This project was submitted by @jason.altice in the PSoC 6 and Wi-Fi/Bluetooth Change the Planet with PSoC® IoT Design on Hackaday.io and was one of the runner ups!
Project Technology Focuses
Project Requirements
Project Description
Meditation is an extremely effective method to reduce stress – it is no wonder that IoT capabilities have already started to make their way into devices that enable meditation in a number of ways. This project implemented a guided mediation IoT device enabling “Singing Bowl Therapy”. The sound reverberating form a spinning bowl can be healing to both the mind and body. PSoC 6 and Wi-Fi were used to add intelligence to this almost ancient method of meditation. PSoC 6 drove the motor to spin the bowl, and Wi-Fi was used to connect to AWS IoT Core to store “tracks” – providing the user the ability to set the type of meditative song played, how long it played for, set a track to loop etc. On-board the PSoC 6 WiFi-BT Pioneer Kit used in this project is CapSense® capacitive-sensing buttons/sliders allowing the user to manipulate the track being played in different ways – start, slow, switch, etc.
Project Links
Resource List
Hardware:
Software:
AWS IoT Technical Resources
Show Less
This project was submitted by @balearicdynamics in the PSoC 6 and Wi-Fi/Bluetooth Change the Planet with PSoC® IoT Design on Hackaday.io and was one of the runner-ups!
Project Technology Focuses
Project Requirements
Project Description
This project added the edge processing and connectivity capabilities of combining PSoC 6 and Wi-Fi to a NanoDrone project. This project is actually a great example of how IoT technologies (like the combination of our MCUs, Wireless, and Software) can add exciting innovation to current embedded projects. Essentially the developer here created a connected “Ground Control Unit” for his drone. The PSoC 6 WiFi-BT Pioneer Kit interfaced with an Arduino LoRaWAN Dev Kit which is receiving locational and environmental data from the NanoDrone. This data is shared with the PSoC 6 MCU through a wired connection, processed, and then sent to AWS IoT Core as well as an AWS IoT SiteWise Portal to categorize, monitor, and visually represent the data provided by the NanaDrone prototype system.
Project Links
Resource List
Hardware:
Software:
AWS IoT Technical Resources
This project was submitted by @zst123 in the PSoC 6 and Wi-Fi/Bluetooth Change the Planet with PSoC® IoT Design on Hackaday.io and was the winner!
Project Technology Focuses
Project Requirements
Project Description
This project implemented an IoT Food Monitoring system powered by PSoC 6 MCUs and Wi-Fi along with AWS Cloud Services. A RFID module was interfaced with the PSoC 6 WiFi-BT Pioneer Kit and scanned grocery item barcodes in an enclosure to get different types of data such as item name, expiration date, etc. PSoC 6 drives the TFT Display Shield to display this grocery/food item data and latest status. On-board Wi-Fi pushes the food monitoring data to AWS IoT Core via MQTT, it is stored in a database via AWS DynamoDB and pulled to a mobile app hosted on AWS S3 that would display current the latest information on food availability, temperature, nutrition info for a specific item, etc.
Project Links
Resource List
Hardware:
Software:
AWS IoT Technical Resources
Show Less
This project was created by an extremely talented Cypress Employee: Alan Hawse (@iotexpert) who is the Sr. VP of Solutions and Software at Cypress.
Project Technology Focuses
Project Requirements
Hardware
Software
Project Description
This project is one of the lessons within an online Virtual Workshop hosted by Cypress and Mouser titled: IoT Design with Cypress PSoC® 6 MCUs and Wi-Fi/Bluetooth using Arm® Mbed™. This project particularly intends to create a small Smart Thermostat prototype – leveraging the PSoC 6 WiFi-BT Pioneer Kit. An ADI temperature sensor is connected to the kit with temperature data processed on PSoC 6. That data is then transmitted to AWS IoT Cloud and also displayed on the TFT Display Shield that comes with the Pioneer Kit. Temperatuer is recorded along with a set point, current time, and thermostat “mode” (Warm, Cool, etc).
Project Links
Resource List
This project was created by an extremely talented Cypress Employee: Holger Wech who is a Sr. Staff Applications Engineer in the Internet, Compute & Wireless Business Unit (ICW).
Project Technology Focuses
Project Requirements
Project Description
This project showcases how PSoC 6 is an ideal host MCU for not only Wi-Fi or Bluetooth applications, but also LPWAN connectivity technologies such as NB-IoT. NB-IoT is a low-power, wide area network suited for high-volume, low-power nodes that may be in areas with challenging radio environments. The PSoC 6 MCU Dev Kit was connected to the Digi NB-IoT Xbee Module through a SparkFun Arduino à Xbee transposer board. The PSoC 6 MCU Dev Kit also hosts an environmental sensor shield from SparkFun. Temperature, relative humidity and barometric pressure is processed on PSoC 6, then sent to Deutsche Telekom's Cloud of Things (CoT). A CoT online dashboard is also created which visualizes the sensor data over time.
