

 www.cypress.com Document No. 001-86947 Rev. *B 1

AN86947

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

Authors: Manaskant Desai, Karthik Sivaramakrishnan
Associated Project: Yes

Associated Part Family: EZ-USB FX3
Software Version: FX3 SDK v1.3.3

Related Application Notes: For a complete list, click here

To get the latest version of this application note, or the associated project file, please
visit http://www.cypress.com/go/AN86947.

USB 3.0 delivers a significant performance improvement over previous generations because it uses a 5-gigabit-per-

second (SuperSpeed) signaling rate. However, the maximum achievable throughput also depends on critical factors

such as host PC controller type, operating system, and USB design (transfer type and buffer sizes). This application

note describes strategies for using an EZ-USB® FX3™ controller to maximize USB 3.0 data transfers. For complete

list of USB SuperSpeed Code Examples, visit http://www.cypress.com/?rID=101781.

Contents

1 Introduction ... 1
2 Related Resources ... 2

2.1 EZ-USB FX3 Software Development Kit 2
2.2 GPIF II Designer .. 2

3 Test Setup .. 3
4 Performance Summary ... 5
5 Operating Instructions .. 5
6 Isochronous Transfers .. 6
7 Bulk Transfers .. 8
8 Interrupt Transfers .. 10
9 GPIF-to-USB Performance on an AUTO DMA
Channel ... 11

10 Host Controller Performance Comparison 13
11 Operating System Performance Comparison 14
12 Other Factors Affecting Throughput 15
13 Other Resources .. 15
14 Summary .. 15
Document History .. 16
Worldwide Sales and Design Support 17
Products .. 17
PSoC® Solutions ... 17
Cypress Developer Community....................................... 17
Technical Support ... 17

1 Introduction

Cypress’s EZ-USB FX3, the next-generation USB 3.0 peripheral controller, provides highly integrated and flexible
features that enable you to add USB 3.0 functionality to any system. USB 3.0 has a signaling rate of 5 Gbit per
second, or 10 times the rate supported by USB 2.0. An FX3 device enables a throughput close to the theoretical
maximum supported by the USB 3.0 specification.

FX3 supports all SuperSpeed transfer types: control, isochronous, bulk, and interrupt. However, control transfers are
not recommended for moving large amounts of data. Therefore, this application note summarizes the guidelines for
achieving the maximum throughput only for the isochronous, bulk, and interrupt transfer types.

FX3 is commonly used as a bridge device that transfers data between the USB 3.0 Host and an external device, such
as an image sensor, ASIC, or FPGA. The data throughput obtained by an FX3-based application depends on multiple
factors: USB transfer type; transfer parameters, such as burst size and the amount of data buffering used within the
FX3 device; and the host controller and OS platform used.

Using an FX3 development board, this application note tests and compares transfer strategies using various hosts
and operating systems. It uses a set of simple FX3 firmware examples to study the impact of each factor that
influences throughput. It describes performance optimization guidelines for a given application and concludes with
FX3 configuration details to achieve the maximum USB 3.0 throughput for a given application.

http://www.cypress.com/
http://www.cypress.com/products/ez-usb-fx3-superspeed-usb-30-peripheral-controller
http://www.cypress.com/?rID=57990
http://www.cypress.com/go/AN76405
http://www.cypress.com/?rID=101781

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 2

Note: This application note lists the USB 3.0 throughput numbers only with the data generated internal to FX3. The
USB 3.0 throughput numbers will be lower when data is coming from the external device into FX3 through GPIF II.
Refer to AN65974 to get the throughput numbers when the FPGA is writing data into the FX3.

2 Related Resources

Cypress provides a wealth of data at www.cypress.com to help you select the right device for your design and quickly
and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base
article KBA87889, How to Design with EZ-USB FX3 and FX3S™.

 Overview: USB Portfolio, USB Roadmap

 USB 3.0 Product Selectors: FX3, FX3S, CX3™, HX3, West Bridge® Benicia™

 Application Notes: Cypress offers many USB application notes covering a broad range of topics, from basic to

advanced level. The recommended application notes for getting started with FX3 are:

 AN75705 – Getting Started with EZ-USB FX3

 AN76405 – EZ-USB FX3 Boot Options

 AN70707 – EZ-USB FX3/FX3S Hardware Design Guidelines and Schematic Checklist

 AN65974 – Designing with the EZ-USB FX3 Slave FIFO Interface

 AN75779 – How to Implement an Image Sensor Interface with EZ-USB FX3 in a USB Video Class (UVC)
Framework

