ 1.0 and higher

Related Application Notes: None

If you have a question, or need help with this application note, contact the author at
mkea@cypress.com

Abstract
AN60024 introduces the concepts of switch debouncing and glitch filtering for digital input signals, and shows how to
create several debounce and filter projects for PSoC® 3 and PSoC 5, using PSoC Creator™.

CapSense® and TrueTouch™ notwithstanding, many
products still have mechanical buttons or switches. When
a switch is pressed or released, its output can oscillate
rapidly for a brief period, as shown in Figure 1. These
oscillations can cause other parts of the system (such as
the CPU) to falsely detect multiple press and release
events, possibly leading to erratic and unexpected system
behavior. Imagine for example what might happen if the
switch was a ‘Speed Up’ button on a treadmill.

Figure 1. Scope Shot Showing Switch Bounce on
Transition from Low to High Voltage

Filtering out these oscillations is known as switch
debouncing. Switch debouncing can be done with a simple
RC filter on the switch, but why pay for extra components

when PSoC 3 or PSoC 5 devices can do the job easily
and in many ways, using minimal device resources? And,
an RC filter is fixed, while PSoC 3 or PSoC 5 devices can
easily and dynamically adapt the characteristics of a
switch debouncer to different switch or button
characteristics.

This application note shows several ways to do switch
debouncing in PSoC 3 or PSoC 5, using hardware,
software, or both. Glitch filtering, which is very similar to
switch debouncing, is also demonstrated.

Several PSoC Creator design projects are attached to this
application note to illustrate the different methods. Some
of the designs are included as components in a PSoC
Creator library project, for easy reuse. For more
information on how to create and use library projects, see
PSoC Creator help articles "Library Component Project"
and "Basic Hierarchical Design Tutorial".

Pin Setup
Before we get into switch debouncing, let us briefly look at
how best to connect a switch or button to a PSoC 3 or
PSoC 5 pin. A button, for example those used on the
CY8CKIT-001 PSoC Development Kit board, typically
shorts to ground when pressed and opens when released.
Therefore, a pull-up resistor to a voltage level is usually
required at the pin. Using PSoC Creator, a Pin component
can be configured to provide that pull-up, as shown in
Figure 2, Figure 3, and Figure 4 on page 2.

http://www.cypress.com/
mailto:mkea@cypress.com

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 2

Figure 2. Block Diagram of a Switch Shorting an Input Pin
to Ground

Vddio PSoC 3/5

Figure 3. Type Configuration for an Input Pin Component

For this setup, the Digital Input box must be checked; the
HW Connection box may or may not be checked
depending on the circuit used. To enable the pin’s internal
pull-up resistor, go to the General tab and set the
configuration as shown in Figure 4.

Figure 4. Configuration for an Input Pin Component

Set the Drive Mode to Resistive Pull Up, and the Initial
State to High (1), to enable the pull-up resistor. The drive
mode and state value are usually left unchanged after
initialization.

Reading the pin value gives a logic ‘0’ when the switch is
pressed, and a logic ‘1’ when released, which in most
cases is acceptable. If you want the polarity reversed,
either do the inversion in software, or in hardware just add
an inverter as shown in Figure 5.

Figure 5. Schematic of an Input Pin with a Hardware
Connection to an Inverter

A Switch Bounce Sensitive Design
The design shown in Figure 6 demonstrates a poor
design—it is overly sensitive to switch bounce.

Figure 6. Schematic Showing a Design that is Overly
Sensitive to Switch Bounce

The positive and negative edges from the input pin are
captured by two digital flip flops (DFF) and trigger an
interrupt. Code 1 shows how to handle the interrupt—the
interrupt handler code simply resets the DFFs and
increments a global ‘count’ variable. The background loop
in main() continually displays the value of ‘count’ on the
LCD display.

The display should increment with each button press and
button release. However if you run the attached project
‘A_DebounceNone’ you will see that the display
sometimes increments several times on a single button
press or release. The reason becomes apparent if you
connect a scope to both the input switch pin and the
interrupt test pin; see Figure 7:

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 3

Figure 7. Scope Shot Showing Switch Bounce and
Interrupt Response

The system is running at high speed; the project is
configured to run at a top speed bus clock. This allows
each interrupt to be processed in a very short time relative

to the transitions rate, and thus every edge is detected
and processed. (If you look closely at Figure 7, you can
see that even the very narrow first pulse generates two
interrupts.)

