
 

 www.cypress.com Document No. 001-65974 Rev. *O 1 

AN65974 

Designing with the EZ-USB FX3 Slave FIFO Interface 

Author: Rama Sai Krishna V 
Software Version: EZ-USB FX3 SDK1.3.4 

Related Application Notes: AN75705, AN68829 

More code examples? We heard you. 

For a consolidated list of USB SuperSpeed Code Examples, visit www.cypress.com/101781. 
 

  

AN65974 describes the synchronous Slave FIFO interface of EZ-USB® FX3 . The hardware interface and configuration 
settings for the flags are described in detail with examples. The application note includes references to GPIF  II Designer 
to make the Slave FIFO interface easy to design with. Two complete design examples are provided to demonstrate how 
you can use the synchronous Slave FIFO to interface an FPGA to FX3. 

Contents 

1 Introduction .................................................................. 2

2 More Information ......................................................... 2

2.1 EZ-USB FX3 Software Development Kit ............. 3

2.2  .............................................. 3

3 GPIF II ......................................................................... 3

4 Synchronous Slave FIFO Interface .............................. 4

4.1 Difference between Slave FIFO with Two and Five 
Address Lines .............................................................. 5

4.2 Pin Mapping of Slave FIFO Interface .................. 5

5 Slave FIFO Access Sequence and Interface Timing ... 6

5.1 Synchronous Slave FIFO Interface Timing ......... 7

5.2 Synchronous Slave FIFO Read Sequence ......... 7

5.3 Synchronous Slave FIFO Write Sequence ......... 9

6 Threads and Sockets ................................................. 10

7 DMA Channel Configuration ...................................... 11

8 Flag Configuration ..................................................... 12

8.1 Dedicated Thread Flag ..................................... 12

8.2 Current Thread Flag .......................................... 12

9 GPIF II Designer ........................................................ 15

9.1 Implementing a Synchronous Slave FIFO 
Interface .................................................................... 15

9.2 Configuring a Partial Flag ................................. 15

9.3 General Formulae for Using Partial Flags ......... 18

9.4 CyU3PgpifSocketConfigure() API Usage 
Examples ................................................................... 18

9.5 Other Considerations When Using the Partial  
Flag  .......................................................................... 20

9.6 Error Conditions Due to Flag Violations ............ 21

10 Slave FIFO Firmware Examples in the SDK .............. 22

11
Synchronous Slave FIFO Interface ................................. 23

11.1 Hardware Setup ................................................ 23

11.2 Firmware and Software Components ............... 24

11.3 FX3 Firmware Details ....................................... 25

11.4 FPGA Implementation Details ........................... 28

11.5 Project Operation .............................................. 35

12
Synchronous Slave FIFO Interface ................................. 41

12.1 Hardware Setup ................................................ 41

12.2 Firmware and Software Components ............... 42

12.3 FX3 Firmware Details ....................................... 43

12.4 FPGA Implementation Details ........................... 46

12.5 Project Operation .............................................. 52

13 Associated Project Files ............................................ 58

14 Summary ................................................................... 59

A Appendix A: Troubleshooting .................................... 60

B Appendix B: Hardware Setup Using FX3 DVK 
(CYUSB3KIT-001) ........................................................... 62

B.1 Jumper and Switch Settings ............................. 63

C Appendix C ................................................................ 64

C.1 Short Packet Example ...................................... 64

C.2 Zero-Length Packet (ZLP) Example ................. 65

Document History ............................................................ 68

Worldwide Sales and Design Support ............................. 70

Products  .......................................................................... 70

PSoC® Solutions ............................................................. 70

Technical Support ........................................................... 70

  



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 2 

1 Introduction 

The EZ-USB FX3, Cypress next-generation USB 3.0 peripheral controller, enables developers to add USB 3.0 
functionality to any system. The controller works well with applications such as imaging and video devices, printers, 
and scanners. 

EZ-USB FX3 has a fully-configurable parallel, general programmable interface, called GPIF II, which can connect to an 
external processor, ASIC, or FPGA. GPIF  2.0 
product. GPIF II provides glueless connectivity to popular devices such as FPGAs, image sensors, and processors with 
interfaces such as the synchronous address data multiplexed interface. 

One popular implementation of GPIF II is the synchronous Slave FIFO interface. This interface is used for applications 
in which the external device connected to EZ-USB FX3 accesses the FX3 FIFOs, reading from or writing data to them. 
Direct register access is not possible over the Slave FIFO interface.  

