&= CYPRESS

> EMBEDDED IN TOMORROW

Generate Bootable Image File for FX3 with 12C EEPROM - KBA218344

Question: How do you generate an .img file for FX3 12C booting with I2C EEPROM?

Answer: FX3 requires a specific bootable image format to boot the application firmware from I2C EEPROM. The possible boot options and
bootable image formats for FX3 are documented in application note, AN76405.

By default, Eclipse, which is part of the FX3 SDK, generates the .elf file. Because FX3 requires a specified bootable image format, FX3 SDK
invokes the EIf2img tool, which is provided with the FX3 SDK and is located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\util\elf2img, to
build the .img file from the .elf file. Refer to the readme.txt in the directory for details about the elf2img tool usage. This article discusses the
generating bootable image for all types of EEPROMSs.

Section 5.3 of AN76405 describes the format of a bootable image file. The third byte of the bootable image file format, referred to as bimageCTL, is
shown in Table 1. This explains to the bootloader the size, speed of the I2C EEPROM connected to FX3, and the type of file stored in EEPROM.
Then, the bootloader generates the device address of the EEPROM by considering b3: b1 of the third byte.

Table 1. bimageCTL of Bootable Image File Format

Bit Description

b0 0: execution binary file; 1: data file type

7: 128 KB (Microchip) , 6: 64 KB (128K ATMEL ; 128K and 256K ST Electronics), 5: 32 KB,

. 2 :
b3:b1 (I°C Size) 4:16 KB, 3: 8 KB, 2: 4 KB, 1 and 0: Reserved

b5:b4 (1°C Speed) | 00: 100 kHz, 01: 400 kHz, 10: 1 MHz, 11: Reserved

b7:b6 Bit7:6: Reserved; should be set to zero

The third byte needs to be modified based on the selected file type, EEPROM type, and desired speed. Assume that the desired file type is binary,
and speed is 400 kHz; b0 is fixed to “Ob” as the execution binary file and b5:b4 is fixed to “01b” for 400-kHz 12C speed. However, b3:b1 needs to be
modified based on the size and manufacturer of the EEPROM. Let us consider the modification needed to create a bootable image file to boot from
Microchip’s128 KB 12C EEPROM. The third byte value for the Microchip’s 128 KB I12C EEPROM and for the speed of 400 kHz will be “Ox1E”.

Document No. 002-18344 Rev. ** 1

http://www.cypress.com/documentation/application-notes/an76405-ez-usb-fx3-fx3s-boot-options
http://www.cypress.com/documentation/software-and-drivers/ez-usb-fx3-software-development-kit
http://www.cypress.com/documentation/application-notes/an76405-ez-usb-fx3-fx3s-boot-options

& CYPRESS

EMBEDDED IN TOMORROW

The third byte in the bootable image file format can be modified in the following ways:

1. CMD Windows

a. Copy elf2img.exe (which is located at C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\1.3\util\elf2img in the
default FX3 SDK installation path) into the same folder as the .elf file.

b. Run CMD.exe as Administrator; navigate to the directory:
C:\Users\srdriworkspace\USBBulkLoopAuto\Release, as shown in Figure 1

Figure 1. CMD.exe to the Directory

BN C\Windows\System32\cmd.exe

Microsoft Windows [Version 6.1.76811
Copyright (c)> 2889 Microsoft Corporation. All rights reserved.

m| »

C:~Usersssrdrsworkspace~USBBulkLoopfiutosRelease

c. Use the following command lines to generate binary image as shown in Figure 2.
elf2img.exe -I USBBulkLoopAuto.elf -o USBBulkLoopAuto.img -i2cconf O0x1E

This shows that to generate a binary image file for USBBulkLoopAuto.elf, the output file
USBBulkLoopAuto.img is the desired bootable image file for Microchip’s128 KB 12C EEPROM.

The third byte (bimageCTL) mapped for the selected EEPROM size and speed should be passed to i2cconf
in the command line. This is reflected in the generated image file. In this example, Ox1E is passed to the
i2cconf for Microchip’s 128 KB 12C EEPROM.

Figure 2. Command Line to Generate .img File for Microchip 128KB 12C EEPROM

C:sUsersssrdrsworkspacesUSBBulkLoopAutosRelease*elf2img.exe —i USBBulkLoopAuto.e
1f —o USBBulkLoopAuto.img —iZcconf Bx1E

Mote: 256 hytes of interrupt vector code have bheen removed from the image.
Uzse the '"—vectorload yes" option to retain this code.