To resolve this problem, you must use a switch
debouncing technique. The remainder of this application
note shows various ways to do so.

Note that in PSoC 3 and PSoC 5, the input pins are
capable of directly generating an edge-triggered interrupt
through the port interrupt control unit (PICU). However, the
PICU cannot be used in this application because the
interrupts occur on pin transition edges and not at regular
sample intervals. Thus, a PICU-based design is subject to
the same switch bounce problems noted in Figure 6 on
page 2.

Using the PICU, pin transitions can wake up the PSoC 3
from a sleep or hibernate mode. In this case, you can
create a design in which a debounce operation is
suspended when entering a low-power mode and
restarted after wakeup. For more information on PSoC 3
sleep and hibernate modes, see AN66083.

Code 1. Interrupt-based Response to Input Pin Transitions

uint8 count; /* # of transitions of input pin ‘SW’ */

CY_ISR(SwInt_ISR)
{
 /* Clear interrupt source. PSoC 3 interrupt handlers should not call
 * functions, so access the register directly.
 */
 SwReset_Control = 1;
 SwReset_Control = 0;

 count++;
} /* end of SwInt_ISR() */

void main()
{
 uint8 temp; /* local copy of count variable */

 /* Initialization code */
 . . .

 for(;;) /* do forever */
 {
 /* Grab a copy of the shared count variable, and display the copy.
 * This ensures the interrupt handler will not change the count
 * variable while it is being displayed.
 */
 CYGlobalIntDisable /* macro */
 temp = count;
 CYGlobalIntEnable /* macro */
 LCD_Position(0, 8); /* row, column */
 LCD_PrintHexUint8(temp);
 }
} /* end of main() */

Input
switch pin Interrupt

test pin

http://www.cypress.com/
http://www.cypress.com/?rID=48621

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 4

Switch Debouncing by Sampling
There are many different ways to do switch debouncing,
but all of them involve sampling the input pin at a periodic
rate.

The sample period is set by the anticipated transition time
of the signal, that is, the time it takes for the signal to
stabilize at the new state when the switch is opened or
closed. During the transition time the state of the signal is
essentially unknown—at any time during that period it
could be either 0 or 1. You should not sample more than
once during that period or you may detect an extra
transition. So the maximum sample rate is just the inverse
of the maximum transition period, and do not forget that
you may need to check both the low-to-high and high-to-
low transition periods.

Note that you might still sample a pulse during the
transition period and thus detect it early as the actual
transition; see the Glitch Filtering section on page 8 for
more information.

The example in Figure 8 shows that the transition from
pressed to released takes ~300 μs, so in that case the
maximum sampling rate should be 1 / 300 μs, or 3.3 k
samples per second (sps).

In practice, you should set the sample rate to be much
lower than the expected transition period, but fast enough
that the system is responsive when the switch is opened
or closed. A rate of 10 to 200 sps is usually appropriate.

Figure 8. Scope Shot Showing Switch Transition Time

Switch Debouncing Using Software
The simplest way to sample a switch is to poll the input
pin, that is, program the CPU to read the pin’s input value
at regular time intervals. In Code 2, the pin is sampled at
an interval that is controlled by the CyDelay() function
provided by PSoC Creator.

The easiest way to detect a transition on the input is to
use two variables, for current and previous values of the
pin, and compare them for transition events.

The example in Code 2 just monitors one pin (in bit 0), so
the members of the ‘switches’ array are compared in their
entirety, assuming that bits 1 to 7 are always zero. If you
need to monitor multiple pins then you can either:

 use a separate pair of variables for each pin, or

 use a single pair of variables, with a bit defined for
each pin

There are tradeoffs in code size, execution speed, and
RAM memory usage, for each method.

With PSoC 3 or PSoC 5 you can monitor a pin in software
as well as in hardware, at the same time. The attached
project ‘B_DebounceSwPoll’ contains some code added to
project ‘A_DebounceNone’; to show both raw (unfiltered)
and filtered counts.

