

GPIF II Designer 1.0

Doc. No 001-75664 Rev. *D

Cypress Semiconductor

198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810

Phone (Intnl): 408.943.2600

http://www.cypress.com

http://www.cypress.com/

Copyrights

2 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

Copyrights

© Cypress Semiconductor Corporation, 2012-2015. The information contained herein is subject to change without notice.
Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a
Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted
nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an
express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury
to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all
risk of such use and in doing so indemnifies Cypress against all charges.

Trademarks

PSoC Designer™, Programmable System-on-Chip™, PSoC Creator™, and SmartSense™ are trademarks and PSoC® and
CapSense® are registered trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Source Code

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected
by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international
treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use,
modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of
creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or
representation of this Source Code except as specified above is prohibited without the express written permission of
Cypress.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure
may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against
all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 3

Contents

GPIF II Designer 1.0 ... 1

Contents ... 3

1. Introduction .. 5
1.1 Welcome ... 5
1.2 About Help ... 5
1.3 Technical Support .. 6
1.4 Document Revision History ... 6

2. Getting Started ... 7
2.1 Creating a GPIF II Project ... 8
2.2 Designing a GPIF II Interface .. 9
2.3 Integrating GPIF II Configuration ... 9
2.4 Analyzing Signal Timings of the Interface .. 10

3. Understanding GPIF II Designer ... 11
3.1 Concepts ... 11

3.1.1 Cypress Supplied Interfaces ... 11
3.1.2 Interface Concepts.. 12
3.1.3 FX3 DMA Architecture .. 13
3.1.4 GPIF II State Machine Concepts .. 14
3.1.5 Timing Simulation Concepts ... 14

3.2 User Interface .. 15
3.2.1 Start Page ... 15
3.2.2 Interface Definition .. 15
3.2.3 Interface Customization .. 18
3.2.4 State Machine Canvas .. 18
3.2.5 Timing ... 20
3.2.6 Output Window and Notice List Window ... 22
3.2.7 Documentation and Context Help ... 22

3.3 Tabs, Menus, and Shortcuts .. 23
3.3.1 Application Toolbar ... 23
3.3.2 File Menu .. 23
3.3.3 View Menu .. 24
3.3.4 Build Menu .. 24
3.3.5 Timing Simulation ... 24

Contents

4 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

3.3.6 Help Menu .. 24
3.3.7 Shortcut Keys ... 25

4. Programming GPIF II State Machine .. 26
4.1 GPIF II Overview ... 26
4.2 GPIF II State Machine ... 27
4.3 GPIF II Actions .. 27

4.3.1 Action - IN_ADDR ... 32
4.3.2 Action - IN_DATA ... 32
4.3.3 Action - DR_DATA .. 33
4.3.4 Action - DR_ADDR ... 34
4.3.5 Action - COMMIT .. 34
4.3.6 Action - DR_GPIO .. 35
4.3.7 Action - LD_ADDR_COUNT ... 35
4.3.8 Action - LD_DATA_COUNT .. 36
4.3.9 Action - LD_CTRL_COUNT .. 37
4.3.10 Action - COUNT_ADDR .. 37
4.3.11 Action - COUNT_DATA .. 37
4.3.12 Action - COUNT_CTRL .. 37
4.3.13 Action - CMP_ADDR .. 37
4.3.14 Action - CMP_DATA ... 38
4.3.15 Action - CMP_CTRL ... 39
4.3.16 Action - INTR_CPU ... 39
4.3.17 Action - INTR_HOST .. 39
4.3.18 Action - DR_DRQ ... 40

4.4 GPIF II Transition Equations and Triggers .. 41
4.5 GPIF II Constraints .. 42

4.5.1 Mirror States ... 42
4.5.2 Intermediate States ... 46

4.6 Designing a GPIF II State Machine ... 46
4.6.1 Illustration of Implementing Asynchronous SRAM Interface ... 47
4.6.2 Analyzing Timing .. 54

4.7 GPIF II Firmware API .. 55

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 5

1. Introduction

1.1 Welcome
Welcome to GPIF™ II Designer - a software tool that configures the GPIF II port of EZ-USB® FX3 to connect to any
external device. This application generates programmable register values in the form of a C header file that you can
readily integrate with the firmware application code using the firmware API framework.

Figure 1-1. FX3 System Overview

The graphical user interface (GUI) provided by the application allows you to define the interface in the form of a state
machine diagram. The application generates warnings and error messages to guide you and prevent possible
erroneous input. The design that you enter is processed to generate a C program header file.

GPIF II Designer also provides a set of readily usable designs of standard and popular interfaces. Detailed
documentation of such interfaces describing the protocol definition along with timing diagrams are available when you
open the Cypress supplied interface project using GPIF II Designer. You can modify a few parameters of such
designs to customize the design to suit your target environment.

GPIF II Designer is part of the FX3 Software Development Kit.

1.2 About Help
GPIF II Designer Help provides information about tool usage and interfacing with the FX3 firmware. You can launch a
help topic corresponding to the current window by pressing the function key [F1]. Navigate the help pages launched
as follows:

 Use the Contents tab to view all of the help topics in a structured table of contents.

 Select Topics from the Help menu to open this help system.

 Use the Index tab to find and view key topics alphabetically.

 Use the Search tab to find specific topics by keywords.

Introduction

6 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

1.3 Technical Support
If you have any technical questions or issues related to GPIF II Designer, you can contact Cypress by sending an
email to usb3@cypress.com.

More information about EZ-USB FX3 is available at www.cypress.com/go/superspeed.

You can also call Cypress Customer Support by dialing:

+1 (800) 541-4736 Ext. 8 (in the USA)

+1 (408) 943-2600 Ext. 8 (International)

Or visit www.cypress.com/go/support.

1.4 Document Revision History

Revision Issue Date Origin of Change Description of Change

** 01/17/2012 VTV New document.

*A 02/29/2012 VTV

Updated the user manual with comments from Beta
customers and Applications and Design. The change also
includes update of text and figures to reflect changes
made after the beta release.

*B 09/13/2012 MRAO Updated all the figures across the document.

*C 03/20/2013 MRAO Updated the descriptions of the state machine actions.

*D 02/11/2015 YULA Template updates. No change to content.

mailto:usb3@cypress.com?subject=Query%20on%20Cypress%20Ez-USB%20Fx3%20/%20GPIF%20II%20Designer
http://www.cypress.com/go/support

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 7

2. Getting Started

One of the key features of EZ-USB FX3 is the flexibility and programmability of the general programmable interface
(GPIF II). GPIF II is a programmable state machine that allows you to configure FX3 to connect to any processor
interface. The GPIF II state machine is defined by a set of programmable memory mapped registers. These registers
are configured by the firmware application running on the EZ-USB FX3. The register configuration that programs
GPIF II for a specific interface can be generated by the software tool GPIF II Designer.

Figure 2-1. FX3 SDK Usage Flow Using GPIF II Designer

The set of register values that programs the GPIF II interface is generated as a data structure supported by the FX3
firmware framework API. GPIF II Designer generates a header file that you can include in the FX3 firmware
framework application code. Follow these steps to configure FX3 using GPIF II Designer:

1. Select the required Interface project from the list of Cypress Supplied Interfaces. The Cypress supplied interface
projects are listed on the left pane of the Start page. Click on the interface to create a project. If none of the
Cypress supplied interfaces matches the target application requirements, create a new project to design a state
machine of the required interface.

2. Enter the details of the interface that you want to implement:

 In case of a Cypress supplied interface project, the state machine for the chosen Interface is readily available.
You cannot modify the state machine design of a Cypress supplied interface. Possible customizations of the
selected interface appear on the left side of the Interface Customization window. The pin diagram shown on
the window provides a graphical interface to modify the pin mapping, if the design allows a change.

 In case of a user-defined interface project, you need to define a state machine corresponding to the interface
protocol to be implemented. You can draw the state machine diagram for the interface using the state
machine canvas. The electrical interfacing details should be defined using the Interface Definition tab before
entering the state machine using the State Machine Canvas tab.

3. After the state machine is defined for the interface, build the project to generate a GPIF II configuration header
file using the Build > Build Project command. The header file will be generated in the project folder. Copy the
header file to the firmware project folder.

4. In the firmware application, load the GPIF II configuration and start the state machine using the GPIF II
configuration API.

5. You can view the relative timing corresponding to the state machine using the Timing Simulation tab.

Getting Started

8 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

2.1 Creating a GPIF II Project
To design an interface or use a Cypress supplied interface, you must first create a GPIF II project.

You can create a new project using the File > New Project command, or by using the links provided on the Start
page. In the New Project dialog box, enter the project name and choose the location where the project files will be
stored.

To open an existing project, go to File > Open Project. The Start page also provides links to open the most recently
used projects.

Figure 2-2. New Project Dialog Box

A GPIF II project file is created with the name that you have specified and with the extension ".cyfx". The project will
be created under a new folder with the project name and the extension ".cydsn".

Thus, if you specify "Async_Admux" as the project name to be created at the location C:\MyDesigns, a GPIF II
project file Async_Admux.cyfx will be created in the folder C:\MyDesigns\Async_Admux.cydsn.

The New Project dialog box also provides a tab for creating a project with one of the Cypress Supplied Interfaces.
Note that the Cypress supplied interface implements a predefined interface and therefore cannot be edited.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 9

2.2 Designing a GPIF II Interface
You can create a new GPIF II design by following these steps:

1. Define the electrical interface in terms of the width of data and address buses that is used, the number and
direction of control signals, and the interface clocking parameters. You can define these terms using the
Interface Definition window.

2. Define the behavior of the interface in terms of how the inputs are to be used and the outputs are to be driven.
This description is provided in the form of a state machine that is entered through the State Machine Canvas.

When you create a new project or open an existing project, you are greeted with the Interface Definition window,
which provides a graphical display of the FX3 GPIF II port (P-Port) interface. A list of configurable parameters of the
interface with selectable options appears on the left pane under Interface Settings. After completing the interface
definition, use the state machine canvas to enter a state machine diagram matching the processor interface. You can
add states from the menu that appears when you right-click. You can add the list of actions on the right pane to a
state.

GPIF II Designer provides a library of standard and popular interfaces that you can readily use. These interfaces,
termed as the "Cypress supplied Interfaces", implement predefined protocols. Cypress validates the state machine
corresponding to any Cypress supplied interface to match the timing diagram and protocol definition documented
along with the interface. Therefore, you do not need to enter a state machine to generate the GPIF II header file. A
few of the Interface settings may be modified, such as the pin mappings for various signals. All the modifiable settings
of a Cypress supplied interface project appear on the left pane under Interface Settings.

You are provided with error and/or warning messages to guide you during design entry. Click View > Output to see
the error and warning messages displayed on the output window.

After defining the electrical interface and the state machine, click Build Project to generate the code that you can
integrate with the FX3 firmware application. The GPIF configuration is generated as a "C" header file in the project
folder. This header file is named cyfxgpif2config.h by default. You can modify this name by clicking Build > Build
Settings.

2.3 Integrating GPIF II Configuration
The generated header file contains the data structures that are compliant with the EZ-USB FX3 firmware framework
API. Copy the generated header file into the firmware application folder and include it in the source file. The firmware
application calls the appropriate GPIF II APIs to load and start the state machine.

A sample code snippet that configures the GPIF II interface is:

 /* Load the configuration into the GPIF registers.
 & CyFxGpifConfig is defined in the GPIF II Designer generated header file */
 status = CyU3PGpifLoad (CyFxGpifConfig);
 if (status != CY_U3P_SUCCESS)
 return status;

 /* Start the operation of the GPIF II state machine.
 Both START and ALPHA_START are defined in the header file. */
 status = CyU3PGpifSMStart (START, ALPHA_START);
 if (status != CY_U3P_SUCCESS)
 return status;

Getting Started

10 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

2.4 Analyzing Signal Timings of the Interface
After entering the state machine corresponding to the P-port Interface, you can use the Timing window to simulate
the relative timing of the input and output signals.

To perform the timing simulation, select a specific State Machine Path in the state machine. Save the selected path
for further viewing in a Timing Scenario file. You can load a saved timing scenario from the menu provided on the top
strip of the Timing Window.

You can create a new timing scenario using the Create Scenario dialog box. A toolbar icon to create a scenario is
provided on the top strip of the Timing window. You can enter a unique name to identify the scenario being created in
the Scenario Name. Use the Scenario Entry dialog to select for simulation a path consisting of a set of states that
you can traverse sequentially.