Document No. 002-18344 Rev. **

&= CYPRESS

- EMBEDDED IN TOMORROW™

2. Eclipse IDE

Instead of using command lines, you can modify the post-build steps as explained here. This allows to build the desired

image file from the SDK.

a. Right-click on the project and select Properties. The Properties window will open, as shown in Figure 3.

Figure 3. Properties Window in Eclipse

|'& ' Properties for USBBul =

type filter text

 Resource
Builders
C/C++ Build

]
ariables

Environment
Cod i N
Tool Chain Editor
i C/C++ General
Project References
Run/Debug Settings

Settings

o

| »

Configuration: ’D‘ebug [Active]

v] ’ Manage Configurations..

&3 Toel Settings | i Toolchains | B Devices | #* Build Steps |

Build Artifact | [} Binary Parser| ¢

(% Target Processor
Optimization
@ Warnings
Debugging
4 [Cross ARM GNU Assembler
(% Preprocessor
(52 Includes
(# Warnings
@ Miscellaneous
4 1% Cross ARM C Compiler
(& Preprocessor
@ Includes
(8 Optimization
(%2 Warnings
(2 Miscellaneous
4 % Cross ARM C Linker
@ General
@ Libraries
(# Miscellaneous

ARM family [armo26ej-s -|
Architecture ’Toolch.ain. default V]
Instruction set [ARM {-marm) V]

Thumb interwork (-mthumb-interwork)

Endianness ’Toolch.ain. default V]
Float ABI [Toolchain default -|
FPU Type [Toolchain default -

Unaligned access ’Toolch.ain. default

Anrchid farmily Generic (-mcpu=generic)

Feature cro Toolchain default

Feature crypto Toolchain default

Feature fp Toolchain default

Feature simd Enabled (+simd)

Code model Small (-mcmodel=small)
Strict align (-mstrict-align)

Other target flags

4

LI}

m

ok ||

Cancel

)

Document No. 002-18344 Rev. **

&= CYPRESS

- EMBEDDED IN TOMORROW™

b. In the Properties window, select C/C++ Bulid > Setting > Build Steps as highlighted in Figure 3.
c. Add the 12C configuration parameter in the Command field as highlighted in Figure 4.
Figure 4. Command Lines in Eclipse

® ' Properties for USEBulkloopAuto E] B
type filter text Settings - - v
» Resource
Builders
4 C/C++ Build Configuration: [DEbUS [Active] '] [Manage Configurations...
Build Variables
Environment
Logging # Build Steps ‘ Build Artifactl Binary Parsersl @ Error Parsers| L[]
Settings
Tool Chain Editor Pre-build steps
» C/C++ General Command:
Project References -
Refactoring History o ioti
Run/Debug Settings escnphon:
-
Post-build steps
Command:
I 'S{FXE_IMNSTALL_PATHY util/elf2img/elf2img.exe’ -i ${PrejName}.elf -0 §{ProjName}img -v - I
Description:
Generate boot-loadable binary image -
[Restoregefaults] [Apply]
@:J [OK] [Cancel]

d. Follow the table and modify b3:b1 in the i2cconf parameter according to the selected 1I2C EEPROM in the post-
build steps. This example is for Microchip’s 128 KB 12C EEPROM, with file type as binary, and 12C speed as

400 kHz. Therefore, add “-i2cconf OX1E” in the post-build settings as shown in Figure 5.
Document No. 002-18344 Rev. **

&= CYPRESS

- EMBEDDED IN TOMORROW™

Figure 5. Add i2cconf Ox1E to Command Line
[Properties for UsBBulkLoopAuto M =

|t_ypefi|ter text | Settings Dw v w
> Resource
Builders
4 C/C++ Build Configuration: [Debug [Active] '] [Mal\age Conflgulations...]
Build Variables
Environment
Logging 4 Build Steps | Build Arl'riactl Binary Parsers | € Error Palsels‘ I s
Settings
Tool Chain Editor Pre-build steps
| CfC++ General Command:
Project References -
Refactoring History e
Description:

Run/Debug Settings

Post-build steps

Command:

I PG _INSTALL_PATHY util/elf2img/elf2img.exe’ -i ${ProjMame}.elf -0 S{ProjMame}.img -i2cconf Ox1E - vl

Description:

Generate boot-loadable binary image -

[Restore Qefauhs] l Apply]

@ [ox J[cance |

e. Click Apply; then, click OK. Build the project to generate the image file for I2C EEPROM (the build console is
shown in Figure 6).

Document No. 002-18344 Rev. **

