
Page 1 of 11 

This project demonstrate the usage of CyU3PGpifWriteDataWords() and 

CyU3PGpifReadDataWords() APIs. 

 

 

Project Setup: 

 
   Two FX3 DVKs were connected back to back over GPIF II interface using inter 
connection board with one FX3 programmed as master and the other as slave. The 

bidirectional communication between master and slave is asynchronous and makes 
use of writing to EGRESS_DATA_REGISTER and reading from 
INGRESS_DATA_REGISTER as opposed to using Sockets and associated buffers.  
Figure 1 shows the Master-Slave interface signals. 

 

 

Signal Direction & Polarity Purpose 

CE Master to Slave, 
Active low 

Chip Enable. For the Master to read from or write to 
slave, it has to keep this signal asserted 

WE Master to Slave, 
Active low 

Write Enable. Data from 
EGRESS_DATA_REGISTER in master is driven 
into the data bus when CE is kept asserted and WE 
transitions from Low to High  

RE Master to Slave, 
Active low 

Read Enable. Data From 
EGRESS_DATA_REGISTER in slave is driven into 
the data bus when CE is asserted and RE 
transitions from Low to High. 

MDONE Master to Slave, 
Active low 

Master asserts this signal after driving the last word 
of data onto the data bus. The Slave on detecting 
this signal, generates an interrupt and commits all 
the read data to its USB end. 

WriteFlag Slave to Master, 
Active low 

The Slave asserts this signal low after master 
asserts WE and CE.The Master can drive the next 
word into the data bus only when this signal is 
deasserted ( This is to ensure that master doesn’t 
start a new write cycle before Slave completes its 
read cycle.) 

ReadFlag Slave to Master, 
Active low 

Master cannot read data from data bus when this 
signal is asserted. (This is again similar to Writeflag 
except that this ensures flow control in the Slave 
Write – Master Read cycle ) 

SDONE Slave to Master, 
Active High 

Slave asserts this signal after driving the last word 
of data onto the data bus. The Master on detecting 
this signal, generates an interrupt and commits all 
the read data to its USB end. (There is no specific 
reason behind having this signal as Active high. 
The user can have it configured as active low as 
well and accordingly complementing all the check 



Page 2 of 11 

conditions for this signal in the state machine as 
well.) 

 
 
  
                                                       WriteFlag 
                                         
                                                      ReadFlag 
 
                                                       SDONE 

 
                                                    DataBus [0:15] 

 
 
                                                           CE 

                       
                                                                        WE 

                        
                                                                        RE 

                                                                      
                                                                    MDONE 

                                                            
                            
                          Fig 1:  Master-Slave Asynchronous Interface 

 
Note: In the demo project, we have used 16 bit Data bus while Data being put into the 
bus is 32 bit from EGRESS register. We don’t see data loss however because, the data 
that we write to the EGRESS register is actually a byte value which is converted to 
uint_32 ( padded with 24 zeros in the front). Added benefit of choosing lower bus width 
is availability of few extra pins which can be used as GPIOs. Data bus width has to be 
accordingly changed based on the size of data being written to the GPIF 
EGRESS_DATA_REGISTER i.e. if you are writing a 32 bit value to the register using 
CyU3PGpifWriteDataWords API, the data bus width has to be chosen as 32 bit too to 
avoid data loss. 
 
 
 
 
 
 
 
 
 
 

Firmware Flow: 

 
Firmware wise, both master and Slave are the same except for their state machines. 
 

 
 
 
 
 
 

FX3 
MASTER 

 
 
 
 
 
 

FX3 
SLAVE 



Page 3 of 11 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
       DR_DATA                     IN_DATA              DR_DATA                       IN_DATA 
 
….END OF MEMO 
  
                                                 Fig 2: Bidirectional Data transfer. 
 

 * Red arrows for Master to Slave . 
 *Blue arrows for Slave to Master. 
 
 
Lets look at data transfer from host  master  slave  host. Data transfer from host 
 slave  master  host is similar. 
 

 In the master side, configure a CY_U3P_DMA_TYPE_MANUAL_IN channel 
between UIB (producer) and CPU( consumer) with 1 buffer of size 512 bytes or 
1024 bytes depending on High speed or Super speed port used (buffer count 
and buffer size can be chosen as per need). The channel is also configured with 
a callback enabled. On Producer event, ie whenever host sends data to USB 
end (sent from control center), the callback function is executed. Inside the 
callback function, the GPIF data counter is initialized with count limit = total no of 
bytes received from host. The purpose of this counter is to keep track of how 
many write cycles are required (one for each byte of data) and when count hit 
occurs, MDONE gpio is driven. 
 