Transition period

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 5

Code 2. Periodic Sampling of an Input Pin

void main()
{
 uint8 filtered_count = 0; /* # of filtered transitions of input pin 'SW' */

 /* Init switch variables */
 uint8 switches[2]; /* [0] = current, [1] = previous */
 switches[0] = switches[1] = SW_Read(); /* 0 = pressed, 1 = not pressed */

 /* Init display */
 LCD_Start();
 LCD_Position(1, 0); /* row, column */
 LCD_PrintString("Filt. Count = ");

 for(;;) /* do forever */
 {
 /* Periodically sample the input pin, and display the filtered count */
 CyDelay(50); /* msec */

 /* Update the current and previous switch read values */
 switches[1] = switches[0];
 switches[0] = SW_Read();

 /* Increment counter if a switch transitions either way */
 if (switches[0] != switches[1])
 {
 filtered_count++;
 }

 /* Display the current value in filtered count variable */
 LCD_Position(0, 14); /* row, column */
 LCD_PrintHexUint8(filtered_count);
 }
} /* end of main() */

In code that must do many tasks it may be difficult to poll a
pin at regular time intervals. In that case an alternative is
to sample by using a periodic interrupt. The easiest way to
do this is to connect a clock component directly to a
sample interrupt component, as Figure 9 shows. The
interrupt component ‘SampInt’ must be set as a rising
edge triggered interrupt, so that the interrupt is triggered
only once per clock period—see Figure 10.

Figure 9. Components for Periodic Interrupts

Figure 10. SampInt Configuration

In this design, as Code 3 shows, the sample interrupt
handler does the sampling and edge detection. This
makes the main() function much simpler. The attached
project ‘C_DebounceSwInt’ contains similar code, to show
both raw (unfiltered) and filtered counts.

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 6

Code 3. Interrupt-based Sampling of an Input Pin

uint8 filtered_count; /* # of filtered transitions of input pin 'SW' */

CY_ISR(SampInt_ISR)
{
 static uint8 init = 0;
 static uint8 switches[2]; /* [0] = current, [1] = previous */
 uint8 temp;

 /* interrupting from clock, no interrupt source to clear */

 /* Read the state of the 'SW' pin without calling a function */
 temp = ((SW_PS & SW_MASK) >> SW_SHIFT);

 /* Switch variable initialization should be done only once, the first
 * time this function is called.
 */
 if (!init)
 {
 init = 1;
 switches[0] = switches[1] = temp;
 }
 else
 { /* Set semaphore if a switch transitions either way. */
 switches[1] = switches[0];
 switches[0] = temp;
 if (switches[0] != switches[1])
 {
 filtered_count++;
 }
 }
} /* end of SampInt_ISR */

void main()
{
 uint8 temp; /* local copy of shared count variable */

 /* Initialization code */
 . . .

 for(;;)/* do forever */
 {
 /* Grab a copy of the shared filtered count variable, and display the
 * copy. This is so that the interrupt handler won't change the count
 * variable while it's being displayed.
 */
 CYGlobalIntDisable /* macro */
 temp = filtered_count;
 CYGlobalIntEnable /* macro */
 LCD_Position(1, 14); /* row, column */
 LCD_PrintHexUint8(temp);
 }
} /* end of main() */

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 7

Switch Debouncing Using Hardware
PSoC 3 or PSoC 5 makes it easy to do switch debouncing
in hardware instead of software, which can reduce usage
of the CPU. The easiest way to do this is to poll with a
clock and a status register, as Figure 11 shows.

Figure 11. Schematic of a Design with Register-based
Switch Debouncing

The code for this design is the same as in Code 2 except
that you read from PinReg_Status instead of SW_Read(),

and the CyDelay() function is removed. See attached
project ‘D_DebounceHwReg’.

You can further de-burden the CPU by moving both the
input pin polling and comparison functions into hardware,
as Figure 12 shows. The hardware design detects and
reports transitions on the input pin.

In the design, the clk input is used to sample the switch
input ‘d’. As noted previously, a clock frequency of 10 to
200 samples per second is usually appropriate.

The first DFF is used to sample the switch input. The
second DFF stores the previous sample, and the lookup
table (LUT) component does edge detection by comparing
the two samples. Note that the delay from an input
transition to an edge detect at one of the LUT outputs is
one period of clk.

Figure 12. Debouncer Component Schematic

For easy reuse, this design is encapsulated as a
component in a PSoC Creator library. The component
symbol is shown in Figure 13.

Figure 13. Debouncer Component Symbol

A design using the component is shown in Figure 14. As
shown previously in Figure 10 on page 5, make sure that

the interrupt component is configured for RISING_EDGE
mode.