Figure 2-3. Create Scenario Dialog Box

You can load a saved scenario to display the relative timings of the input and output signals. Select Saved Timing
Scenarios from the menu provided on the top strip.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 11

3. Understanding GPIF II Designer

This section helps you to familiarize yourself with the concepts and terms used in the GPIF II Designer user interface
and documentation.

3.1 Concepts
This section introduces a few concepts and terms that will help you to use the tool effectively.

The set of memory mapped register values that can be programmed to define the interface settings and behavior of
the GPIF II port of the FX3 is termed as GPIF II configuration. A GPIF II configuration implements an interface
connecting the FX3 with another device connected on the GPIF II port.

The term GPIF II Interface refers to the digital interface and the timing rules to be established on the GPIF II port of
the FX3. Apart from the type and behavior of the P-port signals, a GPIF II interface can also define the interaction of
the P-port with the data path and firmware application on the FX3 device.

GPIF II Designer enables you to specify the behavior of the P-port interface of the FX3 by using a state machine
diagram. The state machine diagram and interface settings together define the electrical interface and behavior of the
P-port. The term GPIF II design refers to the settings and state machine representation.

The details of the design entered by you and the other settings regarding a user’s interaction with the tool are stored
in a project file. A project file is the primary interface of a user to the tool. A project file binds all the related files
corresponding to a design. You can Open, Save, and Save As (copy) projects. When you use the Save As option, a
copy of the project is created in a newly created folder with the format <project name>.cydsn, that is, a project called
Async_fifo will be created in the folder Async_fifo.cydsn. The project file has the extension of .cyfx.

Note The project file and the user-entered designs are stored as XML files. The content and the format of these files
are meant to be interpreted only by the GPIF II Designer application.

A GPIF II Interface project can be user-defined or Cypress supplied. Cypress supplied interface projects implement
standard protocols that are defined and tested by Cypress. User-defined projects can be used to implement any
custom interface and protocol desired by the user.

3.1.1 Cypress Supplied Interfaces
GPIF II Designer provides a library of standard and popular Interfaces that can be readily used by FX3 SDK users.
These specially parameterized and predefined interfaces are known as Cypress supplied interfaces.

The Start page provides links to open Cypress supplied interfaces. Selecting these links displays a dialog for creating
a copy of the interface project at a selectable location. After the copy of the project is created, you can customize the
project using the Interface Customization window. The number and type of the customizations allowed depends on
the interface selected and can include options such as modes of operation, pin mapping for control signals, and the
data bus width.

Since the Cypress supplied interface projects implement a predefined and preverified communication protocol, you
cannot make changes to the state machine that implements this protocol. The State Machine window allows you to
only view the state machine implementation provided by Cypress. However, you can make a Cypress supplied
interface editable by using the Save Lib Project As Editable command. Save the library project in the desired
location and then open the saved project.

Each Cypress supplied interface project provides detailed documentation about the interface protocol in the
Documentation tab. The documentation also gives information about the interface and instructions on the
customization and generation of the GPIF II configuration. The Help section on the right side of the Customization
window also provides specific help for the allowed customizations.

Understanding GPIF II Designer

12 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

3.1.2 Interface Concepts
Interface Definition is the process of defining the electrical interface between the FX3 device and the processor/FPGA
connected to it.

3.1.2.1 Peripherals
In addition to the programmable GPIF II interface, the EZ-USB FX3 device also implements a set of serial
communication blocks to connect to external peripheral devices. The serial communication protocols supported are
I2C (master only), I2S (master only), SPI (master only), and UART. Enabling a specific peripheral block on the FX3
affects the number or pins available for use as part of the GPIF interface. Refer to the EZ-USB FX3 Programmer's
Manual for more information.

3.1.2.2 Master and Slave
A GPIF II interface allows the FX3 to interface with an external processor acting as a master or a slave. If the
interface transactions with the external system are initiated by FX3, then FX3 is the master. FX3 is a slave if the
interface transactions are initiated by the external processor (connected on the GPIF II port), and the FX3 is only
expected to respond to the actions initiated by the external processor. A given GPIF II configuration uses the FX3 as
a master or a slave device. It is not possible to implement both modes in a single configuration.

If an address bus is part of the electrical interface, this will serve as an input for slave mode designs and as an output
for master mode designs.

3.1.2.3 Interface Clocking
A GPIF II-based interface can be synchronous or asynchronous in nature. In the case of a synchronous project, the
GPIF II state machine operates using the same clock that is used on the interface. This clock can be generated and
driven out by the FX3 device, or provided as input to the FX3 device. The maximum frequency supported for the
GPIF II interface clock is 100 MHz. A given GPIF II configuration is asynchronous or synchronous; it is not possible to
have both coexisting in a given configuration.

3.1.2.4 Multiplexing of Address/Data
A GPIF II interface gives a maximum of 32 bidirectional data lines, which can be split into, or time multiplexed with,
address lines. In the case of multiplexed operation, the address bus will have the same width as the data bus. One of
the control pins can be used to implement the ADV or ALE signal required to control the functionality of the
address/data multiplexed bus. If the address bus is not time multiplexed with the data bus, the number of address
lines available will depend on the width of the data bus. Refer to the EZ-USB FX3 datasheet for more information.

3.1.2.5 Control Signals and GPIOs
A GPIF II interface is associated with the following:

1. A data bus of configurable width and direction.
2. An optional address bus of configurable width and direction.
3. A set of control pins of configurable direction and functionality.

The number of control pins available depends on the overall I/O matrix configuration and on the configuration of the
data and address bus. Refer to the EZ-USB FX3 Programmer's Manual for more information. The available control
pins can be configured as input signals that drive the GPIF II State Machine, output signals that are driven by the
State Machine, or flags that reflect the transfer readiness of various buffers on the FX3 device. You can configure any
pins that are unused by the GPIF II block as GPIOs that are controlled by the firmware application.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 13

3.1.3 FX3 DMA Architecture
The FX3 device has an internal DMA fabric that connects the GPIF interface to the internal system memory. All data
transfers through the GPIF interface are initially done from or into an internal memory buffer. The firmware application
running on the FX3 is responsible for connecting this data path to the appropriate source or sink, such as the USB
host or a serial peripheral.

3.1.3.1 Sockets
Each port on the USB 3.0 device supports several sockets that correspond to one end of a data flow and can be
independently addressed. The P-port or GPIF port of the FX3 device supports a maximum of 32 sockets, which
means that a total of 32 independent data transfers can be performed across this interface.

The firmware application is responsible for allocating memory buffers corresponding to all sockets that need to be
used; and for connecting the socket to the source of sink of data on another port. Refer to the DMA Channel APIs in
the FX3 SDK API Guide for the functions that do this.

3.1.3.2 Threads
Even though the GPIF port on the FX3 device provides 32 sockets that can be independently addressed and used for
data transfer, there are some restrictions on how the application can switch the active socket that is used for a
transfer operation. The FX3 device implements four DMA transfer handlers or threads, which are active concurrently.

Each of these threads can be associated with one DMA Socket at a time. This means that the application can select
a maximum of four sockets that are bound to these threads, and then switch between them with no added latency.
The thread to be used for each word of data transferred can be specified directly by providing an input address, or by
specifying the target thread in the IN_DATA pr DR_DATA action settings in the GPIF state machine.

Changing the active socket that is bound to a thread involves additional latency. You can do this switching
automatically by specifying the socket address (in cases where the address bus is between 3- and 5-bits wide) or
with firmware intervention within the FX3 device.

The GPIF hardware only provides one set of DMA status flags per thread. The thread-specific DMA flags for a thread
always reflect the status of the active socket on that thread. When you switch the active socket on a thread, you must
provide sufficient time to ensure that a flag reflects the state of the new socket before using it to control data
transfers.

Note The socket-to-thread mapping is not flexible. Each socket ‘N’ can be bound only to the thread numbered (N
MOD 4). This means that it is not possible to bind sockets 0, 4, 8, and so on, to different threads and thereby use
them at the same time. The sockets used for GPIF data transfers should be selected keeping this constraint in mind.

3.1.3.3 Data Transfer Registers
The GPIF hardware also implements a set of registers that you can use as the source or sink for data that is
transferred through the GPIF data bus. You can use these registers in cases where you need to transfer small control
messages that are used by the firmware. To select such transfers, specify the Data Sink or Source as Register in the
IN_DATA or DR_DATA action settings.

The CyU3PGpifWriteDataWords() and CyU3PGpifReadDataWords() APIs in the FX3 SDK can be used to write or
read these data words from these registers in the FX3 firmware application. Even though the data transfer from/to
registers is not related to the FX3 DMA fabric, four different sets of registers corresponding to the four DMA threads
are provided. You can use the GPIF action settings to select the specified register set (or the thread number). The
same thread number must be used by the firmware application when the CyU3PGpifWriteDataWords() or
CyU3PGpifReadDataWords() APIs are invoked.

3.1.3.4 DMA Flags
Since the main purpose of any GPIF II Design is to manage data transfers into and out of the FX3 device's buffers,
dealing with DMA buffer readiness and performing flow control is an essential part of these designs. The FX3 device
uses several DMA buffers of programmable size to send or receive data across the GPIF II Interface. There is a small
window of time where it cannot do data transfers, because the active DMA buffer is being switched. It is also possible
that the DMA buffer is not ready for transfer when the external processor is trying to initiate a transfer. The FX3
device provides a set of DMA status flags that can be output on select GPIOs and used to perform flow control on the
processor side. The DMA status flags can reflect one of the following:

1. DMA ready status; that is, buffer empty/full indication.
2. Data count above or below the user-programmable threshold indication. The FX3 firmware API must be used to

set the threshold value for various buffers.

Understanding GPIF II Designer

14 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

3.1.4 GPIF II State Machine Concepts
The behavior of the GPIF II interface in terms of how it responds to inputs and generates the outputs is described in
the form of a State Machine.

3.1.4.1 GPIF II State Machine
The GPIF II block is a hardware block that can implement a user-specified protocol on the P-port of the EZ-USB FX3
device. The protocol to be implemented is specified in the form of a state machine, thereby allowing a wide variety of
protocols to be implemented. The GPIF II State Machine also interfaces the P-port Interface to a data path on the
EZ-USB FX3. Each state can be programmed to perform a set of actions. You can specify the conditions for state
changes in the form of Boolean transition equations formed using the trigger variables. The trigger variables can be
external signals configured as input or system generated events.

3.1.4.2 Disjoint State Machine
One FX3 based system design may require implementing multiple interfaces on the P-port at different times. For
example, the FX3 could act as a master to program an FPGA connected to it and then switch over to the slave mode
where it exchanges data with the FPGA. These interfaces can be implemented as different GPIF II Designer projects
in which case, the GPIF block must be reset and reconfigured when switching modes. Another option is to implement
these as disjoint or unconnected state machines within a single GPIF II designer project, so that they can be loaded
into the GPIF configuration memories in a single step. These are called disjoint state machines, because the GPIF
hardware cannot switch from one state machine to another during normal operation. Firmware intervention is required
to force any transition between different disjoint state machines.

3.1.4.3 Start State
Each disjoint state machine in a GPIF II design requires a start state that cannot be associated with any actions. That
start state is called dummy state, whose only purpose is to enable a transition to the actual root state of the disjoint
state machine, and is used by the firmware to start the operation of the state machine. The GPIF II state machine is
not allowed to have any transitions that end at the start state.

3.1.5 Timing Simulation Concepts
The GPIF II Designer tool supports the simulation of interface behavior based on a user-programmed state machine.
Select a path to be simulated, and the tool generates and displays a representative timing diagram of how input and
output signals behave when the specified path is executed.

3.1.5.1 State Machine Path
A sequence of states can be seen during a traversal of the GPIF II State Machine. The path can be arbitrarily long in
the case of state machines that have cycles. Each state can be repeated multiple times in a path to simulate the
possibility of delays in transitioning out of that state. The timing simulation assumes that the state machine stays in
each state for the minimum allowed time.

3.1.5.2 Timing Scenario
A timing scenario represents the triggers and actions associated with a state machine path of interest for the protocol
implemented by the GPIF II state machine. For example, the steps involved in a single-byte packet write are a
specific timing scenario for the Synchronous Slave FIFO protocol. You can specify a timing scenario in the form of the
state machine path that implements this part of the protocol, and the Timing tab of the GPIF II Designer will display
the behavior of all the signals that are involved in this sequence.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 15

3.2 User Interface
The graphical framework of GPIF II Designer provides the following distinct windows:

 Start page
 Interface Definition/Customization
 State Machine Canvas
 Timing
 Documentation

You can access each of these windows anywhere in the tool. All possible operations on the tool are accessible
through toolbar buttons or menu items. This section walks through the various windows and controls provided by the
tool.