 AN86947 – Optimizing USB 3.0 Throughput with EZ-USB FX3

 AN84868 – Configuring an FPGA over USB Using Cypress EZ-USB FX3

 AN68829 – Slave FIFO Interface for EZ-USB FX3: 5-Bit Address Mode

 AN73609 – EZ-USB FX2LP™/ FX3 Developing Bulk-Loop Example on Linux

 AN77960 – Introduction to EZ-USB FX3 High-Speed USB Host Controller

 AN76348 – Differences in Implementation of EZ-USB FX2LP and EZ-USB FX3 Applications

 AN89661 – USB RAID 1 Disk Design Using EZ-USB FX3S

 Code Examples:

 USB Hi-Speed

 USB Full-Speed

 USB SuperSpeed

 Technical Reference Manual (TRM): EZ-USB FX3 Technical Reference Manual

 Development Kits (DVKs):

 CYUSB3KIT-003, EZ-USB FX3 SuperSpeed Explorer Kit

 CYUSB3KIT-001, EZ-USB FX3 Development Kit

 Models: IBIS

2.1 EZ-USB FX3 Software Development Kit

Cypress delivers the complete software and firmware stack for FX3 so you can easily integrate SuperSpeed USB into
any embedded application. The Software Development Kit (SDK) comes with tools, drivers, and application
examples, which help accelerate application development.

2.2 GPIF II Designer

The GPIF II Designer is graphical software that allows you to configure the GPIF II interface of the EZ-USB FX3 USB
3.0 Device Controller. It lets you select from one of five Cypress-supplied interfaces or create your own GPIF II
interface from scratch. Cypress supplies industry-standard interfaces such as asynchronous and asynchronous Slave
FIFO, synchronous SRAM, and asynchronous SRAM. If you already have one of these predefined interfaces in your
system, you can simply select the interface you want; select from a set of standard parameters such as bus width (x8,
16, and x32), endianess, and clock settings; and compile the interface.

http://www.cypress.com/
http://www.cypress.com/?rID=51581
http://www.cypress.com/?source=PSoC5LP_Datasheet
http://www.cypress.com/?rID=82682
http://www.cypress.com/?id=167
http://www.cypress.com/?rID=94780
http://www.cypress.com/?id=3526
http://www.cypress.com/?id=4833
http://www.cypress.com/cx3/
http://www.cypress.com/hx3
http://www.cypress.com/?id=3671
http://www.cypress.com/?rid=59979
http://www.cypress.com/?rid=63358
http://www.cypress.com/?rid=53203
http://www.cypress.com/?rid=51581
http://www.cypress.com/?rid=62824
http://www.cypress.com/?rID=84341
http://www.cypress.com/?rid=75048
http://www.cypress.com/?rid=59936
http://www.cypress.com/?rid=57610
http://www.cypress.com/?rid=62942
http://www.cypress.com/?rid=61948
http://www.cypress.com/?rID=88018
http://www.cypress.com/?rID=61168
http://www.cypress.com/?rID=61168
http://www.cypress.com/?rid=101780
http://www.cypress.com/?rid=101781
http://www.cypress.com/?rID=80775
http://www.cypress.com/?rID=99916
http://www.cypress.com/?rID=58321
http://www.cypress.com/?rID=68389
http://www.cypress.com/?rID=57990
http://www.cypress.com/?rID=59628

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 3

If you need a customized interface, the tool offers a streamlined three-step GPIF interface development process that
allows you first to select the pin configuration and standard parameters. Then you can design a virtual state machine
using configurable actions. Finally, you can view the output timing to verify that it matches the expected timing. Once
the three-step process is complete, you can compile the interface and integrate it with FX3.

3 Test Setup

Figure 1 shows the test setup for this application note. All testing is performed using the FX3 DVK connected to a PC
host through its USB 3.0 connector.

Figure 1. Test Setup

USB 3. 0 Host (PC)

Streamer

Application

for Data

Transfer

FX3 DVK

CPU
or

GPIF II

EP OUT

EP IN

Control

Center for

FX3

Programming U

S

B

U

S

B
USB 3.0

The Control Center application is used to download the firmware image to FX3 internal RAM. After the download,
FX3 is ready to perform data transfers using the Streamer application. For your convenience, Control Center, C++
Streamer application binaries, and the Cypress USB 3.0 driver (CyUSB3.sys) are also provided with the attachment.
The Streamer application provided with the attachment is configured to give the best performance numbers.

To download the latest FX3 SDK, go to www.cypress.com/?rID=57990.

To find the C++ version of the Streamer application, use the following path after SDK installation:

C:\Program Files\Cypress\EZ-USB FX3 SDK\1.3\application\cpp\streamer\x86\Release

Note: On a 64-bit Windows machine, the Program Files directory is “Program Files (x86).”