Figure 14. Design Using a Debouncer Component

Note that the output of the Debouncer is reset to ‘0’ at
device reset, and the input switch is read as ‘1’ when it is
open, which is the typical case. This results in a single
false release event at initialization. An inverter on the input
pin eliminates this problem.

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 8

This design also includes a status register component, so
that the CPU can read the type of edge that caused the
interrupt. The Status Reg component is configured for
“sticky 1” mode. In this mode, when a bit is set to ‘1’ it
stays that way until the register is read by the CPU or
DMA, at which point it is reset to ‘0’.

Most of the debounce functions are now performed in
hardware instead of software, so the interrupt handler is

simplified; see Code 4. The code in main() remains
unchanged except for some initialization.

It is not necessary to connect an output terminal to an
Interrupt component. Depending on the application, you
can connect it to other digital logic or to a DMA channel.
Also, multiple instances of the component can be easily
added to support multiple pins.

Code 4. Interrupt-based Response to Hardware Debouncer Component

uint8 filtered_count; /* # of filtered transitions of input pin 'SW' */

CY_ISR(FiltInt_ISR)
{
 /* No need to clear any interrupt source; interrupt component should be
 * configured for RISING_EDGE mode.
 */
 /* Read the debouncer status reg just to clear it, no need to check its
 * contents in this application.
 */
 FiltReg_Status;

 filtered_count++;
} /* end of FiltInt_ISR() */

Glitch Filtering
Glitch filtering is similar to switch debouncing but supports
a slightly different application. In switch debouncing, you
filter out all edges except the single one that you want. In
glitch filtering, you remove unwanted pulses from a signal.

Note that glitches are not necessarily associated with
switches; they can occur on lines carrying signals from
other sources such as RF receivers. Electrical or in some
cases even mechanical interference can trigger an
unwanted glitch pulse from a receiver.

The switch debouncing methods shown previously
“mostly” work for glitch filtering but never 100 percent,
because you might sample just when a glitch is occurring.
Instead, the glitch filter algorithm outputs a ‘1’ only when
the current and previous N samples are ‘1’, and a ‘0’ only
when the current and previous N samples are ‘0’.
Otherwise, the output is unchanged from its current value.

If N = 1 then the time between two successive samples
must be greater than the maximum pulse width that can
be filtered (MaxPW). It then follows that, since it will take
at least two samples for the output to change, the
response time, or filter delay, is between 1 and 2 sample
periods. See Figure 15.

Figure 15. Glitch Filter Performance for N = 1

The response time can also be expressed in terms of the
MaxPW. In the case for N = 1, since the sample period
can be as low as the maximum filtered pulse width, the
response time can range from 1 to 2 times the MaxPW.

You can use larger values of N to get more deterministic
and possibly shorter response times. For example, if N = 2
then the response time is between 2 and 3 sample
periods. But the sample period can be shorter—the
MaxPW must be less than 2 sample periods—and then
the response time can be expressed as 1 to 1.5 times the
MaxPW. See Figure 16.

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 9

Figure 16. Glitch Filter Performance for N = 2

If N = 3 then the response time can range from 1 to 1.333
times the MaxPW, and so on. The general response time
equations are:

Equation 1. Glitch Filter Response Time

()

MaxPWtimeresponseMaxPW

MaxPW
 PS

SP timeresponseSP

 +<<

+
>

+<<⋅

N
1

1

N

1 N

1N

where SP = sample period, and MaxPW = maximum
filtered pulse width.

Most glitch filters are designed with N = 1, 2, or 3. Note
that in a hardware-based design, larger values of N
require more resources to implement.

Figure 17 shows a schematic for a hardware-based design
where N = 2. For easy reuse, the design is encapsulated
as a component in a PSoC Creator library, and as a
Concept component in PSoC Creator 2.0 or higher. The
component symbol is shown in Figure 18.

Figure 17. Glitch Filter Component Schematic, Where N = 2

Figure 18. Glitch Filter Component Symbol

Although a switch debouncer is not a 100 percent effective
glitch filter, a glitch filter can be an effective switch
debouncer. However, glitch filters may be overkill for a
basic switch debouncing application, in terms of resource
use.

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 10

Summary
We can now come full circle back to the original design
shown in Figure 6 on page 2, except that we add a Glitch
Filter component between the pin and the DFFs, as shown
in Figure 19. The design is now no longer sensitive to
switch bounce.