3.2.1 Start Page
The Start page is the greeting page that you see when you load the GPIF II Designer application.

The left pane of the Start page provides links to all Cypress supplied interfaces and the most recently used projects.
When you select a Cypress supplied interface from the Start page, you are prompted to make a copy of the project.
Selecting a recently opened project reopens it.

The central pane of the Start page shows the introductory documentation about GPIF II and the Designer tool flow.

3.2.2 Interface Definition
The Interface Definition Window allows you to define the I/O level external interface. The central pane of this window
displays the graphical view of the FX3 ⇔ P-port interface. All settings related to the Interface are arranged with
selectable options on the left pane. Cypress recommends that you complete the Interface definition settings before
moving to the state machine diagram.

The Interface Definition Window provides the following settings:

3.2.2.1 Selection of FX3 Peripherals
The EZ-USB FX3 provides peripheral interfaces that you can selectively use according to your application. Usage of
specific peripherals may impact the availability of GPIOs for the GPIF interface. The GPIF II Designer updates its
internal configuration generation logic based on this input, so that the appropriate number of GPIOs is allocated for
the GPIF functionality.

Note The peripheral selection is only used by the tool to calculate the available pin count. You are responsible for
setting up the FX3 I/O Matrix and peripheral blocks as required in the firmware application code.

3.2.2.2 Master/Slave Interface Selection
The GPIF II Interface allows the FX3 device to connect to an external processor or FPGA as a master or a slave
device. When the FX3 device is acting as a master, it initiates transactions on the interface. When the FX3 device is
acting as a slave, it can only respond to transactions that are initiated by the external device. The address bus (if any)
on the interface is always driven by the master and therefore is an input bus when FX3 is a slave and an output bus
when FX3 is a master. A master mode design typically requires multiple disjoint state machines that implement
various kinds of transactions under firmware control. A GPIF project or configuration can only contain state machines
in slave mode or master mode.

3.2.2.3 Asynchronous / Synchronous Interfaces
GPIF II can be programmed to implement both asynchronous and synchronous interfaces. In case of synchronous
interfaces, the GPIF II clock is shared between FX3 and the external processor connected on the GPIF II port. The
clock can be driven by GPIF II or can be input to GPIF II. A given GPIF II configuration is asynchronous or
synchronous. Further, it is not possible to have both coexisting in a given configuration.

3.2.2.4 Address and Data Buses
The data bus between FX3 and the external device can be configured as 8-bits, 16-bits, 24-bits or 32-bits wide. If the
data bus is not being used, it can be left configured for any of these values. The data bus is assumed to be
bidirectional in all cases, though the state machine design can use only input or output actions or both as required by
the communication protocol.

Understanding GPIF II Designer

16 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

An optional address bus can also be configured. The address bus can be time multiplexed on the same pins as the
data bus and the address bus width specified is ignored in such a case. If a dedicated address bus is required, the
width of the bus can be specified. The address bus is configured as input for all slave mode designs, and it is typically
not useful to configure an address bus wider than 8 bits in this case. The address bus is configured as output for all
master mode designs, and can be configured to have a variety of bus widths.

3.2.2.5 Signal Properties
The graphical view of FX3 external interface displays the input and output signals along with the address and data
buses based on the selections made by the user on the left pane. You can double-click on any signal line to bring up
a dialog box to configure the signal settings. Each signal can be assigned a user-defined alphanumeric name string.
The tool automatically assigns an available GPIO to each signal. You can modify the assignment of a GPIO to a
signal by double-clicking on the signal. You can modify the pin (GPIO) assignment to each signal by clicking on each
the GPIO labels provided with the signal. Note that the signals that use special functions cannot be moved to other
pins.

3.2.2.6 Special Function Signals
Some of the general-purpose I/O signals of FX3 can be associated with special functions that are commonly used in
standard protocols. These special functions are only available on specific pins, and control signals that use them
cannot be moved to other pins. Refer to the FX3 datasheet for information on which GPIOs correspond to each of
these functions. The special functions provided by GPIF II are:

1. OE: Output Enable. Provides direct control of Output Drivers. The OE signal directly controls whether the data
bus is driven or tristated by the FX3, so that the latencies associated with doing this through the GPIF II State
Machine are removed.

2. WE: Write Enable. Provides direct control to disable output drivers on the data bus. The data bus will not be
driven by FX3 if the WE special function is selected and the WE input is asserted.

3. DLE: Data Latch Enable. Enables the input stage on the FX3 data bus to latch data. This special function is
normally combined with the WE function.

4. ALE: Address Latch Enable. Enables the input address stage on the FX3 to latch address values.
5. DRQ: DMA Request. Provide a DMA request output that is controlled through the GPIF II State Machine and that

responds to the DACK input signal.
6. DACK: DMA Acknowledge. This is not a separate special function, but an input that is used to control the

behavior of the DRQ signal.

Special Function GPIO

DLE / WE GPIO_18

OE GPIO_19

ALE GPIO_27

DACK GPIO_20

DRQ GPIO_21

Note To assign special functionality to FX3 I/Os, the corresponding GPIO should be unused. If the GPIO is already
being used, then reassign using the interactive FX3 interface diagram on the Interface definition Window.

3.2.2.7 Input Signal Settings
The Input Signal Settings dialog box allows you to configure the selected input control signal with the following
parameters.

Name: User-provided name for signals. This name will be displayed on the trigger list in Transition Equation Entry on
the state machine canvas and shown on the timing simulation screen.

GPIO to use: The signals can be associated with any of the available GPIOs. The tool provides a list of all the
unallocated GPIOs for you to choose from.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 17

Polarity: Polarity selection is used to set the polarity of special function signals - WE, OE, DLE, ALE, and DACK. The
special function is considered as asserted based on the selected polarity. For example, setting OE with active low
sets the Output drive functionality when this GPIO is low. The polarity setting is not used while specifying transition
conditions on the state machine canvas and you are expected to enter the actual value of the signal that triggers a
transition.

Figure 3-1. Input Signal Settings Dialog Box

3.2.2.8 Output Signal Setting
The Output Signal Settings dialog box allows you to configure the selected output control signal with the following
parameters:

Name: User-provided name for signals. This name is used to select the signal to be driven by the state machine, and
also displayed on the timing simulation screen.

GPIO to use: The signals can be associated with any of the available GPIOs. You can choose one pin from a list of
all unallocated GPIOs.

Initial Value: The initial value to be driven on the I/O before the GPIF state machine starts and sets a new value.

Delayed Output: Each output signal driven by the GPIF II state machine has an associated latency in terms of GPIF
clock cycles. This latency is equal to 2 cycles if the delayed output checkbox is not selected, and 3 cycles if it is
selected. All outputs are considered as delayed outputs by default.

Polarity: The assertion from the state machine can make the signal low or high depending on this setting.

Signal Mode: The signal can either be set to a specific value (asserted based on the polarity setting) or toggled from
the current value when driven by the state machine. In toggle mode, the value of the output signal is changed every
time the signal is updated by the state machine.

Figure 3-2. Output Signal Settings Dialog Box

Understanding GPIF II Designer

18 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

3.2.2.9 Flag Signal Settings
The Flag Settings dialog box allows you to configure the selected DMA flag signal with the following parameters:

Name: User-provided name for signals. This name is used to select the signal to be driven by the state machine, and
also displayed on the timing simulation screen.

GPIO to use: The signals can be associated with any of the available GPIOs. You can choose one pin from a list of
all unallocated GPIOs.

DMA flag to use: Connect the GPIO to indicate the data transfer (DMA) status such as Ready for transfer. The
WaterMark flag can be used to indicate an early indication of the DMA state. The WaterMark value setting is done
from the firmware API.

Initial Value: The initial value to be driven on the I/O before the GPIF state machine starts and sets a new value.

Polarity: The assertion from the state machine can make the signal low or high depending on this setting.

Figure 3-3. Flag Settings Dialog Box

3.2.3 Interface Customization
The interface customization page appears when a Cypress supplied interface project is opened. The Customization
window provides three vertical panes:

 The left pane provides the customizable options for the opened Interface.

 The central pane displays the pin diagram of the EZ-USB FX3 GPIF II port pins with the application processor.
You can modify the pin mapping of the signals by clicking on the pins on the EZ-USB FX3 block.

 Quick help documentation is provided on the right pane to guide you through customizing the parameters.

3.2.4 State Machine Canvas
The state machine canvas provides graphical controls to draw a GPIF II state machine diagram. A GPIF II state
machine consists of actions performed in each state and triggers that cause transitions from one state to other. The
Action List window displays the list of actions that can be added to states.

The state machine canvas supports the following operations:

Adding a state

A right-click anywhere on the canvas displays the State Machine menu. Select Add State to add a state to the
Canvas.

Adding actions to a state

To add an action to a state, select the state using the left mouse button. Right-click the action that you want to add to
the Action List window. This displays the Action List menu; select Add to Selected State from the menu. You can
also open the action list window by going to View > Action List.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 19

Drawing transitions between actions

Bring the cursor on the state machine canvas to the center of the rectangular shape of the starting state of transition.
The cursor changes shape to +. Press the left mouse button and release at the center of ending state of the
transition.

Adding a transition equation

Bring the cursor to point to the transition line. Double-click on the line to open the Transition Equation Entry dialog
box. All available triggers to form a transition equation are displayed as a selectable list. Select the trigger and add to
the Equation Entry using the Add button. Use the necessary Boolean expression notations from the buttons on the
left of the dialog box. Alternatively, you can type the equation directly on the Equation Entry box to enter the
Boolean expression. Click OK after entering the equation.

Setting state properties

Bring the cursor to point to the state rectangle shape. Right-click to bring the State menu. Select Settings from the
menu to open the State Settings dialog box. Every state can be associated with a name using an alphanumeric
string. Macros that map the state names to the state IDs generated by the tool are generated by the tool as part of
the header generation.

The Repeat Count property indicates the number of clock cycles to continue on the state before evaluating any
outgoing transition equation.

The actions associated with the state can be repeated until the transition to the next state by checking the Repeat
actions until next transition option.

Setting action parameters

Bring the cursor to point to the Action displayed on the state. Right-click to open the Action menu and select Action
Settings to bring up the Actions Settings dialog box. You can configure the parameters corresponding to the
selected action. Click OK to set the configured parameters.

3.2.4.1 State Settings
The state settings dialog box allows you to configure the properties of a state. The properties associated with a state
are:

Name: User-provided name displayed on the state symbol on the state machine canvas. A default name is provided
on creation of state and this can be edited later. This name is used to form identifier macros by prefixing the name of
the project. For example, the macro "SYNC_SLAVE_FIFO_2BIT_IDLE" represents the "IDLE" state in the
"SYNC_SLAVE_FIFO_2BIT" project.

Repeat Count: The number of clock cycles to continue on the state before starting to check the transition equations
for exit. The default value is 0, which means that transition equations are evaluated as soon as the state is entered.

Repeat Actions until next Transition: The actions specified in the state will be executed every clock cycle until
transitioning to the next state. This setting is enabled by default.

Figure 3-4. State Settings Dialog Box

Understanding GPIF II Designer

20 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

3.2.4.2 Transition Equation Entry
The Transition Equation Entry dialog box allows you to enter and modify the transition equation associated with the
state transition. This dialog is opened by right-clicking on a transition arrow and selecting the Settings option.

All possible triggers that can be combined to form the transition condition are displayed for selection. The Boolean
expression associated with the transition can be entered using the notations and triggers provided. The entered
equation appears on the list box titled Equation Entry. You can also enter the equation in the appropriate format by
directly typing into this box.

Figure 3-5. Transition Equation Entry Dialog Box

3.2.5 Timing
GPIF II Designer converts the design that you enter to a GPIF II Interface implementation for FX3. The state machine
thus corresponds to the timing specification of a digital signal interface. The relative timing of the signals will be
definite and can be represented as a timing diagram. The relative timing of the input and output signals of a state
machine implementation can be simulated in the form a timing diagram using the Timing window.

Follow these steps to perform a timing simulation:

1. Complete the Interface settings and state machine diagram. The project should be built without any errors.
2. Select the state machine path to simulate the timing and save it as a Timing Scenario. The toolbar icon to create

Scenario is provided on the top strip of the Timing Window. You can enter a unique name to identify the
scenario. A path of the state machine can be traversed by selecting the state names appearing on the menu
provided.