This application note begins with an introduction to GPIF II and then describes the details of the synchronous Slave 
FIFO interface. This document also provides two complete design examples that show you how to implement a master 
interface compatible with synchronous Slave FIFO on an FPGA. The Verilog and VHDL files for Xilinx Spartan 6 FPGA 
and Altera Cyclone III FPGA are provided. The corresponding FX3 firmware project for synchronous Slave FIFO is also 
included as part of the example. These examples have been developed using a Xilinx SP601 evaluation kit for the 
Spartan 6 FPGA and an Altera Cyclone III Starter Board for the Cyclone III FPGA, an FX3 development kit (DVK), and 
the FX3 software development kit (SDK). 

2 More Information 

Cypress provides a wealth of data at www.cypress.com to help you to select the right device for your design, and to 
help you to integrate the device into your design quickly and effectively. 

 Overview: USB Portfolio, USB Roadmap 

 USB 3.0 Product Selectors: FX3, FX3S, CX3, HX3  

 Application notes: Cypress offers a large number of USB application notes covering a broad range of topics, from 
basic to advanced level. Recommended application notes for getting started with FX3 are: 

 AN75705  Getting Started with EZ-USB FX3 

 AN70707  EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist 

 AN65974  Designing with the EZ-USB FX3 Slave FIFO Interface 

 AN75779  How to Implement an Image Sensor Interface with EZ-USB FX3 in a USB Video Class (UVC) 
Framework 

 AN86947  Optimizing USB 3.0 Throughput with EZ-USB FX3 

 AN84868  Configuring an FPGA over USB Using Cypress EZ-USB FX3 

 AN68829  Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode 

 AN76348  Differences in Implementation of EZ-USB FX2LP and EZ-USB FX3 Applications 

 AN89661  USB RAID 1 Disk Design Using EZ-USB FX3S 

 Code Examples:  

 USB Hi-Speed 

 USB Full-Speed 

 USB SuperSpeed 

 Technical Reference Manual (TRM):  

 EZ-USB FX3 Technical Reference Manual 

 Development Kits: 

 CYUSB3KIT-003, EZ-USB FX3 SuperSpeed Explorer Kit 

 CYUSB3KIT-001, EZ-USB FX3 Development Kit 

 Models: IBIS 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 3 

2.1 EZ-USB FX3 Software Development Kit 

Cypress delivers the complete software and firmware stack for FX3 to easily integrate SuperSpeed USB into any 
embedded application. The Software Development Kit (SDK) comes with tools, drivers, and application examples, 
which help accelerate application development.  

2.2  

The GPIF II Designer is a graphical software that allows designers to configure the GPIF II interface of the EZ-USB 
FX3 USB 3.0 Device Controller. 

The tool allows users the ability to select from one of five Cypress-supplied interfaces, or choose to create their own 
GPIF II interface from scratch. Cypress has supplied industry-standard interfaces such as asynchronous and 
synchronous Slave FIFO, and asynchronous and synchronous SRAM. Designers who already have one of these pre-
defined interfaces in their system can simply select the interface of choice, choose from a set of standard parameters 
such as bus width (x8, 16, x32) endianness, clock settings, and then compile the interface. The tool has a streamlined 
three-step GPIF interface development process for users who need a customized interface. Users can first select their 
pin configuration and standard parameters. Secondly, they can design a virtual state machine using configurable 
actions. Finally, users can view the output timing to verify that it matches the expected timing. After this three-step 
process is complete, the interface can be compiled and integrated with FX3. 

3 GPIF II 

GPIF II is a programmable state machine that provides the flexibility of implementing an industry-standard or proprietary 
interface. It can function either as a master or slave. 

GPIF II has the following features: 

 Functions as master or slave 

 Offers 256 firmware programmable states 

 Supports 8-bit, 16-bit, and 32-bit parallel data bus 

 Enables interface frequencies up to 100 MHz 

 Supports 14 configurable control pins when a 32-bit data bus is used; all control pins can be either input/output or 
bidirectional 

 Supports 16 configurable control pins when a 16/8 data bus is used; all control pins can be either input/output or 
bidirectional 

GPIF II state transitions occur based on control input signals. Control output signals are driven by GPIF II state 
transitions. The behavior of the state machine is defined by a descriptor, which is designed to meet the required 
interface specifications. The GPIF II descriptor is essentially a set of programmable register configurations. In the EZ-
USB FX3 register space, 8 KB is dedicated as GPIF II waveform memory, where the GPIF II descriptor is stored. 

A popular implementation of GPIF II is the synchronous Slave FIFO interface, which is described in detail in the following 
sections. Figure 1 shows an example application diagram where the synchronous Slave FIFO interface is used.  