 In the Slave side, configure a CY_U3P_DMA_TYPE_MANUAL_OUT channel 
between CPU(producer) and UIB( consumer) with 1 buffer of size 512 bytes or 
1024 bytes depending on High speed or Super speed port used (buffer count 

and buffer size can be chosen as per need). In the SlFifoAppThread_Entry 

function, the register read operation is done using CyU3PGpifReadDataWords() 
repeatedly in a ‘infinite for loop’ and the read values stored in a globally defined 

array tmp_data[512]. tmp_data size again can be changed as needed. When 

HOST PC 
PORT 1 

                          
                                 
   MANUAL IN CHANNEL    MANUAL OUT CHANNEL 
 
 
 
 
 
 
   GpifWriteDataWords    GpifReadDataWords   
   
 

EP1 OUT 

FX3 CPU (Master) 

EP1 IN 

DATA BUS 

EGRESS 
REGISTER 

INGRESS 
REGISTER 

 
 
       MANUAL IN CHANNEL   MANUAL OUT CHANNEL 
 
 
 
 
 
    GpifWriteDataWords      GpifReadDataWords 

HOST PC 
PORT 2 

EP1 OUT
  

EP1 IN 

FX3 CPU (Slave) 

EGRESS 
REGISTER 

INGRESS 
REGISTER 



Page 4 of 11 

Slave reads the MDONE signal to be asserted (active low), then it generates a 
interrupt CPU operation (INTR_CPU) and the contents of tmp_data are manually 
committed to USB  end by the CPU through GPIF registered callback function in 
firmware.  

 
 

 This is how the  API CyU3PReturnStatus_t CyU3PGpifWriteDataWords ( 

uint32_t threadIndex, CyBool_t selectThread, uint32_t numWords, uint32_t  

buffer_p, uint32 t waitOption ) works. 
 

Step 1: Check for valid thread number (0,1,2 or 3) in threadIndex. 
Step 2: If the thread has to be activated, check if software based thread selection 

     is permitted (if selectThread is set to Cytrue) and do so. 
Step 3: If the register is already free, we can write the first word without waiting 

for an event decrement numWords by 1  
Step 4: If numWords after decrement is non-zero or if register is not free in step 
3, 
If (numWords) 
            {  
Step 4.1: Make sure that the EG_DATA_EMPTY interrupt for this thread has 
been enabled. 
Step 4.2: For each word, wait for the empty event (wait period specified in 

waitOption) and then copy the data. If time out occurs before copying the data 
to register, return with error status.  
Step 4.3: Write the data into the register and then update the data valid flag.  

Step 4.4: Decrement numWords. If numWords is non-zero, go to beginning of 
step 4. 
Step 4.5: return CY_U3P_SUCCESS 
            } 
 

 This is how the API  CyU3PReturnStatus_t CyU3PGpifReadDataWords ( 

uint32_t threadIndex, CyBool_t selectThread, uint32_t numWords, uint32_t  

buffer_p, uint32 t waitOption ) works. 
 
Step 1 and Step 2 same as above. 
Step 3: If the register already has data, read the first word from it directly without 

waiting for an event. Decrement numWords by 1. 
Step 4: If numWords after decrement is non-zero or if register is empty in step 3, 
If (numWords) 
            {  
Step 4.1: Make sure that the IN_DATA_READY interrupt for this thread has been 
enabled. 
Step 4.2: For each word, wait for the data ready event and copy the data into the 
buffer. If time out occurs before copying the data to register, return with error 
status.  
Step 4.3: Read the data into the buffer and clear the data valid flag. 



Page 5 of 11 

Step 4.4: Decrement numWords. If numWords is non-zero, go to beginning of 
step 4. 
Step 4.5: return CY_U3P_SUCCESS 
            } 
 
 

State machines ( If the transition equations are not clear, refer the attached 
project) 
 Also to find the required setting for each action, double click on the action in the 
GPIF II designer project attached with the MEMO. 

 

Part 1: Master Write - Slave Read 

 

 
Slave Side: 

 
                                            Fig 3: Master Write-Slave Read (Slave State machine) 
 
 
 
 
 
 
 
 
 
 
Master Side: 
 



Page 6 of 11 

 
                                 Fig 4: Master Write – Slave Read ( Master State machine) 
 
It is recommended to program the master FX3 first and the slave FX3 next . 
Reason: If Slave is programmed first, before FX3 master is programmed, CE and WE 
which are inputs to the Slave are low (the pins were probed by connecting FX3 to FPGA 
interconnection board and voltage level of all input pins were measured using 
oscilloscope and found to be low) and the slave leaves its ideal state0 and goes to 
state1. As soon as master is programmed, it pulls the WE to high and the slave 
traverses one complete cycle without any valid data being driven by the master. 
 
However, during test, no problem was observed whether slave was programmed first or 
the master first.  
 