3. Load a timing scenario from the list. The list of saved scenarios are available for selection on the top pane of the
Timing window. The input and output signal changes to implement the selected state machine path are displayed
by the tool. The timings are generated on the basis of meeting minimum setup and hold time requirements and
typical input/output latencies for all of the signals.

The Timing window provides the following features:

Selection of Time Frame

The display frame of the timing diagram can be selected by specifying the start and end of the time frame. The start
and end of time frame can be specified on the left and right bottom corner of the timing display respectively.

Automatic Timing Scale Selection
The timing window will be adjusted to the optimum scale according to the screen resolution and viewable area.

Note The timing simulation is performed based on a model of the GPIF II hardware. The GPIF hardware execution is
synchronous even if the interface is operating asynchronously. A typical operating (internal) clock frequency of
200 MHz (5-ns cycle time) is used in the simulation of asynchronous protocols.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 21

3.2.5.1 Scenario Entry
You can simulate the state machine diagram entered to view the relative timings and values of the signals in the form
a timing diagram. Select the state machine path whose behavior is to be simulated.

To select the path (state sequence) to be simulated, go to Timing Simulation > New Scenario or use the toolbar
icon. The Create Scenario dialog box is displayed.

Figure 3-6. Create Scenario Dialog Box

Enter a name for the scenario being created. The name can be further used to view the timing scenario later. Select
the start state of the sequence for states to be traversed. The tool then continuously provides a drop down menu
showing all of the possible next states for the currently selected state, and you can define the path by continuously
selecting the desired state. The current state is available as the next state option, unless a compulsory transition is
specified in the state machine.

A timing scenario entered will be saved with the name specified by the user while creating. All saved timing scenarios
will be available in a drop down menu on the top strip of the window. A saved scenario can be selected from this
menu and modified or deleted. The Timing Simulation menu allows you to delete or modify the scenario.

Figure 3-7. Modify Scenario Dialog Box

Understanding GPIF II Designer

22 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

3.2.5.2 Macro
A macro is a reusable scenario corresponding to a circular timing path with repeat count. A macro is created and
saved similar to creating and saving a Scenario with the exception of macro always has the same end state as the
start state and has a repeat count.

Typically a macro is used to analyze repeating circular state paths. Consider a burst operation. The state paths of a
burst read or burst write is repeated for a number of times. Analysis of such operations can be eased by specifying it
as a macro.

Figure 3-8. Create Macro Dialog Box

3.2.6 Output Window and Notice List Window
A combined Output and Notice List window is present at the bottom of the tool to display status and error messages.
Messages indicating various operations performed on the tool, including build messages, are displayed on the Output
window. The Notice List window shows error and warning messages pertaining to the design entry or selections
made by the user. You can select the Notice List or the Output window for viewing using the tabs on the bottom left.

3.2.7 Documentation and Context Help
The GPIF II Designer tool includes documentation that describes tool usage and related concepts.

Go to Help > Topics to launch the help document. Context-specific help related to each window or screen can be
opened by pressing the function key [F1] after bringing the relevant window to the front.

Cypress supplied interface projects also include documentation on the interface implemented by the project. This
documentation includes electrical interface details and timing diagrams, and information about the supported
customizations. Note that the datasheets presented on the tool are to provide a quick and easy guide. The data
presented here is indicative only and must not be seen as a substitute for the full specification from which it is drawn.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 23

3.3 Tabs, Menus, and Shortcuts
The graphical framework of GPIF II Designer is split into the following distinct windows – Start page, Interface
Definition/Customization, State Machine, Timing Simulation, and Documentation. Each of the windows is accessible
anywhere from the tool. Interface Customization and Documentation are applicable only for Cypress Supplied
Interfaces.

All the possible operations on the tool are arranged as menus accessible any time. There are following menus
accessible anytime for the user namely - File, Edit, View, Build, Tools and Help. Two additional menus - State
Machine and Timing Simulation appears only in the State machine tab and Timing tab respectively. The File menu
provides controls to operate on the design project. The Build menu provides controls to build the project and modify
the build-related settings, and the tool menu provides modifiable options for the tool.

3.3.1 Application Toolbar
The following toolbar provides icons for easier navigation between the GPIF II Designer controls.

The toolbar icons and their functionalities are listed in the following table:

Icon Command Description

 New Project Creates a new Project

 Open Project Opens an existing project for further modification and header file
generation.

 Save Project Saves any modifications on the project so that the modifications are
available when opened next time.

 Build Project Generates the header file with GPIF II Configuration.

 Rebuild Project Deletes the previously build header file and any other meta data
associated with the project and then generates a header file.

 Clean Project Deletes the previously build header file and any other meta data
associated with the project.

3.3.2 File Menu
The File menu commands are:

Menu Item Description

New Project Creates a new project. The user will be prompted for the name and
location of the project.

Open Project Opens a Cypress supplied Interface project for customization and
header file generation.

Save Project Saves any customizations on the project so that the modifications are
available when opened next time.

Save Project As Copies the project to another location specified by the user. The user will
be prompted for destination folder.

Save Lib Project As Editable Available when a Cypress supplied Interface project is opened. Converts
the library project to an editable project.

Recent Projects Displays the list of most recently opened projects.

Close Project Closes all project files so that the tool can open another project

Understanding GPIF II Designer

24 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

3.3.3 View Menu
The View menu commands display the requested pane of the multi window application. Each window pane can be
closed or resized.

Menu Item Description

Action List Brings the Action List window pane with the selectable list of actions

Output Brings the output pane on the bottom pane

Notice List Brings the Notice List pane on the bottom pane

3.3.4 Build Menu
The Build menu commands are:

Menu Item Description

Build Project Generates header file on the specified folder. The default location is
Project folder.

Clean Project Deletes the previously generated header file and related meta data.

Rebuild Project Generates a header file using the Build Project command after
executing a "Clean Project".

Build Settings Allows the user to change the generated header file location and
name.

3.3.5 Timing Simulation
The Timing Simulation menu is available only in the Timing tab. The following commands are available:

Menu Item Description

Create Scenario Creates a new scenario. See Scenario Entry.

Modify Scenario Modify a saved scenario.

Delete Scenario Delete a saved scenario.

Create Macro Create a new Macro.

Modify Macro Modify a saved macro.

Delete Macro Delete a saved macro.

3.3.6 Help Menu
The Help Menu provides the essential information about the tool.

Menu Item Description

Topics Displays a comprehensive help for the tool in a separate window.

Quick Start Guide Help for the beginner.

About Displays version details of the software.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 25

3.3.7 Shortcut Keys
Shortcut keys provide easy access to the operations listed in the following table:

Shortcut Key Function

Ctrl+O Open Project

Ctrl+S Save Project

Ctrl+Shift+B Build Project

Ctrl+Shift+C Clean Project

Ctrl+Shift+R Rebuild Project

F1 Show Help

Tab Next Control in the window

Tab+Shift Previous Control in the window

Arrow Keys Move within a container control

Enter Equivalent to clicking the OK button

Esc Close an active dialog box

Programming GPIF II State Machine

26 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

4. Programming GPIF II State Machine

The GPIF II Interface behavior is programmed by a user-defined state machine. The state machine determines how
the FX3 device responds to input signals and how it drives the output signals. The state machine also interacts with
the DMA engine on the FX3 device and controls how the data is retrieved from or pushed into the DMA data buffers.
Note that the FX3 firmware is responsible for setting up the DMA buffers and providing or using the data that is being
transferred. This section describes the GPIF II Hardware features and how to design a GPIF II state machine.

4.1 GPIF II Overview
The GPIF II port known as the P-port of FX3 provides a parallel interface with maximum of 32 bidirectional data lines.
The data lines can be split into or time multiplexed into address lines. There are 13 control lines of configurable
direction – configurable as IN or OUT. A programmable state machine engine controls the P-port operations and
control signals. The state machine operations can be controlled by the external processor using control signals
configured as input to FX3 (IN).

Figure 4-1. GPIF II Subsystem

The GPIF hardware also supports the generation of a set of DMA status flags indicating the buffer readiness based
on a user-programmed threshold, which can be used by the external processor for flow control. Cypress recommends
using these flags to ensure transfers without data loss.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 27

A set of counter and comparator blocks are associated with the GPIF hardware and can be used by the state
machine. The comparators can check whether the current state of the address, data, or control signals match a
specific pattern and generate a match signal that can be used as a trigger by the state machine. The counters can be
reset or updated through state machine actions and also generate a limit match signal that can be used as a trigger.

The GPIF II Designer tool generates the configuration data corresponding to the design entered by the user and this
is used as an input by the APIs running in the FX3 firmware to initialize the GPIF II hardware. The EZ-USB FX3 SDK
includes a set of APIs that can be used to configure, control, and monitor the GPIF interface.

The GPIF hardware can trigger interrupts to the on-board ARM core on the FX3 and to an external processor through
user-specified actions selected on the state machine canvas. The GPIF II state machine can also use a firmware-
generated input signal to control the operation of the GPIF II interface.

4.2 GPIF II State Machine
GPIF II is a programmable finite state machine. Every state of the state machine can be programmed to carry out
instructions on the P-port and the DMA system. Such instructions known as GPIF II actions are used to create a data
path between an external device connected on P-port and any other peripheral port of FX3 including the USB
SuperSpeed port. Transition from one state to other is caused by Boolean expressions formed using the signals on
the P-port or events generated as a result of actions.

Figure 4-2. State Transition Example

For example, the previous figure shows a state transition from ADDR state, which executes the GPIF II action
IN_ADDR to the WRITE state, which performs the IN_DATA action.

4.3 GPIF II Actions
Each state in a GPIF II state machine can be programmed to perform one or more GPIF II actions. Actions performed
in a state can be programmed to be performed once or in every clock cycle till the state change occurs.

Programming GPIF II State Machine

28 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

The following table lists GPIF II actions.

No Action Parameters Description Incompatibility with
other actions

1 IN_DATA Data Sink - Register/ Socket/ PPRegister
Thread Number - Thread number with
which the data sink is associated.
Selectable from Thread0 to 3 (This
feature is available when there is no
address lines to select the thread
number)
Sample data from data bus - This option
when checked samples data from data
bus but does not push in to the specified
data sink.
Write data into Data Sink - This option is
checked when the user wants to push
the sampled data in to the specified Data
Sink.

Samples data from data bus and
moves to the destination specified.
Destination can be Registers,
PPRegisters or Sockets. The data
in Register can be accessed using
CY_U3P_PIB_GPIF_INGRESS_D
ATA(thread_number) macro. The
PPRegisters cannot be accessed
directly from PP register space.
These registers are for controlling
the P-port interface in PP mode.
The data in Sockets can be
controlled or accessed using DMA
APIs. Words from Socket can be
accessed directly using firmware
API CyU3PGpifReadDataWords().

Cannot be combined
with DR_DATA.
Cannot be combined
with IN_ADDR when
the address and data
buses are multiplexed.

2 IN_ADDR Address Selecting - Thread or Socket
Enable PP Register Access Only - This
option overrides the address selection
and selects PP Register space.

Select a thread or socket after
sampling the address word from
the bus. In case of two or less
address bits, the address selects
one of the four threads. If the
address has more than two bits,
thread or socket can be selected
depending upon the "Address
Selecting" parameter. This
parameter is available only when
more than two address bits are
used.
"PP Register Access Only" option
is made available only if the width
of address bus is more than or
equal to 8.

Cannot be combined
with IN_DATA when
the address and data
buses are multiplexed.

3 DR_DATA Update new value from data source -
This option updates the data bus with the
data word present in the Source and
removes the word from the specified
Source.
Data Source: This option facilitates the
user to select between data counter and
register/ Socket / PPRegister.
Remove Data from the Data Source:
When this option is disabled data source
continue to point to same data.

Drives data on to the bus from the
source specified. Source can be
Registers, PPRegisters or
Sockets. The data in Register can
be sourced using
CY_U3P_PIB_GPIF_EGRESS_D
ATA(thread_number) macro. The
PPRegisters cannot be accessed
directly from PP register space.
These registers are for controlling
the Pport interface in PP mode.
The data in Sockets can be
controlled or sourced using DMA
APIs. Words from Socket can be
sourced directly using firmware
API CyU3PGpifWriteDataWords().
DR_DATA has two internal stages:
update_bus and pop_data. The
update_bus updates the data bus
with the word present in the
Source and happens as soon as
the state machine enters the
particular state. The hardware
state machine works using the
interface clock (in Synchronous
protocols) or the FX3 internal clock
(in Asynchronous protocol). Every
clock cycle, the update_bus

Cannot be combined
with IN_DATA.
Cannot be combined
with DR_ADDR when
the address and data
buses are multiplexed.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 29

No Action Parameters Description Incompatibility with
other actions

happens irrespective of "Repeat
actions until next transition" option
in the state setting. Pop_data
removes the data word from the
Source and happens once or
multiple times depending on the
"Repeat actions until next
transition" option in the state
setting.