Figure 1. Example Application Diagram 

 

 

Image 

Sensor/ 

Other 

Device

FPGA FX3

Parallel/Serial

 Interface
Sync Slave FIFO

Interface

USB Host



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 4 

4 Synchronous Slave FIFO Interface

The synchronous Slave FIFO interface is suitable for applications in which an external processor or device needs to 
perform data read/write accesses to EZ-
Slave FIFO interface. The synchronous Slave FIFO interface is generally the interface of choice for USB applications, 
to support high throughput requirements.  

Figure 2 shows the interface diagram for the synchronous Slave FIFO interface. Table 1 describes the signals shown 
in Figure 2. 

Figure 2. Synchronous Slave FIFO Interface Diagram  

External FPGA/

Processor
EZ-USB FX3

SLCS#

A[1:0]

DQ[15:0]/ DQ[31:0]

SLRD#

SLOE#

SLWR#

PKTEND#

FLAGB

FLAGA

PCLK

FLAGD

FLAGC

 

Table 1. Synchronous Slave FIIFO Interface Signals 

Signal Name Signal Description 

SLCS# 
This is the chip select signal for the Slave FIFO interface. It must be asserted to access the Slave 
FIFO. 

SLWR# 
This is the write strobe for the Slave FIFO interface. It must be asserted for performing write transfers 
to Slave FIFO. 

SLRD# 
This is the read strobe for the Slave FIFO interface. It must be asserted for performing read transfers 
from Slave FIFO. 

SLOE# 
This is the output enable signal. It causes the data bus of the Slave FIFO interface to be driven by 
FX3. It must be asserted for performing read transfers from Slave FIFO. 

FLAGA/FLAGB/FLAGC/ 
FLAGD 

These are the flag outputs from FX3. The flags indicate the availability of an FX3 socket.1 In the 
attached example projects, FLAGA and FLAGB are used for the Slave FIFO write operation and 
FLAGC and FLAGD are used for the Slave FIFO read operation. 

A[1:0] This is the 2-bit address bus of Slave FIFO. 

DQ[15:0]/ 
DQ[31:0] 

This is the 16-bit or 32-bit data bus of Slave FIFO. 

PKTEND# This signal is asserted to write a short packet or a zero-length packet to Slave FIFO. 

PCLK This is the Slave FIFO interface clock.  

 

                                            
1 The Threads and Sockets section explains the concept of sockets for data transfers. The flags are described in detail in the Flag Configuration 

section. 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 5 

4.1 Difference between Slave FIFO with Two and Five Address Lines 

The synchronous Slave FIFO interface with two address lines supports up to four sockets. To access more than four 
sockets, the synchronous Slave FIFO interface with five address lines should be used. In addition to the extra address 
lines, this interface also has a signal called EPSWITCH#. Due to the increased number of pins, fewer pins are available 
for use as flags; for this reason, the flag is configured as a current_thread FLAG.  

Extra latencies are incurred when using the synchronous Slave FIFO interface with five address lines: 

 A two-cycle latency from address to flag valid is incurred at the beginning of every transfer. 

 Whenever a socket address is switched, multiple cycles of latency are incurred to complete the socket switching. 

Due to the increased latencies and additional interface protocol requirements, it is recommended that you use the 
synchronous Slave FIFO interface with five address lines only if the application requires access to more than four GPIF 
II sockets. For more information about this interface, refer to the application note AN68829  Slave FIFO Interface for 
EZ-USB FX3: 5-Bit Address Mode. 

The following sections of this application note describe the synchronous Slave FIFO interface with two address lines. 

4.2 Pin Mapping of Slave FIFO Interface 

Table 2 shows the default pin mapping of the Slave FIFO interface. The table also shows the GPIO pins and other 
serial interfaces (UART/SPI/I2S) available when GPIF II is configured for the Slave FIFO interface.  

The pin mapping may be changed if needed and flags may be added or reconfigured using the GPIF II Designer tool. 
More information is provided in the Flag Configuration section. 

Table 2. Pin Mapping for Slave FIFO Interface 

EZ-USB FX3 
Pin 

Pin naming as in 
SuperSpeed 
explorer kit/ 
Interconnect 

board  

Synchronous 
Slave FIFO 

Interface with  
8-bit Data Bus 

Synchronous 
Slave FIFO 

Interface with  
16-bit Data Bus 

Synchronous 
Slave FIFO 

Interface with  
24-bit Data Bus 

Synchronous Slave 
FIFO Interface with  

32-bit Data Bus 

GPIO[17] CTL[0] SLCS#  SLCS# SLCS# SLCS# 

GPIO[18] CTL[1] SLWR# SLWR# SLWR# SLWR# 

GPIO[19] CTL[2] SLOE#  SLOE# SLOE# SLOE# 

GPIO[20] CTL[3] SLRD#  SLRD# SLRD# SLRD# 

GPIO[21] CTL[4] FLAGA  FLAGA FLAGA FLAGA 

GPIO[22] CTL[5] FLAGB  FLAGB FLAGB FLAGB 

GPIO[23] CTL[6] FLAGC  FLAGC FLAGC FLAGC 

GPIO[24] CTL[7] PKTEND#  PKTEND# PKTEND# PKTEND# 

GPIO[25] CTL[8] FLAGD  FLAGD FLAGD FLAGD 

GPIO[28] CTL[11] GPIO  A1 A1 A1 

GPIO[29] CTL[12] GPIO  A0 A0 A0 

GPIO[0:7] DQ[0:7] DQ[0:7]  DQ[0:7] DQ[0:7] DQ[0:7] 

