

Page 1 of 4

Move the UVC header addition and buffer commit code to the DMA
callback.

In the default UVC project, adding a header to the produced buffer and
committing it will be done in the frame blanking interval. Since this duration is
reduced on a higher density stream, the header addition and commit code is
moved to the DMA callback to be processed much faster.

Image payload size increased from 16K-4 bytes to 32K bytes

Having large buffers allows for larger uninterrupted transfers. So, the DMA buffer
size was increased to 32K.
In addition, the payload was made exactly equal to 32K. The reasoning behind
this is that shorter payloads could have caused the transfers to prematurely
terminate on the host which may have led to reduced frame rates.

This is achieved by having a DMA channel with 32K+16 byte buffers, 12byte
header and 4 byte footer. See the figure below for an illustration.

Header

Buffer

(as seen by the producer)

Footer

Payload

(32KB)

32KB

4 bytes

12 bytes

12 bytes

Page 2 of 4

In this strategy, the GPIF state machine must be modified to fill 32K-12 bytes of
data. Since this will not cause the buffer to be filled, the committing process will
not happen automatically and so the COMMIT action must be used to force a
wrapup.

So, the state machine reads in (32K-12) – (gpif_bus_width/8) bytes of data

in one state which then branches to another state which reads one word
(depending on GPIF data bus width) and commits the buffer.

The data counter’s limit hence becomes

𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑙𝑖𝑚𝑖𝑡 =
𝑑𝑚𝑎 𝑏𝑢𝑓𝑓𝑒𝑟 𝑠𝑖𝑧𝑒 (𝑖𝑛 𝑏𝑦𝑡𝑒𝑠) 𝑎𝑠 𝑠𝑒𝑒𝑛 𝑏𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑟 − 12

𝑔𝑝𝑖𝑓 𝑏𝑢𝑠 𝑤𝑖𝑑𝑡ℎ
8⁄

− 2

The state machine structure now changes to:

Here, the PUSH_DATA_SCK_x states read data until the counter hits after which
the LAST_PIXEL_x state reads the last word and commits the buffer.

Remove the GPIF interrupt to the CPU

In the existing project, the ARM9 CPU is interrupted on frame completion to wrap
the current partial buffer and toggle the Frame ID bit of the UVC header.
This interrupt is removed and the functions are replaced by

1. Wrapup is now done using the COMMIT action with a dummy IN_DATA
action to prevent a zero length buffer being committed.

2. The Frame ID bit is toggled in the DMA callback after the last buffer of the
frame is committed.

The relevant section of the state machine is:

Page 3 of 4

Since a partial buffer is always produced, both the WAIT states will transition to a
PARTIAL_BUF_IN_SCK_x state which commits the last buffer whilst reading in 1
word of data. This is to prevent a ZLB.

This extra word is compensated in the DMA callback as:
CyU3PDmaBuffer_t * produced_buffer = &(input->buffer_p);

if (produced_buffer->count == CY_FX_UVC_BUF_FULL_SIZE) {
 CyFxUVCAddHeader (produced_buffer->buffer - CY_FX_UVC_MAX_HEADER,
 CY_FX_UVC_HEADER_FRAME);
} else {
 /* If we have a partial buffer, this is guaranteed to be
 the end of the video frame for uncompressed images. */
 CyFxUVCAddHeader (produced_buffer->buffer - CY_FX_UVC_MAX_HEADER,
 CY_FX_UVC_HEADER_EOF);
 /* Toggle UVC header FRAME ID bit */
 glUVCHeader[1] ^= CY_FX_UVC_HEADER_FRAME_ID;

 /* Remove the dummy data */
 produced_buffer->count -= 4;
}

/* Commit the updated DMA buffer to the USB endpoint. */
prodCount++;
apiRetStatus = CyU3PDmaMultiChannelCommitBuffer (&glChHandleUVCStream,
 produced_buffer->count + CY_FX_UVC_MAX_HEADER, 0);
if (apiRetStatus != CY_U3P_SUCCESS) {
 prodCount--;
 CyU3PDebugPrint (4, "Err/MC %x: %dB; counts: %d %d\r\n", apiRetStatus,
 produced_buffer->count, prodCount, consCount);
}

The GPIF data bus is 32 bits wide and so 4 words are skipped during commit.
For smaller buses, the compensation will vary.

Here CY_FX_UVC_BUF_FULL_SIZE == 32K – 12.

Remove the channel reset and restart

Page 4 of 4

The channel is reset and restarted after a frame is transferred. This is to reset
the producer descriptor index to that of the first socket as the state machine
starts transferring data to that socket when started.

Since this code executes during frame blanking, it has been removed and
instead the state machine is modified to account for the index change.

If the frame ends while in thread 0, the state machine then starts reading into
thread 1 as it is the next in sequence. Similarly, if the last buffer was in thread 1,
the image data is then read into thread 0.

In the state machine, the PARTIAL_BUF_IN_SCK_x states commit the last
partial buffer and then jump to the JUMP_BACK_TO_TH_x states which jump to
the IDLE states to wait for the next frame.

Since the PARTIAL_BUF_IN_SCK_0 state commits data in thread 0, it jumps to
JUMP_BACK_TO_TH_1 which starts reading data into thread 1 and similarly the
state that commits thread 1 jumps back into reading data to thread 0.