4 DR_ADDR Address Source - Register /
AddressCounter/ ThreadSocket
Thread Number - Thread0 to 3 (Available
only when number of address bits is set
to 0)
Update address from address source -
This option when checked updates the
address bus with the address word
present in the Address Source. But this
does not remove the word from the
Address Source.
Remove address from address source -
The action removes the address word
from the Address Source when this
option is checked.
When both of the above options are
checked, update address happens first
and then remove address.

Drives the value from specified
source to address bus. Source can
be Registers, AddressCounter or
ThreadSocket. The address in
Register can be sourced using
CY_U3P_PIB_GPIF_EGRESS_A
DDRESS(thread_number) macro.
The data in Sockets can be
controlled or sourced using DMA
APIs. Words from Socket can be
sourced directly using firmware
API CyU3PGpifWriteDataWords().
The user can use an
AddressCounter to source the
address.

Cannot be combined
with DR_DATA when
the address and data
buses are multiplexed.

5 COMMIT Thread Number - Thread0 to 3 (Available
only when number of address bits is set
to 0)

Commit or wraps up the buffer
associated to the selected Ingress
thread and socket. The buffer will
be transferred to the consumer
side of the pipe. Typically this is
used to wrap up the buffer in
between a transaction pre-
maturely.

None

6 DR_GPIO Signal name - The External GPIO name
Delayed output - This option introduces
delay of one clock cycle before driving
the GPIO.
Signal mode - Toggle or Assert
Output Type: In synchronous mode
signal is driven after 2 clock cycles when
early mode is selected and 3 clock
cycles when Delayed mode is selected.
In asynchronous mode the latency is 25
ns for early mode and 30 ns for Delayed
mode

Drives the GPIO signal to HIGH /
LOW or toggles the value
immediately or after a delay of one
clock cycle. There will be output
latency observed by the interface
between the time DR_GPIO action
being called and the change in
GPIO signal in the interface.
"Repeat actions until next
transition" in the state setting has
no effect on the behavior of the
DR_GPIO action. This action is
repeated for every clock cycle.
(Clock being the interface clock or
the FX3 internal clock).

None

7 LD_ADDR_C
OUNT

Counter type - Up or Down
Counter load value - The initial value of
the counter.
Counter limit value - The limit of counter
Counter step value - The step resolution
Reload counter on reaching limit - When
checked, the counter resets itself upon
reaching the limit.
Counter mask event - This option when
checked, prevents the internal event
from interrupting the FX3 CPU.

This action loads the counter with
initial settings. Initial settings are
loaded while starting the state
machine. This value need to be
same in all states within a given
state machine diagram. Multiple
values are not allowed. These
settings can be overridden using
firmware APIs. The counter upon
reaching the limit, the hardware
sets the ADDR_CNT_HIT internal
trigger signal.
This action is generally used with

Cannot be combined
with COUNT_ADDR

Programming GPIF II State Machine

30 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

No Action Parameters Description Incompatibility with
other actions

COUNT_ADDR, and
ADDR_CNT_HIT trigger. The
count value can also be
programmed by firmware
application using
CyU3PGpifInitAddrCounter(). The
value programmed to the register
at the time of execution of state
machine will be used.

8 LD_DATA_C
OUNT

Counter type - Up or Down
Counter load value - The initial value of
the counter.
Counter limit value - The limit of counter
Counter step value - The step resolution
Reload counter on reaching limit - When
checked, the counter resets itself upon
reaching the limit.
Counter mask event - This option when
checked, prevents the internal event
from interrupting the FX3 CPU.

This action loads the counter with
initial settings. Initial settings are
loaded while starting the state
machine. This value need to be
same in all states within a given
state machine diagram. Multiple
values are not allowed. These
settings can be overridden using
firmware APIs. The counter upon
reaching the limit, the hardware
sets the DATA_CNT_HIT internal
trigger signal.
This action is generally used with
COUNT_DATA, and
DATA_CNT_HIT trigger. The
count value can also be
programmed by firmware
application using
CyU3PGpifInitDataCounter(). The
value programmed to the register
at the time of execution of state
machine will be used.

Cannot be combined
with COUNT_DATA

9 LD_CTRL_C
OUNT

Counter type - Up or Down
Counter load value - The initial value of
the counter.
Counter limit value - The limit of counter
Counter step value - The value is always
fixed to 1.
Reload counter on reaching limit - When
checked, the counter resets itself upon
reaching the limit.
Counter mask event - This option when
checked, prevents the internal event
from interrupting the FX3 CPU.

This action loads the counter with
initial settings. Initial settings are
loaded while starting the state
machine. This value need to be
same in all states within a given
state machine diagram. Multiple
values are not allowed. These
settings can be overridden using
firmware APIs. The counter upon
reaching the limit, the hardware
sets the CTRL_CNT_HIT internal
trigger signal.
This action is generally used with
COUNT_CTRL, and
CTRL_CNT_HIT trigger. The count
value can also be programmed by
firmware application using
CyU3PGpifInitCtrlCounter(). The
value programmed to the register
at the time of execution of state
machine will be used.

Cannot be combined
with COUNT_CTRL

10 COUNT_AD
DR

None Increments/ decrements the
address counter value each time
the state is visited. The hardware
produces ADDR_CNT_HIT event
upon reaching the limit value
specified during
LD_ADDR_COUNT.

Cannot be combined
with
LD_ADDR_COUNT

11 COUNT_DA
TA

None Increments/ decrements the data
counter value each time the state
is visited. The hardware produces

Cannot be combined
with
LD_DATA_COUNT

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 31

No Action Parameters Description Incompatibility with
other actions

DATA_CNT_HIT event upon
reaching the limit value specified
during LD_DATA_COUNT.

12 COUNT_CT
RL

None Increments/ decrements the
control counter value each time
the state is visited. The hardware
produces CTRL_CNT_HIT event
upon reaching the limit value
specified during
LD_CTRL_COUNT.

Cannot be combined
with
LD_CTRL_COUNT

13 CMP_ADDR Comparator mode - Value match or
Change detection
Comparator value - Value against which
the address being compared.
Unmask value - The value specified here
is ANDed with the sampled address word
and then the result is used for
comparison.
Comparator mask event - This option
when checked, prevents the internal
event from interrupting the FX3 CPU.

Compares sampled address with
specified comparison value or
detects any change in the address
value.
"Repeat actions until next
transition" in the state setting has
no effect on the behavior of the
CMP_ADDR action. This action is
repeated for every clock cycle.
(Clock being the interface clock or
the FX3 internal clock).

Cannot be combined
with IN_DATA when
the address and data
buses are multiplexed.

14 CMP_DATA Comparator mode - Value match or
Change detection
Comparator value - Value against which
the data being compared.
Unmask value - The value specified here
is ANDed with the sampled data word
and then the result is used for
comparison.
Comparator mask event - This option
when checked, prevents the internal
event from interrupting the FX3 CPU.

Compares sampled address with
specified comparison value or
detects any change in the data
value.
"Repeat actions until next
transition" in the state setting has
no effect on the behavior of the
CMP_DATA action. This action is
repeated for every clock cycle.
(Clock being the interface clock or
the FX3 internal clock).

Cannot be combined
with DR_DATA.
Cannot be combined
with IN_ADDR when
the address and data
buses are multiplexed.

15 CMP_CTRL Comparator mode - Value match or
Change detection
Comparator value - Value against which
the data being compared.
Unmask value - The value specified here
is ANDed with the sampled data word
and then the result is used for
comparison.
Comparator mask event - This option
when checked, prevents the internal
event from interrupting the FX3 CPU.

Compares sampled control word
with specified comparison value or
detects any change in the control
value.
"Repeat actions until next
transition" in the state setting has
no effect on the behavior of the
CMP_CTRL action. This action is
repeated for every clock cycle.
(Clock being the interface clock or
the FX3 internal clock).

None

16 INTR_CPU None Generates
CYU3P_GPIF_EVT_SM_INTERR
UPT event to the FX3 CPU which
can be serviced by the registered
interrupt callback in the firmware.

None

17 INTR_HOST None Drives the INTR pin in the Pport
interface to indicate the presence
of interrupt signal to the external
processor. The INTR pin should be
connected to the external
processor.

None

18 DR_DRQ Assert DRQ on – The DRQ signal can be
asserted using any of the options.
1) From DMA engine
2) On assertion from the external
processor on the DACK pin of FX3
3) On deassertion of DACK from the

Drives the DRQ pin in the Pport
interface to indicate the presence
of data request to the external
processor. The signal should be
connected to external processor
on which the DRQ is enabled.

None

Programming GPIF II State Machine

32 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

No Action Parameters Description Incompatibility with
other actions

external processor on the DACK pin of
FX3
4) From state Machine using the
DR_DRQ action
Deassert DRQ on - The DRQ is
deasserted using any of the options
1) On assertion from the external
processor on DACK pin of FX3
2) On deassertion from the external
processor on DACK pin of FX3
3) From state Machine using the
DR_DRQ action.

4.3.1 Action - IN_ADDR
The IN_ADDR action causes the GPIF hardware to sample the value from the address bus and use it to select a
DMA thread or a socket. Refer to the FX3 datasheet and SDK API documentation for more details on DMA threads
and sockets.

When the address bus width is less than or equal to two bits, the address can only select a DMA thread. If the
address is between three and five bits wide, it can select either a DMA thread or a specific socket. The “Address
Selecting” parameter shown in the dialog above is used to make this selection.

Figure 4-3. IN_ADDR Action Settings Dialog Box

The following parameter is associated with this action:

 Address Selecting - Thread or Socket

4.3.2 Action - IN_DATA
The IN_DATA action samples data from data bus and moves to the destination specified. Destination can be DMA
channel or the firmware application. See firmware API CyU3PGpifReadDataWords(). Note that the option for
selecting destination thread is available only when the destination is DMA channel with addressing mode as Thread
selected by State machine (Number of address lines =0).

It is possible to only latch the data from the data bus and not store it in the selected destination, or to store previously
latched data into the selected destination. These options are made available to satisfy certain protocols where the
data on the bus may lead a strobe signal that indicates data availability.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 33

Figure 4-4. IN_DATA Action Settings Dialog Box

The following parameters are associated with this action:

 Data Sink - Register/ Socket/ PPRegister

 Thread Number - Thread number with which the data sink is associated. Selectable from Thread0 to 3 (This
feature is available when there is no address line to select the thread number or master mode is enabled)

 Sample data from data bus - This option when checked samples data from data bus but does not push in to the
specified data sink.

 Write data into Data Sink - This option is checked when the user wants to push the sampled data in to the
specified Data Sink.

4.3.3 Action - DR_DATA
The DR_DATA action drives data on bus from the source specified. The source can be DMA channel or the firmware
application. See firmware API CyU3PGpifWriteDataWords(). Note that the option for selecting source as thread
number is available only when the source is DMA channel with addressing mode as Thread selected by State
machine (Number of address lines =0).

Figure 4-5. DR_DATA Action Settings Dialog Box

The following parameters are associated with this action:

 Update new value from data source - This option updates the data bus with the data word present in the Source
and removes the word from the specified Source.

 Data Source - This option facilitates the user to select between data counter and register/ Socket / PPRegister.

 Thread Number - Thread number with which the data source is associated. Selectable from Thread0 to 3 (This
feature is available when there is no address line to select the thread number)

 Remove Data from the Data Source: When this option is disabled data source continue to point to same data.

Programming GPIF II State Machine

34 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

Note The "Update new value from data source" flag overrides the "Repeat actions until next transition" flag on the
State Settings dialog box. This means if the "Update new value from data source" checkbox is selected data will be
updated on the bus in every clock cycle when FX3 is in that state even if the "Repeat actions until next transition" flag
is unchecked.

4.3.4 Action - DR_ADDR
The DR_ADDR action drives the value from specified the source to address bus. The source can be DMA channel or
the firmware application.