GPIO[8] DQ[8] A0 DQ[8] DQ[8] DQ[8] 

GPIO[9] DQ[9] A1 DQ[9] DQ[9] DQ[9] 

GPIO[10:15] DQ[10:15] Available as 
GPIOs 

DQ[10:15] DQ[10:15] DQ[10:15] 

GPIO[16] PCLK PCLK PCLK PCLK PCLK 

GPIO[33:41] DQ[16:24] Available as 
GPIOs 

Available as 
GPIOs 

DQ[16:24] DQ[16:24] 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 6 

EZ-USB FX3 
Pin 

Pin naming as in 
SuperSpeed 
explorer kit/ 
Interconnect 

board  

Synchronous 
Slave FIFO 

Interface with  
8-bit Data Bus 

Synchronous 
Slave FIFO 

Interface with  
16-bit Data Bus 

Synchronous 
Slave FIFO 

Interface with  
24-bit Data Bus 

Synchronous Slave 
FIFO Interface with  

32-bit Data Bus 

GPIO[42:44] DQ[25:27] Available as 
GPIOs 

Available as 
GPIOs 

Available as 
GPIOs 

DQ[25:27] 

GPIO[45] IO45 GPIO GPIO GPIO GPIO 

GPIO[46] DQ[28] GPIO/UART_RTS GPIO/UART_RTS GPIO/UART_RTS DQ[28] 

GPIO[47] DQ[29] GPIO/UART_CTS GPIO/UART_CTS GPIO/UART_CTS DQ[29] 

GPIO[48] DQ[30] GPIO/UART_TX GPIO/UART_TX GPIO/UART_TX DQ[30] 

GPIO[49] DQ[31] GPIO/UART_RX GPIO/UART_RX GPIO/UART_RX DQ[31] 

GPIO[50] I2S_CLK GPIO/I2S_CLK GPIO/I2S_CLK GPIO/I2S_CLK GPIO/I2S_CLK 

GPIO[51] I2S_SD GPIO/I2S_SD GPIO/I2S_SD GPIO/I2S_SD GPIO/I2S_SD 

GPIO[52] I2S_WS GPIO/I2S_WS GPIO/I2S_WS GPIO/I2S_WS GPIO/I2S_WS 

GPIO[53] 
RTS/SCK GPIO/SPI_SCK 

/UART_RTS  
GPIO/SPI_SCK 
/UART_RTS  

GPIO/SPI_SCK 
/UART_RTS  GPIO/UART_RTS 

GPIO[54] 
CTS/SSN GPIO/SPI_SSN/U

ART_CTS 
GPIO/SPI_SSN/U
ART_CTS 

GPIO/SPI_SSN/U
ART_CTS GPIO/UART_CTS 

GPIO[55] 
TX/MOSI GPIO/SPI_MISO/

UART_TX 
GPIO/SPI_MISO/
UART_TX 

GPIO/SPI_MISO/
UART_TX GPIO/UART_TX 

GPIO[56] 
RX/MISO GPIO/SPI_MOSI/

UART_RX 
GPIO/SPI_MOSI/
UART_RX 

GPIO/SPI_MOSI/
UART_RX GPIO/UART_RX 

GPIO[57] I2S_MCLK GPIO/I2S_MCLK GPIO/I2S_MCLK GPIO/I2S_MCLK GPIO/I2S_MCLK 

 

Note For the complete pin mapping of EZ-USB FX3, refer to the EZ-USB FX3 SuperSpeed USB Controller datasheet.  

5 Slave FIFO Access Sequence and Interface Timing

This section describes the access sequence and timing of the synchronous Slave FIFO interface. 

