PSoC 5 open drain output

Tip / Sign in to post questions, reply, level up, and achieve exciting badges. Know more

cross mob
Anonymous
Not applicable

 dear develpers,

   

can anyone give me the value of the resistance offered by an open drain output in PSoC 5 when is in in high impeadance state.

0 Likes
19 Replies
HeLi_263931
Level 8
Level 8
100 solutions authored 50 solutions authored 25 solutions authored

The data sheet does not explicitely tell that number. The best I can come up with is the input current into the inputs. For a normal GPIO, this is 2 nA. For a SIO inputs its 14nA, or 10µA when the input voltage is greater than Vddsio. From these numbers you can calculate the resistance (they are specified with a 3V input voltage).

0 Likes
Anonymous
Not applicable

Dear Rli ,

   

What is an SIO input. Please clarify whether it is same as an open drain input

0 Likes
HeLi_263931
Level 8
Level 8
100 solutions authored 50 solutions authored 25 solutions authored

SIO is a special kind of input pin. It allows for some special features to be enabled (e.g. higher output drive, ability to handle input voltages higher than supply voltage). Both normal and SIO pins can be set to open drain.

   

Maybe I suggest you read the PSOC5LP data sheet, and the architecture reference manual (TRM) for the PSoC5LP, there all the details about the different pin types is explained.

0 Likes
Anonymous
Not applicable

 dear hli ,

   

          Thanks for the clarification. so can I take the resistance in the high impeadance state to be 3V/10nA. = 300 Meg ohms?

0 Likes
ETRO_SSN583
Level 9
Level 9
250 likes received 100 sign-ins 5 likes given

The 2 nA is room temp only, max, and not production tested.

   

 

   

Impedances like this, 10's of megohms and higher, are very subject to

   

board layout, contaminants, surface treatment........Then you have AC issues,

   

eg C coupling to pins in Hi Z state........

   

 

   

If you describe further what you need for loading, circuit issues, etc..,  maybe we can help you further.

   

 

   

Regards, Dana.

0 Likes
lock attach
Attachments are accessible only for community members.
ETRO_SSN583
Level 9
Level 9
250 likes received 100 sign-ins 5 likes given

Some useful references, attached.

   

 

   

Regards, Dana.

0 Likes
HeLi_263931
Level 8
Level 8
100 solutions authored 50 solutions authored 25 solutions authored

But the 2nA figure is still true for the PSoC. Its independent of what you are doing with the board 8and yes, getting to below 2nA leakage current there will be tricky).

0 Likes
ETRO_SSN583
Level 9
Level 9
250 likes received 100 sign-ins 5 likes given

The 2 nA is a max value at room temp, not tested in production. But

   

that leakage is only part of the problem trying to achieve these levels

   

of Z in a design. Taken in isolation the leakages of PSOC only part

   

of the design issues. Routing and attached parts and temp a big

   

factor in Hi Z designs. Everything is important.

   

 

   

Regards, Dana.

0 Likes
Anonymous
Not applicable

 friends,

   

                I did the following test with the PSoC pin in open drain pull down mode. 

   

First I put the open drain pin in high impeadance mode then I used an external current source to input a constant current.

   

I sourced a current of 10 nano amperes into the pin.

   

I measured the voltage developed on that pin. The measured voltage was exactly 1 V with respect to VSSA/GND.

   

So from these observations I conclude that the channel resistance offered by an open drain pin in the high impeadance mode is around 10 Megohms.

   

Please provide comments, corrections / suggestions if any

0 Likes
Anonymous
Not applicable

Have you consider the impedance of your measuring equipment. For such a high impedance situation, the measuring tools impedance would affect the reading. 

0 Likes
ETRO_SSN583
Level 9
Level 9
250 likes received 100 sign-ins 5 likes given

You have to be careful here as measurement of high Z generally means

   

you use a DVM with line filter rejection capabilities. Also could you have

   

been measuring the complient limit of your current source ?

   

 

   

In so far as what you measure, the leakage on a pin, is a f( T, contaimanents,

   

second order V effects....) and is not production tested (due to settling time

   

to take a measurement hence test time). It is a combination of layout leakage,

   

diode leakage, MOSFET leakage, ESD protection circuits......