Figure 4-6. DR_ADDR Action Settings Dialog Box

The following parameters are associated with this action:

 Address Source - Register / AddressCounter/ ThreadSocket

 Thread Number - Thread0 to 3 (Available only when number of address bits is set to 0)

4.3.5 Action - COMMIT
The COMMIT action commits the data packet / buffer on the selected Ingress DMA channel. This action is typically
used to force “buffer / packet end” using state machine. For committing short buffers, this action should be used
along with the IN_DATA action. If the buffer is partially filled and the COMMIT action is performed without IN_DATA
action, a zero length buffer will be committed in addition to the partially filled buffer.

Figure 4-7. COMMIT Action Settings Dialog Box

The following parameters are associated with this action:

 Thread Number - Thread0 to 3 (Available only when number of address bits is configured 0 or master mode is
enabled).

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 35

4.3.6 Action - DR_GPIO
The DR_GPIO action drives the GPIO signal to HIGH / LOW or toggles value after “Assertion Delay” cycles. In case
of synchronous mode the delay can be selected between two and three cycles, and in case of asynchronous system
the delay can be 25 ns or 30 ns. The GPIO driven using the action will be deasserted during transition to next state.

Figure 4-8. DR_GPIO Action Settings Dialog Box

The following parameters are associated with this action:

 Signal name: User-defined alphanumeric string to indicate the signal can be entered here. This name will appear
on the state machine canvas.

 Delayed output: This parameter controls the delay of the output signal being driven. The delay will be 25 ns in
asynchronous mode or 2 clock cycles in synchronous mode when the parameter box is unchecked. The delay
will be 30 ns in asynchronous mode or 3 clock cycles in synchronous mode when the parameter box is checked.

 Signal mode: In Toggle mode the signal value gets toggled; In Assert mode the signal value will be driven as per
the Polarity of the signal. Polarity of the signal is configured from Interface Definition Window.

Notes

1. The delayed output and signal mode settings are global for each signal and cannot be changed every time the
action is used in a different state. The tool will generate a configuration file that corresponds to the last settings that
were made for each output signal.

2. "Repeat actions until next transition" in the state setting has no effect on the behavior of the DR_GPIO action. This
action is repeated for every clock cycle. (Clock being the interface clock or the FX3 internal clock).

4.3.7 Action - LD_ADDR_COUNT
This action loads the counter settings. Settings are loaded while starting the state machine. This value will be same
for a given state machine diagram.

Figure 4-9. LD_ADDR_COUNT Action Settings Dialog Box

Programming GPIF II State Machine

36 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

The following parameters are associated with this action:

 Counter type (Up / Down): Counter can be configured to count in ascending / descending order.

 Counter load value: Initial count loaded when this action is performed.

 Counter limit value: The count value at which the event should be generated.

 Reload on reaching limit reached: The count load value can be reloaded when the count limit value is hit by
checking this parameter box.

 Counter mask event: If the box is unchecked, firmware event is generated when the counter limit is reached.

 Counter step value: Counter step value that should be added/subtracted each time the COUNT_ADDR action is
used.

4.3.8 Action - LD_DATA_COUNT
This action loads the counter with initial settings. Initial settings are loaded while starting the state machine. This
value need to be same in all states within a given state machine diagram. Multiple values are not allowed.

Figure 4-10. LD_DATA_COUNT Action Settings Dialog Box

The following parameters are associated with this action:

 Counter type (Up / Down): Counter can be configured to count in ascending / descending order.

 Counter load value: Initial count loaded when this action is performed.

 Counter limit value: The count value at which the event should be generated.

 Reload on reaching limit reached: The count load value can be reloaded when the count limit value is hit by
checking this parameter box.

 Counter mask event: If the box is unchecked, firmware event is generated when the counter limit is reached.

 Counter step value: Counter step value that should be added / subtracted each time the COUNT_DATA action is
used.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 37

4.3.9 Action - LD_CTRL_COUNT
This action loads the counter with initial settings. Initial settings are loaded while starting the state machine. This
value need to be same in all states within a given state machine diagram. Multiple values are not allowed.

Figure 4-11. LD_CTRL_COUNT Action Settings Dialog Box

The following parameters are associated with this action:

 Counter type (Up / Down): Counter can be configured to count in ascending / descending order.

 Counter load value: Initial count loaded when this action is performed.

 Counter limit value: The count value at which the event should be generated.

 Reload on reaching limit reached: The count load value can be reloaded when the count limit value is hit by
checking this parameter box.

 Counter mask event: If the box is unchecked, firmware event is generated when the counter limit is reached.

 Counter step value: Counter step value that should be added / subtracted each time the COUNT_CTRL action is
used.

4.3.10 Action - COUNT_ADDR
Update Address counter value by the step value configured through the LD_ADDR_COUNT action. The
ADDR_CNT_HIT trigger will become true if this update results in the count reaching the specified limit.

Note that there are no parameters associated with this action.

4.3.11 Action - COUNT_DATA
Update Data counter value by the step value configured through the LD_DATA_COUNT action. The DATA_CNT_HIT
trigger will become true if this update results in the count reaching the specified limit.

Note that there are no parameters associated with this action.

4.3.12 Action - COUNT_CTRL
Update Control counter value by the step value configured through the LD_CTRL_COUNT action. The
CTRL_CNT_HIT trigger will become true if this update results in the count reaching the specified limit.

Note that there are no parameters associated with this action.

4.3.13 Action - CMP_ADDR
Compares address sampled with specified comparison value.

Programming GPIF II State Machine

38 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

Figure 4-12. CMP_ADDR Action Settings Dialog Box

The following parameters are associated with this action:

 Comparator mode: In value match mode, compares the current address value with the comparator value. In
Change detection mode, any change in the address value will cause a comparator match.

 Unmask value: Use this value to unmask the bits to be compared.

 Comparison value: Value to compare the address against.

 Comparator mask event: When you uncheck this parameter, it will cause an event to be generated to the
firmware application on comparator match.

Note "Repeat actions until next transition" in the state setting has no effect on the behavior of the CMP_ADDR action.
This action is repeated for every clock cycle (Clock being the interface clock or the FX3 internal clock).

4.3.14 Action - CMP_DATA
Compares data sampled with specified comparison value

Figure 4-13. CMP_DATA Action Settings Dialog Box

The following parameters are associated with this action:

 Comparator mode: In value match mode, compares the current data value with the comparator value. In Change
detection mode, any change in the data value will cause a comparator match.

 Unmask value: Use this value to unmask the bits to be compared.

 Comparison value: Value to compare the data against.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 39

 Comparator mask event: When you uncheck this parameter, it will cause an event to be generated to the
firmware application on comparator match.

Note "Repeat actions until next transition" in the state setting has no effect on the behavior of the CMP_DATA action.
This action is repeated for every clock cycle. (Clock being the interface clock or the FX3 internal clock).

4.3.15 Action - CMP_CTRL
Compares control bits with specified comparison value

Figure 4-14. CMP_CTRL Action Settings Dialog Box

The following parameters are associated with this action:

 Comparator mode: In value match mode, compares the current control signal values with the comparator value.
In Change detection mode, any change in the unmasked control signals will cause a comparator match.

 Unmask value: Use this value to unmask the bits to be compared.

 Comparison value: Value to compare the control signals against.

 Comparator mask event: When you uncheck this parameter, it will cause an event to be generated to the
firmware application on comparator match.

Note "Repeat actions until next transition" in the state setting has no effect on the behavior of the CMP_CTRL action.
This action is repeated for every clock cycle. (Clock being the interface clock or the FX3 internal clock).

4.3.16 Action - INTR_CPU
Interrupts the on-chip CPU to generate CYU3P_GPIF_EVT_SM_INTERRUPT event, which is to be handled by the
firmware application.

Note that there are no parameters associated with this action.

4.3.17 Action - INTR_HOST
Interrupt the external processor by driving the INTR pin on P-Port. The INTR pin should be connected to external
processor.

Note that there are no parameters associated with this action.

Programming GPIF II State Machine

40 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

4.3.18 Action - DR_DRQ
This action drives the DRQ pin in the P-port interface to indicate the presence of data request to the external
processor. The signal should be connected to external processor on which the DRQ is enabled.

Figure 4-15. DR_DRQ Action Settings Dialog Box

The following parameters are associated with this action:

DRQ value - Asserted or Deasserted

 Assert DRQ on – The DRQ signal can be asserted using any of the options.

 From DMA engine

 On assertion from the external processor on the DACK pin of FX3

 On deassertion of DACK from the external processor on the DACK pin of FX3

 From state Machine using the DR_DRQ action

 Deassert DRQ on - The DRQ is deasserted using any of the options

 On assertion from the external processor on DACK pin of FX3

 On deassertion from the external processor on DACK pin of FX3

 From state Machine using the DR_DRQ action

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 41

4.4 GPIF II Transition Equations and Triggers
The triggers causing state transitions in a GPIF II state machine are Boolean expressions formed using trigger
variables. The state transition equations can be formed using P-port signals or events generated as a result of P-port
actions. The following table captures events generated as a result of the GPIF II actions.

No. Event
Action Causing the

Event
Description

1 Input signal name None; This is an
external event

Name associated with any GPIO configured as input
can be used as trigger in a transition equation.

2 FW_TRG Firmware application This trigger can be generated from the firmware using
the firmware API CyU3PGpifControlSWInput()

3 INTR_PENDING Interrupt to CPU This is true only when the CPU/Host yet to read the
previous raised Interrupt

4 CTRL_CNT_HIT COUNT_CTRL
This trigger is true when the count specified Is reached.
This trigger is generated as a result of COUNT_CTRL
action

5 ADDR_CNT_HIT COUNT_ADDR
This trigger is true when the count specified Is reached.
This trigger is generated as a result of COUNT_ADDR
action

7 DATA_CNT_HIT COUNT_DATA
This trigger is true when the count specified Is reached.
This trigger is generated as a result of COUNT_DATA
action

8 CTRL_CMP_MATCH CMP_CTRL

This trigger is true when the control pattern and mask
matches with the current GPIO. This trigger is generated
only with the CMP_CTRL action is specified in parent
state.

9 DATA_CMP_MATCH CMP_DATA

This trigger is true when the data pattern and mask
matches with the current data. This trigger is generated
only with the CMP_DATA action is specified in parent
state.

10 ADDR_CMP_MATCH CMP_ADDR

This trigger is true when the address pattern and mask
matches with the current address read. This trigger is
generated only with the CMP_ADDR action is specified
in parent state.

11

DMA_RDY_CT,
DMA_RDY_TH0,
DMA_RDY_TH1,
DMA_RDY_TH2,
DMA_RDY_TH3

IN_DATA
DR_DATA

This trigger is true when the DMA is ready to send or
receive data.

12

DMA_WM_CT,
DMA_WM_TH0,
DMA_WM_TH1,
DMA_WM_TH2,
DMA_WM_TH3

IN_DATA This is true when the active DMA thread crosses the
transferred data above the watermark.

13 DMA_RDY_ADDR DR_ADDR This trigger is true when the DMA is ready to send or
receive address

14

IN_REG_CR_VALID,
IN_REG0_VALID,
IN_REG1_VALID,
IN_REG2_VALID,

IN_DATA

This trigger is true when the data in the input register
(INGRESS_DATA_REGISTER) is valid. This trigger is
set when GPIF writes data into the
INGRESS_DATA_REGISTER using the IN_DATA
action. It is cleared by the firmware by setting the

Programming GPIF II State Machine

42 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

No. Event
Action Causing the

Event
Description

IN_REG3_VALID IN_DATA_VALID field in the GPIF_DATA_CTRL
register.

15

OUT_REG_CT_VALID,
OUT_REG0_VALID,
OUT_REG1_VALID,
OUT_REG2_VALID,
OUT_REG3_VALID

DR_DATA

This trigger is true when the data in the output register
(EGRESS_DATA_REGISTER) is valid. The firmware
needs to enable this trigger by setting the
EG_DATA_VALID bit in the GPIF_DATA_CTRL
register. This will be cleared when the data in the
register has been transmitted by the GPIF as a result of
the DR_DATA action.

16 OUT_ADDR_VALID DR_ADDR

This trigger is true when the address in the output
register (EGRESS_ADDRESS_REGISTER) is valid.
This is done when the firmware sets the
EG_ADDR_VALID bit in the GPIF_DATA_CTRL
register.

4.5 GPIF II Constraints
The GPIF II hardware imposes some limitations on the state machines that can be implemented. Mainly, these
limitations are:

 Full support is limited to state machines that are limited to two (or fewer) outgoing transitions from each state.
Such state machines are called binary state machine in the rest of this document.