An external processor or device (functioning as the master of the interface) may perform single-cycle or burst data 
accesses to EZ-USB FX3 master drives the two-bit address on the ADDR lines 
and asserts the read or write strobes. EZ-USB FX3 asserts the flag signals to indicate empty or full conditions of the 
buffer. 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 7 

5.1 Synchronous Slave FIFO Interface Timing 

Figure 3. Synchronous Slave FIFO Read Sequence 

PCLK

FIFO ADDR

tCYC

tCH tCL

tAS

SLCS

SLRD

tRDS tRDH

SLOE

          FLAGA

(dedicated thread Flag for An)

(1 = Not Empty 0= Empty)

tOELZ

DQ (Data Out) High-Z Data 

driven:DN(An)

tCDHtOEZ
tOEZ

3 cycle latency 

from addr to data

tCOtOELZ

An Am

DN(An) DN(Am) DN+1(Am) DN+2(Am)

SLWR (HIGH)

tAH

        FLAGB

(dedicated thread Flag for Am)

(1 = Not Empty 0= Empty)

2 cycle latency 

from SLRD to data

tCFLG

tCFLG

2 cycle latency from 

SLRD to FLAG

5.2 Synchronous Slave FIFO Read Sequence  

The sequence for performing reads from the synchronous Slave FIFO interface is: 

1. FIFO address is stable and SLCS# is asserted. 

2. SLOE# is asserted. SLOE# is an output enable only whose sole function is to drive the data bus.  

3. SLRD# is asserted.  

The FIFO pointer is updated on the rising edge of the PCLK while SLRD# is asserted. This action starts the propagation 
of data from the newly addressed FIFO to the data bus. After a propagation delay of tCO (measured from the rising edge 
of PCLK), the new data value is present. N is the first data value read from the FIFO. To drive the data bus, SLOE# 
must also be asserted. 

The same sequence of events is shown for a burst read. 

Note For burst mode, the SLRD# and SLOE# remain asserted during the entire duration of the read. When SLOE# is 
asserted, the data bus is driven (with data from the previously addressed FIFO). For each subsequent rising edge of 
PCLK while the SLRD# is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus. 

Flag Usage: The external processor for flow control monitors flag signals. Flag signals are outputs from EZ-USB FX3 
and may be configured to show empty/full/partial status for a dedicated thread or the current thread being addressed.



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 8 

Figure 4. Synchronous Slave FIFO Write Sequence  

PCLK

FIFO ADDR

tCYC

tCH tCL

tAS

SLCS

SLWR

DQ (Data IN) High-Z DN(An)

tDH
tDS tDH tDS tDH

tWRS tWRH

tPEH

PKTEND

DN(Am) DN+1(Am) DN+2(Am)

SLOE

(HIGH)

An Am

tAH

tPES

      FLAGA

dedicated thread FLAG for An

(1 = Not Full 0= Full)

tCFLG

FLAGB

dedicated thread FLAG for Am

(1 = Not Full 0= Full)

tCFLG

3 cycle latency from SLWR# to FLAG

3 cycle latency from SLWR# to FLAG

 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 9 

Figure 5. Synchronous ZLP Write Cycle Timing 

PCLK

FIFO ADDR

tCYC

tCH tCL

tAS

SLCS

SLWR 

(HIGH)

DQ (Data IN) High-Z

PKTEND

SLOE

(HIGH)

An

tAH

      FLAGA

dedicated thread FLAG for An

(1 = Not Full 0= Full)

      FLAGB

dedicated thread FLAG for Am

(1 = Not Full 0= Full)

tPEHtPES

tCFLG

 

 

5.3 Synchronous Slave FIFO Write Sequence  

The sequence for performing writes to the synchronous Slave FIFO interface is:  

1. FIFO address is stable and the signal SLCS# is asserted.  

2. External master/peripheral outputs the data onto the data bus.  

3. SLWR# is asserted.  

4. While the SLWR# is asserted, data is written to the FIFO; on the rising edge of the PCLK, the FIFO pointer is 
incremented. 

5. The FIFO flag is updated after a delay of tCFLG from the rising edge of the clock. 

The same sequence of events is shown for a burst write. 

Note For the burst mode, SLWR# and SLCS# are left asserted for the entire duration of the burst write. In the burst 
write mode, after the SLWR# is asserted, the value on the data bus is written into the FIFO on every rising edge of 
PCLK. The FIFO pointer is updated on each rising edge of PCLK.  

Short Packet: A short packet can be committed to the USB host by using the PKTEND# signal. The external 
device/processor should be designed to assert the PKTEND# along with the last word of data and SLWR# pulse 
corresponding to the last word. The FIFOADDR lines must be held constant during the PKTEND# assertion. On 
assertion of PKTEND# with SLWR#, the GPIF II state machine interprets the packet to be a short packet and commits 
it to the USB interface. If the protocol does not require any short packets to be transferred, the PKTEND# signal may 
be pulled high. 

Note that in the read direction, there is no specific signal to indicate that a short packet is sourced from the USB. The 
external master must monitor the empty flag to determine when all the data has been read. 