Initially both Master and Slave are in State0. 
When Master has Valid data in its register, OUT_REG_VALID flag is high. Master goes 
to next state which is state17 if WriteFlag is also high in addition to OUT_REG_VALID. 
WriteFlag is signal from Slave to Master for flow control. It prevents Master to write the 
second word of data before Slave has finished reading the first word of data from its 
INGRESS_DATA_REGISTER. 
 
When Master Drives CE AND WE low, Slave goes and waits in State1. Master then 
drives the data onto the bus and pulls WE high. This transition of WE from low to high 
makes slave to move to next state and read the data from the bus. When the register 
value is successfully read within the Slave using CyU3PReadDataWords() API, 
IN_REG_VALID flag goes low. 
 
In the Master, the data counter is loaded with upper limit being the total number of 
bytes to be transferred. When DATA_COUNT_HIT occurs, the master drives the signal 
MDONE low. When MDONE is driven low, the slave generates an GPIF state machine 
interrupt which causes all the read data which was stored in an array till now to be 
committed manually to the USB end using MANUAL OUT channel. 



Page 7 of 11 

 
Note: when the MDONE signal is asserted low by master as soon as the data count hit 
occurs, Slave would have not yet read its INGRESS_DATA_REGISTER content. 
Therefore, an additional GpifReadDataWords() API is called in the GPIF interrupt 
callback before entire data is committed to the USB end. 
 

 

Part 2: Slave Write – Master Read 
  
Slave Side 

 
                     Fig 5: Slave Write – Master Read (Slave state machine) 

 
 
 
 
 
Master Side 



Page 8 of 11 

 
                        Fig 6: Slave Write – Master Read ( Master State machine) 

 
Note: State9 in the master and State14 in the Slave were added to create mirror states 
as per GPIF II designer requirements. 
 
 
Initially, both Master and Slave are in state0. Slave will be switching between State0 
and State14 till its OUT_REG_VALID flag is set. Slave then drives ReadFlag signal 
indicating that there is data to be read by the Master. Master which intitially switches 
between State0 and State9 goes to state10 when ReadFlag goes low and 
IN_REG_VALID is low ( ensuring that previous read is successfully completed). Slave 
then drives the data onto the bus when CE is low and RE transitions from low to high. 
When all the data has been driven on the bus, Slave drives SDONE signal ( configured 
as active high). Master on seeing the SDONE go high, generates Interrupt Callback 
where data is committed to USB end. ( Extra GpifReadDataWords() is done in the 
callback for the same reason as described in Part 1 Master Write – Slave Read 
Section)  
 
 
      
 

Project  Execution: 



Page 9 of 11 

 

Download the project files from this link : 

   

 Open the Control Center and load the firmware onto FX3 slave (SlaveFifoAsync-
b2b) and master (GPIF_Async) connected using Back to Back interconnect 
board 

 The Slave enumerates with VID/PID = 0x04B4/0x00F2. The master enumerates 
as “Cypress USB StreamerExample” with VID/PID =  0x04B4/0x00F4. Both 
master and slave are configured with one IN and one OUT endpoint. 

 
 

 
                          Fig 7:  Master and Slave FX3 successfully programmed  
 
 

 Select Data Transfer tab. Select Master OUT endpoint (EP1 OUT) and transfer 
some data. Select Slave IN endpoint (EP1 IN). Read the IN data and check if IN 
data is same as the OUT data. Repeat the same for Slave OUT and Master IN. 
 



Page 10 of 11 

 
                                  Fig 8: Successful Bidirectional transfers are verified 
 
 
 

Note: 
 
Adding UART debug prints indiscriminately in callback functions ( be it USB 
callback or GPIF state machine callback) may lead to FX3 getting stuck or not 
functioning as desired. 
 
Since the above APIs are related to the state machine design, ( WriteDataWords 
writes to register which is emptied by DR_DATA action in the state machine; 
IN_DATA action in state machine fills the INGRESS_DATA_REGISTER and 
ReadDataWords API empties the register content), you need to choose 

appropriate waitOption parameter with the APIs 
 
In the Asynchronous State machine implementation, some states have been 
repeated to ensure the other device doesn’t miss out on that signal ( for Eg: the 
master drives the same data on the bus for few cycles so that Slave can sample 
it atleast once) and Firmware delay (CyU3PBusyWait) has also been introduced 
to give sufficient time for ReadDataWords API to successfully read the data.  
 
Both WriteDataWords and ReadDataWords are Slow APIs and state machine 
should take into consideration that. A lot of delay has been added in the state 



Page 11 of 11 

machines ( by repeating the states) to prevent data loss. The state machine is 
needs to be optimized further by reducing unnecessary delay. 
 
 