 Each transition equation is limited to the use of four (or fewer) trigger variables.

These limitations can be surmounted by making certain changes to the state machine design. The two main
techniques that can be used are:

1. Using mirror states
2. Using intermediate dummy states

The GPIF II Designer tool applies the first technique automatically on state machines that do not satisfy the
constraints. However, it is possible that the tool is unable to identify a set of transformations that allow the state
machine to be mapped to the GPIF hardware. In such a case, the tool outputs the error message "Unable to
synthesize state machine". The user can follow the state machine entry guidelines to try and resolve these errors.

If the error persists despite making these changes, contact Cypress support for assistance.

4.5.1 Mirror States
The mirror state machine technique makes use of a GPIF II feature that is introduced to facilitate state machine
designs that violate the previously described rules.

The GPIF II hardware supports working with multiple copies of a binary state machine, where the active state
machine copy is determined using the current value of a trigger variable. For example, consider the state machine
fragment shown as follows. This state machine has a state S0, which has four outgoing transitions based on the
transition equations !ABC, !AD, ABC, and AD.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 43

Figure 4-16. A GPIF II State Machine Example Requiring Mirror States

The term A can be removed from these transition equations to obtain the two modified state machines shown in
Figure 4-17.

Figure 4-17. A GPIF II State Machine Split as Mirror States

In this case, S0’ is inserted as a mirror state of S0. S0 has valid transitions pointing to S1 and S2 and S0’ has valid
transitions pointing to S3 and S4. The state machine {S0, S1, S2} is applicable when the trigger variable A has a
value of 0 and the state machine {S0’, S3, S4} is applicable when the trigger variable A has a value of 1. The GPIF
hardware automatically selects the correct state from between S1 and S3 or from between S2 and S4, by looking at
the current value of A.

This GPIF II Designer tries to apply this feature to implement state machines that have too many out transitions from
a state as well as state machines that use transition equations with many triggers. The derived state machines using
this procedure need to follow a set of GPIF II mirroring rules, in order to become implementable without side effects.

A real example of this method is provided in the mirror states example section.

4.5.1.1 Mirror State Rules
The GPIF hardware allows up to 8 mirror state machines to be created, so that the active mirror is selected based on
the current value of up to three input signals. The input signals that are used to select the active mirror state machine
are called Global Triggers.

There are a set of rules that need to be satisfied by all the mirror state machines. The GPIF II Designer tries to
identify a set of global triggers that reduce the state machine to one that satisfies the following rules.

 The transitions can be split into groups of two each, such that each group applies to a specific combination of
trigger values.

 The transitions in each group should have the same transition equations after the global trigger terms have been
removed.

Programming GPIF II State Machine

44 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

 The target states that share the same transition equation should not use conflicting actions. See the table listing
GPIF II Actions for details on incompatible actions.

The tool first attempts to find a solution with one global trigger, then with two, and finally with three global triggers. If
the tool is unable to find a state machine reduction that satisfies the above conditions with any of these levels, it will
come back with an error message saying that the state machine input cannot be synthesized.

In many cases, such state machine mapping errors are a consequence of incompletely specified input. See the
guidelines section for some ideas on how the state machine definition can be improved to aid the tool in finding a
solution.

4.5.1.2 Mirror States Example
Figure 4-18 shows a part of the Synchronous Slave FIFO protocol implementation that is included with GPIF II
Designer as a Cypress supplied interface project.

Figure 4-18. Slave FIFO Interface Example State Machine Requiring Mirror States

The IDLE state is where the state machine waits for control signals to start performing a data transfer. Depending on
the input signals, it may transition to one of four states:

1. RD state where a read operation is handled. Transition to the RD state is triggered by the RD input signal getting
asserted while the WR and the END input signals stay deasserted. The IN_ADDR and DR_DATA actions are
associated with the RD state.

2. WR state where a general write operation (not end of packet) is handled. Transition to the WR state is triggered
by the WR input getting asserted while the RD and END signals are deasserted. The IN_DATA action is
associated with this state.

3. SLP state where a single word write operation is handled (data along with end of packet signaling). Transition to
the SLP state is triggered by the WR and END inputs being triggered while RD stays deasserted. The IN_DATA
and COMMIT actions are associated with this state.

4. ZLP state where a zero length write operation is handled (no data, only end of packet signaling). This transition is
triggered by END being asserted while RD and WR are both deasserted. The COMMIT action is associated with
this state.

The GPIF II Designer tool converts the above state machine fragment into the following implementation that has four
mirror state machines. The conditions under which each of the four mirrors is active are listed on top. You can see
that all of the transitions that are shown going to the right, share the same transition equation and the actions
specified in these states are non-conflicting.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 45

Figure 4-19. Slave FIFO Interface Example Implementation with Mirror States

4.5.1.3 Guidelines for Transition Equation Entry
In many cases, the GPIF II designer is unable to reduce the input state machines to an implementable form because
of insufficient input information.

For example, consider another form of the state machine fragment shown in the Mirror state example. This version of
the state machine cannot be converted into multiple mirrored state machines that satisfy the mirroring rules using any
global trigger combination.

Figure 4-20. State Machine Example with Mirror States

The problem is that the transition equations are not well defined. For example, the tool needs to assume that the
IDLE → RD transition can happen independent of the values of the WR and END signals. If all of the transition
equations are made well defined by adding expected values for the other input signals, the state machine gets
transformed into the version shown in the example and the tool is able to reduce the state machine to an
implementable form.

In general, specifying each transition equation (particularly for the transitions originating from a state that has more
than two output transitions) fully by listing the expected value of all trigger inputs will help the tool find a mapping of
the state machine to the GPIF hardware. In the absence of such data, the tool treats the unspecified triggers as don’t
cares for a particular transition, and may fail to find an implementable mapping.

It is also recommended to avoid transition equations that involve multiple OR clauses in states that have more than
two output transitions. This is because transition equations that have OR clauses typically cannot be refactored to
remove global triggers.

Programming GPIF II State Machine

46 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

4.5.2 Intermediate States
Intermediate states can be inserted into the state machine to reduce the number of state transitions originating at a
state.

Consider the state machine fragment shown in Figure 4-21. There are four transitions originating at state S0, with the
transition equations F1, F2, F3, and F4 respectively.

Figure 4-21. Example State Machine with Multiple Transitions

The above state machine can be transformed into the version shown below. Here Sx and Sy are dummy states that
have been inserted to meet the constraint that each state can have only two outgoing transitions.

Figure 4-22. GPIF II Implementation for Multiple Transitions Avoiding Mirror States

This kind of transformation has an impact on the overall latency between states. For example, the actions specified in
the state S1 will now be performed with an additional delay of 1 cycle. Similarly, the input values that trigger the
S0 → S1 transition now need to stay valid for one additional cycle. Since these system-level timing changes cannot
be assumed safely, such transformations are not automatically performed by the GPIF II Designer tool. This
technique can be used as applicable by the user to reduce state machines to an implementable form.

4.6 Designing a GPIF II State Machine
This section illustrates how to design a GPIF II state machine to implement a GPIF II port interface using the GPIF II
Designer application.

Start with a clear definition of the interface to be implemented on the GPIF II port along with a clear view of how the
interface interacts with the FX3 firmware application. The definition of the interface is typically specified using a timing
diagram. The timing diagram and the protocol definition should specify the relative timing requirements between input
and output signals and bus activities.

The details of GPIF II design that needs to be entered into the tool are conveniently categorized as two parts:

 The physical layout of the interface and related details including clock settings.

 The behavior of the interface in terms of how a signal or bus activity or a DMA operation is to be timed. This is
specified a state machine diagram.

This is best explained using a real interface example as done in the subsequent sections.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 47

4.6.1 Illustration of Implementing Asynchronous SRAM Interface
Consider the implementation of a standard slave implementation of asynchronous SRAM interface.

The asynchronous SRAM interface uses the industry-standard SRAM control bus with Chip Enable, Read (Output)
Enable, and Write Enable (CE#, OE#, WE#). READ operations are initiated by bringing CE# and OE# LOW while
keeping WE# HIGH. Valid data will be driven out of the data bus after the specified access time has elapsed. WRITE
operations occur when CE# and WE# are driven LOW. The data to be written is latched on the rising edge of CE# or
WE# (whichever occurs first). The timing diagrams are shown as follows.

Figure 4-23. Asynchronous SRAM Read Timing Diagrams

Programming GPIF II State Machine

48 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 49

Subsequent sections illustrate how the above timing diagrams can be entered to GPIF II Designer to implement this
interface on FX3.

4.6.1.1 Defining the Interface
To design an interface using GPIF II Designer, start creating a GPIF II Design project. A new project can be created
using the "New Project" command from the File menu, or by using links provided on the start page. The "New Project"
command pops up the New Project dialog box as shown below. The user can enter the project name and choose the
location where the project files will be stored. See section Creating a GPIF II Project for a detailed description.

An existing project can be opened by using File menu item "Open Project". The start page also provides links to open
the most recently used projects.

Once a project is opened, the user is greeted with the Interface Definition window where the user is allowed to enter
the electrical interface details. See Interface Definition for details on the Interface definition window.

Selections applicable for Asynchronous SRAM interface are:

 Interface Type - Slave

 Communication Type - Asynchronous

 Data bus width - Choose 8, 16, 24 or 32 as required.

 Address/data bus multiplexed - Unchecked (Non multiplexed)

 Number of address pins used - User can enter a value from 0 to 32 depending on the target application and
interface type.

There are three input signals. Input signals WE and OE are assigned special functionalities of Write Enable and
Output Enable. Also the internal data latch can be used by selecting the DLE (data Latch Enable). See Interface
Definition for details of special functions.

A screenshot of Interface definition with the above settings is shown below for reference.

Figure 4-24. Interface Definition for Asynchronous SRAM

FX3 Peripherals used

The FX3 I/O lines are shared with other peripheral interfaces supported by FX3 that includes GPIF II. The selection of
peripherals being used enables the tool can calculate the I/O lines available. Ensure the checkbox corresponding to
the unused peripheral is unchecked.

Programming GPIF II State Machine

50 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

Clock Settings

If the GPIF II port transactions are synchronized using clock, “Communication type” should be set to synchronous
mode. If Synchronous mode is selected user is provided to make selections on “Clock Settings”. For this design
Communication type is selected as asynchronous.

Endianness

The “Endianness” feature enables the FX3 device to comprehend the data lines in Little Endian or Big Endian
fashion. Note that the Endianness is not applicable when the address bus width is set to 8 bit. This setting forces the
GPIF II of FX3 device to go to a special mode allowing the external processor to access internal registers of FX3
through GPIF II port. This mode known as PP_MODE does not support big Endian.

I/O Selection

The GPIF II port I/O lines (number of input, output, DMA status flags, Address bus width, Data bus width) can be
defined in “Signals” and “Address/ data bus usage” spaces.

In this example following pins are used:

 Address bus: 8-bit address lines

 Data bus: 16-bit data lines

Three input lines with following special functions associated with each

 CE (Active low Chip Enable pin): Every transaction requires CE line to be asserted throughout the duration.

 WE (Active low Write Enable pin): During write to the device this pin must remain asserted.

 OE (Active low Output Enable pin): During read the OE should remain asserted otherwise not.

Special Functions

Certain predefined functions can be attributed to some of the I/O lines, which can affect the state machine behavior.
There are six special functions out of which the following three are used in this example.

 WE: The WE special function can only be connected to GPIO_18. This ensures that the Assertion of GPIO_18
line will result in the setting up the data bus direction for ingress path (in to the FX3 device).

 OE: This feature can only be availed with GPIO_19. With this function, the assertion of GPIO_19 can directly
change the data bus direction for egress path (out of FX3 device).

 DLE: The Data Latch Enable (DLE) function uses the GPIO_18 line’s de-assertion to latch the data line for few
nanoseconds more. This can be used while the FX3 device is reading the data lines for ingress path at the de-
assertion edge of GPIO_18.

Note The center pane of the Interface definition window displays the bus and I/O connections dynamically. The I/O
Matrix Configuration between FX3 and external processor can be modified directly on the display. See Interface
Definition for details.

4.6.1.2 Designing the State Machine
After defining the interface a state machine diagram corresponding to the interface need to be drawn using the state
machine canvas. You can move to the state machine canvas by using the "State Machine" tab.