Figure 19. Design from Figure 6 with a Glitch Filter Added

Similar to Figure 14, an inverter is added to eliminate the
initial false reset event. Because the DFFs in the
GlitchFilter component are reset to ‘0’ at device reset, the
reset input is not always needed and in this case is just
connected to a Logic Low ‘0’ component.

Switch debouncing and glitch filtering are an essential part
of processing digital input signals. This application note
has shown several ways to implement them, using various
combinations of hardware and software. The hardware-
based designs are included as components in PSoC
Creator library projects. For more information on how to
create and use library projects, see PSoC Creator help
articles "Library Component Project" and "Basic
Hierarchical Design Tutorial".

There are many opportunities to optimize these designs
for specific applications. For example, all of the designs
capture both positive and negative edges. If you are only
interested in one edge, then a design can be simplified in
hardware or software. Also, to support multiple digital
inputs you can scale the design either by using multiple
bits in a register or variable or by using multiple instances
of the Debouncer or GlitchFilter component.

Design Projects
The projects attached to this application note are
organized as shown in Table 1 and Table 2.

Table 1. PSoC Creator Debounce Projects

Design Project
Name Description

A_DebounceNone
Demonstrates extra counts recorded in
the absence of switch debouncing -
how NOT to do the design.

B_DebounceSwPoll
Demonstrates switch debouncing by
software sampling of an input pin at
periodic intervals.

C_DebounceSwInt
Demonstrates switch debouncing using
an interrupt driven by a low frequency
clock.

D_DebounceHwReg
Demonstrates switch debouncing by
connecting the input pin to a status
register with a low frequency clock.

E_DebounceHw Test / demonstration project for the
Debouncer component. See Table 2.

F_GlitchFilter Test / demonstration project for the
GlitchFilter component. See Table 2.

Table 2. Contents of the DebounceLib Folder

Library Project
Name Description

Debouncer Debouncer hardware design

GlitchFilter
Glitch filter hardware design. Also
available as a Concept Component in
PSoC Creator 2.0.

About the Author
Name: Mark Ainsworth

Title: Applications Engineer Principal

Background: Mark Ainsworth has a BS in Computer
Engineering from Syracuse University
and a MSEE from University of
Washington.

Contact: mkea@cypress.com

http://www.cypress.com/
mailto:mkea@cypress.com

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 11

Document History
Document Title: Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5 – AN60024

Document Number: 001-60024

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2895472 FSU 03/18/2010 New application note

*A 2901010 FSU 03/31/2010 Attached associated project to the application note

*B 2991584 SRIH 07/22/2010 Fixed branding discrepancies

*C 3010675 XKJ 08/18/2010 Updated projects to Beta 5

*D 3068548 KLMZ 10/22/2010 Updated D_DebounceSwInt project and the corresponding content in the
application note to use an edge triggered interrupt instead of a control register.

*E 3137066 MKEA 01/13/2011 Updated project files to work with PSoC Creator 1.0 FCS

*F 3370231 MKEA 09/14/2011 Expanded content and improved project based on customer feedback

*G 3393004 MKEA 10/12/2011 Project file renamed properly and attached

*H 3432788 MKEA 11/08/2011 Updated template and project file

*I 3441058 MKEA 12/16/2011 Simplified Debouncer component

*J 3538104 MKEA 02/29/2012 Added references for more information on PSoC Creator library projects and
updated template

http://www.cypress.com/

Switch Debouncer and Glitch Filter with PSoC® 3 and PSoC 5

 www.cypress.com Document No. 001-60024 Rev. *J 12

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community
Community | Forums | Blogs | Video | Training

PSoC and CapSense are registered trademarks of Cypress Semiconductor Corp. TrueTouch, Programmable System-on-Chip, and PSoC
Creator is trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2010-2012. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

http://www.cypress.com/
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=2308
http://www.cypress.com/?id=2308
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=1162
http://www.cypress.com/
http://www.cypress.com/go/locations

	Abstract
	Pin Setup
	A Switch Bounce Sensitive Design
	Switch Debouncing by Sampling
	Switch Debouncing Using Software
	Switch Debouncing Using Hardware
	Glitch Filtering
	Summary
	Design Projects
	About the Author
	Document History
	Products
	PSoC® Solutions