Project Links
Resource List
I have bunch of these CYBT-213043-MESH boards which I usually program with ModusToolBox. Although these board are primarily intended for Bluetooth Mesh applications (with ModusToolbox), I wanted to see if I can use these for BLE based sensing with Atmosphere IoT. This platform enables all in one firmware, mobile app and cloud dashboard development.
Voila, these unofficial boards (not officially supported yet by Atmosphere IoT) are programmable as officially supported board CYW920819evb-02, since both of these have the same/similar silicon https://testmyspeed.onl/ https://essaywriter.fun/ BLE chip onboard ! Also Atmosphere IoT and Cypress Semi are business buddies !
What worked so far :
Programming, BLE App, Cloud Monitoring Works (same as CYW920819evb-02,)
Onboard RGB LED’s Green & Blue LEDs Work (WICED_P03 & WICED_P04 as GPIO)
Breakout pins WICED_P12 and WICED_P13 works as ADC
What does not work so far :
RED LED and User Switch on pin WICED_P06 and WICED_P26 does not work
On Board Ambient Light Sensor on I2C pins does not work
On Board Thermistor Temperature sensor does not work, but I rerouted the thermistor
and connected to WICED_P12 and WICED_P13, and it worked (see schematic Below)
This is how the custom app looks like: (ya, I grabbed few pictures from here and there to fill the app background)
If you don’t want to destroy traces on the board, you can use generic 10k thermistor instead, which gives reading with in +/- 0.5 C of NCP15XV103
Show LessThis project was submitted by @saicheong in the PSoC 6 and Wi-Fi/Bluetooth Connected Cloud Challenge on Element14 and was one of the winners!
Project Technology Focuses
Project Requirements
Hardware
Software
Project Description
This project implemented a smart, cloud-connected, ML driven Mailbox for the home. This project leveraged essentially all of the components on the PSoC 6 WiFi-BT Pioneer Kit: PSoC 6 of course to process motion sensor data and drive the TFT display, alerting that people are at the Mailbox, on-board Wi-Fi/Bluetooth radio to transmit to an iOS mobile app via BLE as well as send data to AWS IoT Core to then interface with other AWS Cloud and Amazon services such as Kinesis, S3, Lambda Functions, etc – and the on-board F-RAM was used for data-logging as well. A ML model was also built up using TensorFlow and Amazon SageMaker Studio to detect if and what type of dog is at the Smart Mailbox.
Project Links
Resource List
Hardware:
Software:
AWS IoT Technical Resources
This project was submitted by @Jeromedominic in the PSoC 6 and Wi-Fi/Bluetooth Connected Cloud Challenge on Element14.
Project Technology Focuses
Project Requirements
Hardware
Software
Project Description
This project recognized the benefits that IoT devices can have on an aging population that needs to take multiple different types of medication throughout the day – which can be incredibly confusing and deserves some automation. This Smart Pill Dispenser project create an Alexa skill that when initiated, dispensed a particular pill with a small Servo Motor driven by PSoC 6. PSoC 6 in this project also drives a graphical display that displays which pills have been provided to the patient during the day so far.
Project Links
Resource List
Hardware:
Software:
AWS IoT Technical Resources
This project was submitted by @Cmelement14 in the PSoC 6 and Wi-Fi/Bluetooth Connected Cloud Challenge on Element14.
Project Technology Focuses
Project Requirements
Hardware
Software
Project Description
This project implemented a Smart backup Sump Pump – essentially a device to remotely monitor water level in a basement. This project leveraged the PSoC 6 WiFi-BT Pioneer Kit to monitor Floor Water Sensors, and then transmit that data to AWS IoT Core where a text messaging system was setup to alert the user of water level getting to a certain level.
Project Links
Resource List
Hardware:
Software:
AWS IoT Technical Resources
This project was submitted by @Sami9974 in the PSoC 6 and Wi-Fi/Bluetooth Connected Cloud Challenge on Element14.
Project Technology Focuses
Project Requirements
Hardware
Software
Project Description
This project implemented an IoT Billboard system – where users could “rent” an IoT Billboard through a website that the project creator built. That website interacts with a database based on PostgreSQL that stores user details, billboard images, payment details, and more. AWS IoT Core also interacted with this database and pulled these images that users were renting out. The PSoC 6 WiFi-BT Pioneer Kit would poll AWS IoT and pull down the images over MQTT, and displays the images for a certain amount of time on the TFT Display Shield that comes with the Pioneer Kit using the LCD BitMap converter for emWin.
Project Links
Resource List
Hardware:
Software:
AWS IoT Technical Resources