Most interface functionality can be categorized in to read, write and control. These individual functions can be
developed independently and can be merged to form a state machine diagram. The sequencing of states with actions
and triggers is developed by mapping a cause-effect relationship between the I/O transactions and the participating
I/O lines.

The state machine diagram corresponding to the interface behavior can be derived by mapping the actions on the
interface with the GPIF II actions and triggers (See GPIF II Actions and GPIF II Transition equations and triggers for
details). Typically a timing diagram corresponds to a specific sequence of actions translating to a specific path.
(Sequence of state bubbles connected by transitions) The timing diagram provides specific timing constraints

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 51

Figure 4-25. State transitions on Asynchronous SRAM Read Timings

The FX3 device needs to do following actions in sequence for a read transaction:

a. Waits for CE line to go asserted (trigger A). During this time, the device keeps on sampling the address lines to
select the socket or registers depending on the address.

b. After CE assertion the device waits for OE assertion (trigger B). Then the device starts driving data. It pops one
word data from the selected location and pushes in to the data bus.

c. When the device sees deassertion of OE line (trigger C) the device stops popping data from the selected
location. But it still maintains the data in the bus for certain time. B and C happen one after another till the
transaction is over.

d. When FX3 device sees deassertion of CE line, it exits from read section.

There are two actions that are performed on the bus:

1. Sampling the address from the address bus
2. Driving the data on the bus

The above two actions can be mapped to actions IN_ADDR and DR_DATA.

Note that the action DR_DATA internally has two parts:

 “Pop data from location”

 “update data to data bus”

Programming GPIF II State Machine

52 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

Figure 4-26. Asynchronous SRAM Read State Machine Entry

Similarly, the Write action is performed as shown in Figure 4-27. There are two actions that are performed on the bus:

1. Driving the address on the bus
2. Driving data on the bus

Figure 4-27. State Transitions on Asynchronous SRAM Write Timings

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 53

As you can see from the timing diagram FX3 device:

a. Waits for CE line to go asserted (trigger A). During this time, the device keeps on sampling the address lines to
select the socket or registers depending on the address.

b. After CE assertion the device waits for WE assertion (trigger B). Then the device starts sampling data. But the
device does not push the data in to the selected location as there is a chance that the device may sample an
invalid data for there is a delay of tDS between the valid data and the assertion of WE. (Note This sampling of
data bus is a necessary action even though it may look like adjunct. This sampling of data helps the internal
hardware to latch the correct data at the de-assertion edge of WE.)

c. The device waits for WE deassertion. The FX3 device latches the data at the de-assertion of WE (using the
special function DLE). After WE deassertion the device samples the valid data and pushes in to the selected
location.

d. When FX3 device sees de-assertion of CE line, it exits from write section.

The state machine actions for a Write are:

Figure 4-28. Asynchronous SRAM Write State Machine Entry

Note that the settings of each state and each action can be modified using the corresponding dialog boxes. The final
state machine diagram is obtained by merging the read and write state machines to form a single state machine.

Programming GPIF II State Machine

54 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

4.6.2 Analyzing Timing
You can verify your design by simulating the timing waveform in the Timing canvass. You need to create a Timing
scenario to simulate the taming waveform for a specified path.

The following screen shot captures timing scenario for the READ path:

Figure 4-29. Timing Scenario for Asynchronous SRAM Read

Note that each state in the timing scenario is simulated for a single clock cycle evaluating the output. In the above
case the state machine is expected to be in READ_WAIT for six clock cycles. Therefore the timing scenario should
have six READ_WAIT states in sequence.

Screen shots capturing simulated timing for Read and Write paths are captured in Figure 4-30.

Figure 4-30. Asynchronous SRAM Read and Write Timing Simulation

Note that the simulator simulates the timings at the periphery of FX3.

GPIF II Designer 1.0 Document No. 001-75664 Rev. *D 55

4.7 GPIF II Firmware API
GPIF II Designer generates a header file containing data structures and macros that integrates with the FX3 firmware
framework API. The header file will be generated under the project folder. The header file is named cyfxgpif2config.h
by default.

The generated header file contains data structures that are compliant with the EZ-USB FX3 firmware framework API.
The user needs to copy the header file to an appropriate folder so that the header file can be included to the firmware
application code. The firmware application needs to call appropriate GPIF II APIs to load and start the state machine.

Refer to the GPIF Management section of the FX3 SDK API Guide document in the FX3 SDK installation for more
information about the GPIF II-related APIs and procedures.

The FX3 firmware framework provides following sets of API related to GPIF II:

 Loading and Initializing the state machine

 Controlling the state machine

 Data path connection to P-Port

 Firmware events

Loading and Initializing the State Machine
Use CyU3PGpifLoad() to initialize GPIF II from the firmware application.

 /* Load the configuration into the GPIF registers.
 CyFxGpifConfig is defined in the GPIF II designer generated header file */
 status = CyU3PGpifLoad (&CyFxGpifConfig);
 if (status != CY_U3P_SUCCESS)
 return status;

Use CyU3PGpifSMStart() to start GPIF state machine operation.

 /* Start the operation of the GPIF II state machine.
 Both START and ALPHA_START are defined in the header file. */
 status = CyU3PGpifSMStart (START, ALPHA_START);
 if (status != CY_U3P_SUCCESS)
 return status;

Controlling the State Machine
 The CyU3PGpifSMSwitch() API is used for switching GPIF execution between disjoint state machines. The

source and destination states for the software triggered switch need to be specified. The user can optionally
specify an end state in which case an event (interrupt) is generated when the state machine reaches this state.

 The CyU3PGpifSMControl() function is used to pause or resume the operation of the GPIF state machine.

 The GPIF supports a software generated input signal that can be used to direct the functioning of the
programmed state machine. Any of the states can query the state of this signal and use it to determine the next
state to transition to. The CyU3PGpifControlSWInput() API is used to update the value of this software generated
input signal at runtime.

Data Path Connection to GPIF
CyU3PGpifSocketConfigure

This function is used to select the P-port socket that should be bound to a specific DMA thread in the GPIF, and to
configure its parameters. This operation is only permitted when the socket selection is not being done by hardware.
This should be called irrespective of if the user is using GPIF registers or sockets to do data transfers.

CyU3PGpifReadDataWords

This function is used to read one or more words of data through one of the GPIF threads without the involvement of
the DMA layer.

Programming GPIF II State Machine

56 Document No. 001-75664 Rev. *D GPIF II Designer 1.0

CyU3PGpifWriteDataWords

This function is used to write one or more words of data through one of the GPIF threads without the involvement of
the DMA layer.

Alpha Values

Control outputs from the GPIF State Machine can be classified into early outputs and delayed/normal outputs. The
early outputs have shorter output latency than the delayed outputs. This is achieved by making their values available
to the GPIF hardware one cycle earlier than all the other state information. The early output signals from GPIF are
called as Alphas and their total number is limited to 8 signals.

As the values for the alpha class outputs are specified and interpreted differently by the GPIF hardware, the initial
values for these signals also needs to be specified outside of the state machine description. The initial Alpha values
that a GPIF design needs to have are generated in the form of a <PROJECT_NAME>_ALPHA_START macro in the
GPIF configuration header file. This value is expected to be passed as the initial Alpha parameter to the
CyU3PGpifSMStart() API after the CyU3PGpifLoad() API has been called.

Firmware Events
The firmware framework allows the customer-provided application layer to register a callback function through which
it can receive GPIF related events. These events are generated as a result of interrupts from the GPIF hardware and
are relayed to the application from a thread context.

The API CyU3PGpifRegisterCallback() is used to register the event callback function. The following table captures
GPIF related events that can be received by the callback function.

No Event Type Description

1 CYU3P_GPIF_EVT_END_STATE State machine has reached the designated end state.

2 CYU3P_GPIF_EVT_SM_INTERRUPT State machine has raised a software interrupt.

3 CYU3P_GPIF_EVT_SWITCH_TIMEOUT Desired state machine switch has timed out.

4 CYU3P_GPIF_EVT_ADDR_COUNTER Address counter has reached the limit.

5 CYU3P_GPIF_EVT_DATA_COUNTER Data counter has reached the limit

6 CYU3P_GPIF_EVT_CTRL_COUNTER Control counter has reached the limit.

7 CYU3P_GPIF_EVT_ADDR_COMP Address comparator match has been obtained.

8 CYU3P_GPIF_EVT_DATA_COMP Data comparator match has been obtained

9 CYU3P_GPIF_EVT_CTRL_COMP Control comparator match has been obtained

Note Appropriate API need to be called in the firmware application to initialize and program the events. Refer to the
FX3 firmware API guide for details.

	Contents
	1. Introduction
	1.1 Welcome
	1.2 About Help
	1.3 Technical Support
	1.4 Document Revision History

	2. Getting Started
	2.1 Creating a GPIF II Project
	2.2 Designing a GPIF II Interface
	2.3 Integrating GPIF II Configuration
	2.4 Analyzing Signal Timings of the Interface

	3. Understanding GPIF II Designer
	3.1 Concepts
	3.1.1 Cypress Supplied Interfaces
	3.1.2 Interface Concepts
	3.1.2.1 Peripherals
	3.1.2.2 Master and Slave
	3.1.2.3 Interface Clocking
	3.1.2.4 Multiplexing of Address/Data
	3.1.2.5 Control Signals and GPIOs

	3.1.3 FX3 DMA Architecture
	3.1.3.1 Sockets
	3.1.3.2 Threads
	3.1.3.3 Data Transfer Registers
	3.1.3.4 DMA Flags

	3.1.4 GPIF II State Machine Concepts
	3.1.4.1 GPIF II State Machine
	3.1.4.2 Disjoint State Machine
	3.1.4.3 Start State

	3.1.5 Timing Simulation Concepts
	3.1.5.1 State Machine Path
	3.1.5.2 Timing Scenario

	3.2 User Interface
	3.2.1 Start Page
	3.2.2 Interface Definition
	3.2.2.1 Selection of FX3 Peripherals
	3.2.2.2 Master/Slave Interface Selection
	3.2.2.3 Asynchronous / Synchronous Interfaces
	3.2.2.4 Address and Data Buses
	3.2.2.5 Signal Properties
	3.2.2.6 Special Function Signals
	3.2.2.7 Input Signal Settings
	3.2.2.8 Output Signal Setting
	3.2.2.9 Flag Signal Settings

	3.2.3 Interface Customization
	3.2.4 State Machine Canvas
	3.2.4.1 State Settings
	3.2.4.2 Transition Equation Entry

	3.2.5 Timing
	3.2.5.1 Scenario Entry
	3.2.5.2 Macro

	3.2.6 Output Window and Notice List Window
	3.2.7 Documentation and Context Help

	3.3 Tabs, Menus, and Shortcuts
	3.3.1 Application Toolbar
	3.3.2 File Menu
	3.3.3 View Menu
	3.3.4 Build Menu
	3.3.5 Timing Simulation
	3.3.6 Help Menu
	3.3.7 Shortcut Keys

	4. Programming GPIF II State Machine
	4.1 GPIF II Overview
	4.2 GPIF II State Machine
	4.3 GPIF II Actions
	4.3.1 Action - IN_ADDR
	4.3.2 Action - IN_DATA
	4.3.3 Action - DR_DATA
	4.3.4 Action - DR_ADDR
	4.3.5 Action - COMMIT
	4.3.6 Action - DR_GPIO
	4.3.7 Action - LD_ADDR_COUNT
	4.3.8 Action - LD_DATA_COUNT
	4.3.9 Action - LD_CTRL_COUNT
	4.3.10 Action - COUNT_ADDR
	4.3.11 Action - COUNT_DATA
	4.3.12 Action - COUNT_CTRL
	4.3.13 Action - CMP_ADDR
	4.3.14 Action - CMP_DATA
	4.3.15 Action - CMP_CTRL
	4.3.16 Action - INTR_CPU
	4.3.17 Action - INTR_HOST
	4.3.18 Action - DR_DRQ

	4.4 GPIF II Transition Equations and Triggers
	4.5 GPIF II Constraints
	4.5.1 Mirror States
	4.5.1.1 Mirror State Rules
	4.5.1.2 Mirror States Example
	4.5.1.3 Guidelines for Transition Equation Entry

	4.5.2 Intermediate States

	4.6 Designing a GPIF II State Machine
	4.6.1 Illustration of Implementing Asynchronous SRAM Interface
	4.6.1.1 Defining the Interface
	4.6.1.2 Designing the State Machine

	4.6.2 Analyzing Timing

	4.7 GPIF II Firmware API