   

 

   

So if you truly need very high Z guarenteed you may have to do that off chip with guards.

   

 

   

What is driving your need for the hi Z, target for Z.....?

   

 

   

Regards, Dana.

0 Likes
Anonymous
Not applicable

 dana, 

   

         I want to use the High Z for holding charges on a capacitor. Whenever I want to discharge the capacitor I would pull down the capacitor terminal to ground.

0 Likes
HeLi_263931
Level 8
Level 8
100 solutions authored 50 solutions authored 25 solutions authored

So you need something like the Sample&Hold-Component available in Creator?

   

What capacitance are we talking about, and how long should it hold its charge? Are you sure the self-discharge current of the capacitor is lower than the PSoC leakage current?

0 Likes
ETRO_SSN583
Level 9
Level 9
250 likes received 100 sign-ins 5 likes given

As HLI points out you have to answer for your design several questions -

   

1) Storage time

   

2) Acquistion time

   

3) Accuracy

   

4) Resolution

   

5) Droop

   

 

   

Of course you can always do this digitally, measure the pin voltage with DelSig, and store it in EEPROM

   

almost indefinitely with no concerns for temp, capacitor quality, aging, ancillary leakages......You can reporduce the

   

voltage with VDAC or if more resolution needed PWM followed by LPF.

   

 

   

Until we know more about goals, what you are trying to accomplish, we cannot assist you furthur.

   

 

   

Regards, Dana.

0 Likes
ETRO_SSN583
Level 9
Level 9
250 likes received 100 sign-ins 5 likes given

Yoiu might find this useful -

   

 

   

    

   

          

   

http://www.datasheetarchive.com/files/national/htm/nsc03883.htm     Bob Pease

   

 

   

Also google "samplke hold design", many hits, analoig devices, TI.........

   

   

 

   

Regards, Dana.

0 Likes
Anonymous
Not applicable

 Dear danaa & Hli ,

   

I just want to hold a voltage of say around 200mV on the capacitor(2 pico faarads, so femto coulombs of charge) for around 10 micro seconds. We can fairly assume the leakage of the capacitor to be zero amps. just the value of the pin resistance in the worst case including all non idealities would suffice for my requirement.

0 Likes
HeLi_263931
Level 8
Level 8
100 solutions authored 50 solutions authored 25 solutions authored

So you can use the Sample&Hold component in Creator: http://www.cypress.com/?rID=56758

0 Likes
HeLi_263931
Level 8
Level 8
100 solutions authored 50 solutions authored 25 solutions authored

The problem with the 'non-idealities' is that there are so many of them. Dirt on the PCB, solder residue, fingerprints, the PCB itself - they all leak current.

   

Just taking your measurement of 10MOhm 8which Ithink is just the input impedance of your meter): 2pF, 10MOhm and 10µS result in a voltage drop of about 40% (if I calculate right). If the 300MOhm you calculated are right, then the drop is about 1.7%. Maybe you can run some measurements and see how much the drop actually is?

0 Likes
ETRO_SSN583
Level 9
Level 9
250 likes received 100 sign-ins 5 likes given

I just want to hold a voltage of say around 200mV on the capacitor(2 pico faarads, so femto coulombs of charge) for around 10 micro seconds. We can fairly assume the leakage of the capacitor to be zero amps. just the value of the pin resistance in the worst case including all non idealities would suffice for my requirement.

   

 

   

A 2 pF cap is pretty small for a S/H application, just stray C changes affect outcome. Q = C x V, I = C dV/dT.

   

You have to target some acceptable droop, resolution, and do the calculations. Say we wanted

   

10 bit accuray (I will use 1000 as a round number), allowed droop of 1 lsb, so droop allowed

   

dV = 200 uV,

   

 

   

So we have I = ( 2 pf x 200 uV ) / 10 uS = ~ 40 pA. Thats totaly unrealistsic current value to rely on,

   

and hot will blow that away into a black hole.

   

 

   

Not only that you have the charge feed thru of parasitic gate C when you are charging cap

   

thru a mux/switch of some sort. And other switching coupling in the design.

   

 

   

Food for thought, Dana.

0 Likes