Zero-Length Packet: The external device/processor can signal a zero-length packet (ZLP) by asserting PKTEND#, 
without asserting SLWR#. SLCS# and address must be driven, as shown in Figure 5. 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 10 

Flag Usage: The external processor monitors the flag signals for flow control. Flag signals are outputs from the EZ-
USB FX3 device that may be configured to show empty/full/partial status for a dedicated thread or the current thread 
being addressed. 

Table 3. Synchronous Slave FIFO Timing Parameters 

Parameter Description Min Max Unit 

FREQ Interface clock frequency  100 MHz 

tCYC Clock period 10  ns 

tCH Clock HIGH time 4  ns 

tCL Clock LOW time 4  ns 

tRDS SLRD# to CLK setup time 2  ns 

tRDH SLRD# to CLK hold time 0.5  ns 

tWRS SLWR# to CLK setup time 2  ns 

tWRH SLWR# to CLK hold time 0.5  ns 

tCO Clock to valid data  7 ns 

tDS Data input setup time 2  ns 

tDH CLK to data input hold 0  ns 

tAS Address to CLK setup time 2  ns 

tAH CLK to Address hold time 0.5  ns 

tOELZ SLOE# to data low-Z 0  ns 

tCFLG CLK to flag output propagation delay  8 ns 

tOEZ SLOE# deassert to data HI-Z  8 ns 

tPES PKTEND# to CLK setup 2  ns 

tPEH CLK to PKTEND# hold 0.5  ns 

tCDH CLK to data output hold 2  ns 

Note Three-cycle latency from ADDR to DATA 

The following sections describe the configuration of the flag signals using GPIF II Designer and the EZ-USB FX3 SDK. 
Before describing the various flag configurations, it is important to introduce the concept of threads, sockets, and DMA 
channel. 

6 Threads and Sockets 

This section briefly explains the concepts that are needed for data transfers in and out of FX3:  

 Socket  

 DMA descriptor  

 DMA buffer  

 GPIF thread  

A socket is a point of connection between a peripheral hardware block and the FX3 RAM. Each peripheral hardware 
block on FX3, such as USB, GPIF, UART, and SPI, has a fixed number of sockets associated with it. The number of 
independent data that flows through a peripheral is equal to the number of its sockets. The socket implementation 
includes a set of registers, which point to the active DMA descriptor and enable or flag interrupts associated with the 
socket.  



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 11 

A DMA descriptor is a set of registers allocated in the FX3 RAM. It holds information about the address and size of a 
DMA buffer as well as pointers to the next DMA descriptor. These pointers create DMA descriptor chains.  

A DMA buffer is a section of RAM used for intermediate storage of data transferred through the FX3 device. DMA 
buffers are allocated from the RAM by the FX3 firmware and their addresses are stored as part of DMA descriptors.  

A GPIF thread is a dedicated data path in the GPIF II block that connects the external data pins to a socket. Sockets 
can directly signal each other through events or they can signal the FX3 CPU via interrupts. The firmware configures 
this signaling. As an example, take a data stream from the GPIF II block to the USB block. The GPIF socket can tell 
the USB socket that it has filled data in a DMA buffer and the USB socket can tell the GPIF socket that a DMA buffer 
is empty. This implementation is called an automatic DMA channel. The automatic DMA channel implementation is 
used when the FX3 CPU does not have to modify any data in a data stream.  

Alternatively, the GPIF socket can send an interrupt to the FX3 CPU to notify it that the GPIF socket filled a DMA buffer. 
The FX3 CPU can relay this information to the USB socket. The USB socket can send an interrupt to the FX3 CPU to 
notify it that the USB socket emptied a DMA buffer. Then, the FX3 CPU can relay this information back to the GPIF 
socket. This is called the manual DMA channel implementation. This implementation is used when the FX3 CPU has 
to add, remove, or modify data in a data stream.  

A socket that writes data to a DMA buffer is called a producer socket. A socket that reads data from a DMA buffer is 
called a consumer socket. A socket uses the values of the DMA buffer address, DMA buffer size, and DMA descriptor 
chain stored in a DMA descriptor for data management. A socket takes a finite amount of time (up to a few 
microseconds) to switch from one DMA descriptor to another after it fills or empties a DMA buffer. The socket cannot 
transfer any data while this switch is in progress. 

EZ-USB FX3 provides four physical hardware threads for data transfer over the GPIF II. At a time, any one socket is 
mapped to a physical thread. By default, PIB socket 0 is mapped to thread 0, PIB socket 1 is mapped to thread 1, PIB 
socket 2 is mapped to thread 2, and PIB socket 3 is mapped to thread 3. 

Note that the address signals A1:A0 on the interface indicate the thread to then routes 
the data to the socket mapped to that thread. Therefore, when A1:A0 = 0, thread 0 is accessed, and any data that is 
transferred over thread 0 is routed to socket 0. Similarly, when A1:A0 = 1, data is transferred in and out of socket 1.  

Note The Slave FIFO interface has only two address lines; hence, only up to four sockets may be accessed. To access 
more than four sockets, use the Slave FIFO interface with five address lines. Refer to application note AN68829  
Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode. 

The sockets to be accessed must be specified by configuring a DMA channel. 

Note For more information on FX3 threads and sockets, refer to Section 7.4.6 of the EZ-USB FX3 Technical Reference 
Manual. 

7 DMA Channel Configuration 

The firmware must configure a DMA channel with the required producer and consumer sockets.  

If data is to be transferred from the Slave FIFO interface to the USB interface, then P-port is the producer and USB is 
the consumer, and vice-versa. Hence, if data is to be transferred in both directions over the Slave FIFO interface, two 
DMA channels should be configured, one with P-port as the producer and another with P-port as the consumer.  

The P-port producer socket is the socket that the external device will write to over the Slave FIFO interface and the P-
port consumer socket is the one that the external device will read from over the Slave FIFO interface.  

The P-port socket number in the DMA channel should be the socket number that will be addressed on A1:A0. 

Multiple buffers can be allocated to a particular DMA channel when configuring the channel. Note that the flags will 
indicate full/empty on a per buffer basis. (The maximum buffer size for any one buffer is 64 KB -16.) 

For example, if two buffers of 1024 bytes are allocated to a DMA channel, the full flag will indicate full when 1024 bytes 
have been written into the first buffer. It will continue to indicate full until the DMA channel has switched to the second 
buffer. The time taken for the DMA channel to switch to the next buffer is not deterministic, although it is typically a few 
microseconds. The external master must monitor the flag to determine when the switching is complete and the next 
buffer has become available for data access. 

The next section describes how flags may be configured to indicate the status of different threads. 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 12 

8 Flag Configuration 

Flags may be configured as empty, full, partially empty, or partially full signals. These are not controlled by the GPIF II 
state machine, but by the DMA hardware engine internal to EZ-USB FX3. Flags are associated with specific threads or 
the currently addressed thread and indicate the status of the socket mapped to that thread. 

Flags indicate empty or full, based on the direction of the socket (configured during socket initialization). Therefore, a 
flag indicates empty/not empty status if data is being read out of the socket and full/not full status if data is being written 
into the socket. 

The types of flags that can be used are: 

 Dedicated thread flag (empty/full or partially empty/full) 

 Current thread flag (empty/full or partially empty/full) 

The flag types are described in the following sections. Different flag configurations result in different latencies, which 
are summarized in Table 4. 

8.1 Dedicated Thread Flag 

A flag can be configured to indicate the status of a particular thread. In this case, that flag is dedicated only to that 
thread and always indicates the status of the socket mapped to that particular thread only, irrespective of which thread 
is being addressed on the address bus.  

Here, the external processor/device must keep track of which flag is dedicated to which thread and monitor the correct 
flag every time a different thread is addressed. 

For example, if FLAGA is dedicated to thread 0, and FLAGB is dedicated to thread 1, when the external processor 
accesses thread 0, it must monitor FLAGA. When the external processor accesses thread 1, it must monitor FLAGB.  

A flag may be dedicated for every thread that is going to be accessed. If the application needs to access four threads, 
then there may be four corresponding flags. 

Note that when performing write transfers, a three-cycle latency for the flag is always incurred at the end of the transfer. 
The three-cycle latency is from the write cycle that causes the buffer to become full to the time the flag is asserted low. 
At the fourth clock edge, the external master can sample the flag low. This is shown in Figure 4. 

When performing read transfers, a two-cycle latency for the flag is always incurred at the end of the transfer. The two-
cycle latency is from the read (last SLRD# assertion) cycle that causes the buffer to become empty to the time the flag 
is asserted low. At the third clock edge, the external master can sample the flag low. This is shown in Figure 3. 

8.2 Current Thread Flag 

A flag can be configured to indicate the status of the currently addressed thread. In this case, the GPIF II state machine 
samples the address on the address bus and then updates the flags to indicate the status of that thread. This 

flag can be used to indicate the status of all four 
threads. However, two-cycle latency is incurred when the current_thread flag is used for a synchronous Slave FIFO 
interface because the GPIF II first must sample the address and then update the flag. The two-cycle latency starts 
when a valid address is presented on the interface. On the third clock edge after this, the valid state of the flag of the 
newly addressed thread can be sampled. (Note that the Slave FIFO descriptors included in the SDK use the 

 



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 13 

Figure 6. Additional Latency Incurred at Start of Transfer When Using a Current Thread FLAG 

 

Note When performing write transfers, a three-cycle latency is always incurred at the end of the transfer. The three-
cycle latency is from the write cycle that causes the buffer to become full to the time the flag is asserted low. At the 
fourth clock edge, the external master can sample the flag low. This is shown in Figure 4. 

When performing read transfers, a two-cycle latency for the flag is always incurred at the end of the transfer. The two-
cycle latency is from the read (last SLRD# assertion) cycle that causes the buffer to become empty to the time the flag 
is asserted low. At the third clock edge, the external master can sample the flag low. This is shown in Figure 3. 

8.2 .1 Part ial  Flag 

A flag can be configured to indicate the partially empty/full status of a socket. A watermark value must be selected such 
that the flag is asserted when the number of 32-bit words that may be read or written is less than or equal to the 
watermark value. 

Note The latency for a partial flag depends on the watermark value specified for the partial flag. 

Table 4 summarizes the latencies incurred when using different flag configurations. The table also shows the setting 
that must be selected in GPIF II Designer for a particular flag. Examples and screenshots of the GPIF II Designer 
settings for flags are available in the Flag Configuration section. 

PCLK

FIFO ADDR

tCYC

tCH tCL

tAS

SLCS

An Am

tAH

   FLAGA

current thread FLAG

(1 = Not Full 0= Full)

tCFLG

2 cycle +tCFLG latency;current_thread

 FLAG valid on 3
rd

 clock edge 

2 cycle +tCFLG latency;current_thread 

FLAG valid on 3
rd

 clock edge 

tCFLG



  Designing with the EZ-USB FX3 Slave FIFO Interface 

 www.cypress.com Document No. 001-65974 Rev. *O 14 

Table 4. Latencies Associated With Different Flag Configurations

Flag 
Configuration 

GPIF II 
Designer Flag 

Setting 
Selection 

Address to 
Flag 

Latency at 
Start of 
Transfer 

Flag Latency at End of Transfer Additional API Call Required 

For Write 
Transfers to 
Slave FIFO 

(latency from 
last SLWR# 

assertion to full 
Flag assertion) 

For Read 
Transfers from 

Slave FIFO 

(latency from 
last SLRD# 
assertion to 
empty Flag 
assertion) 

Full/Empty flag 
dedicated to a 

 

Thread_n_DMA
_Ready 

0 cycles 3 cycles + tCFLG 

(external device 
can sample valid 
flag on the fourth 
clock edge) 

2 cycles + tCFLG 

(external device 
can sample valid 
flag on the third 
clock edge) 

N/A 

Full/Empty flag 
for currently 
addressed thread 

Current_thread
_DMA_Ready 

2 cycles + 

tCFLG 

(external 
device can 
sample valid 
flag on the 
third clock 
edge) 

3 cycles + tCFLG 

(external device 
can sample valid 
flag on the fourth 
clock edge) 

2 cycles + tCFLG 

(external device 
can sample valid 
flag on the third 
clock edge) 

N/A 

Partially 
full/empty flag 
dedicated to a 

 

Thread_n_DMA
_Watermark 

0 cycles Dependent on 
watermark level  

Dependent on 
watermark level 

Set watermark level by calling the 
CyU3PGpifSocketConfigure() API. 

Note Watermark is in terms of a 32-bit 
data word. 

Examples:  

CyU3PgpifSocketConfigure 
(0,PIB_SOCKET_0,4,CyFalse,1) sets 
the watermark for thread 0 to 4  

CyU3PGpifSocketConfigure 
(3,PIB_SOCKET_3,4,CyFalse,1) sets 
the watermark for thread 3 to 4  

Partially 
full/empty flag for 
currently 
addressed thread 

Current_thread
_DMA_Waterm
ark 

2 cycles + 

tCFLG 

(external 
device can 
sample valid 
flag on the 
third clock 
edge) 

Dependent on 
watermark level 

Dependent on 
watermark level 

Set watermark level by calling the 
CyU3PGpiIfSocketConfigure() API. 

Note Watermark is in terms of a 32-bit 
data word. 

Examples:  

CyU3PGpifSocketConfigure 
(0,PIB_SOCKET_0,4,CyFalse,1) sets 
the watermark for thread 0 to 4  

CyU3PGpifSocketConfigure 
(3,PIB_SOCKET_3,4,CyFalse,1) sets 
the watermark for thread 3 to 4  

The following sections describe how to configure flags using the GPIF II Designer tool and the EZ-USB FX3 SDK. 

kajikawa.koichi
四角形

kajikawa.koichi
四角形