Table 1 lists the four transfer tests. The Streamer application shown in Figure 2 supports these tests and serves as a
“throughput meter.” This application note uses the C++ version of the Streamer application to measure the
performance of three types of transfers (isochronous, bulk, and interrupt). Note that the C# version delivers a lower
throughput due to application and driver-level overhead.

Table 1. Code Images for Four Transfer Tests

Test FX3 code image Description

1 USBIsoSourceSink EP1-IN is a constant source of ISO
data; EP1-OUT is a constant sink for
ISO data. There is no GPIF II
connection.

2 USBBulkSourceSink Same as test 1, but bulk transfers are
used.

3 USBIntrSourceSink Same as test 1, but interrupt
transfers are used.

4 GpifToUsb The GPIF II is used for a maximum-
speed transfer into EP-IN, which
executes bulk transfers to the PC.
This is the only test that uses the
dotted path in Figure 1 from the GPIF
II to EP1-IN.

http://www.cypress.com/
http://www.cypress.com/?rID=57990

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 4

Figure 2. C++ Streamer

The Streamer application user interface includes the following:

 Endpoint: This drop-down list allows you to select different transfer types and number of endpoint buffers.

 Packets per Xfer: A transfer is a collection of packets for one data set. A greater number of packets per transfer

reduces the USB overhead and helps achieve a higher data rate.

 Xfers to Queue: This setting helps in initiating multiple transfers and adding them to the task queue. It reduces

the latency between successive transfers on the host application side. Therefore, queuing a greater number of
transfers yields a higher data rate.

 Successes: Increments to show the total number of packets successfully transferred during the streaming test.

 Failures: Increments whenever an error is reported in the transfer of a buffer. One possible failure is no data

from the device.

 Transfer Rate: Provides live updating of the current throughput performance of the USB bus and EZ-USB FX3

over the selected endpoint.

 CPU Utilization: Provides a visual indication of the utilization of the computer's CPU while streaming over USB.

 Timeout Per Xfer: The transfer fails if there is no data from the device within the timeout value. The default

value is 1500 ms.

Table 1 lists the four code images (.img files) that are downloaded to the FX3 DVK for bandwidth testing. These
modules are available in the .zip file that accompanies this application note.

 The USBIsoSourceSink example is used to measure the performance of SuperSpeed isochronous transfers.
This example uses a pair of IN and OUT endpoints, which continuously source or sink ISO (isochronous) data on
the FX3 device side.

 The USBBulkSourceSink example is used to measure the performance of SuperSpeed bulk transfers. This
example also uses a pair of IN and OUT endpoints, which continuously source or sink BULK data.

 The USBIntrSourceSink example is used to measure the performance of SuperSpeed interrupt transfers.

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 5

 The GpifToUsb example is used to measure the performance of GPIF-to-USB bulk data transfers. This example
continuously reads data from a barebone GPIF II interface and sends it to the USB Host through an IN endpoint,
without any firmware intervention.

Note: The FX3 side of these test transfers does not introduce overhead, such as processing data in FIFOs or moving
off-chip data. Processing overhead is application dependent and can decrease the maximum throughput numbers
measured in this application note. Use the FX3 GPIF II and DMA capabilities judiciously to minimize any throughput
decrease. Section 12 of this document gives performance tips to maximize FX3 throughput.

In all code examples, the instruction cache is enabled and the data cache is disabled. It is recommended that you
leave the data cache OFF unless the firmware application needs to perform regular data manipulation.

The examples are tested using the FX3 DVK directly connected to a PC host using an Intel C216 chipset family USB
3.0 eXtensible host controller (XHCI). The operating system used is 64-bit Windows 7, and the Intel host driver
version is 1.0.5.235.

4 Performance Summary

Table 2 shows the performance summary for the three transfer types using the three SourceSink firmware versions.
“Burst length”1 in the table refers to the burst size reported to the host in the USB descriptor and set in the firmware,
and “No. of packets” refers to the isochronous packets transferred per service interval. This parameter applies only to
isochronous and interrupt transfers. For interrupt transfers, the number of packets is always 1. For a detailed
throughput analysis, refer to the Sections 6, 7, 8, and 9.

Table 2. Performance Summary Results

Transfer
Burst
length

No. of
packets

Buffer
size (KB)

No. of
buffers

Throughput
(KB/s)

Isochronous 16 3 48 2 382,700

Bulk 16 NA 48 2 454,300

Interrupt 3 1 3 1 23,900

5 Operating Instructions

If you are using the FX3 DVK for the first time, refer to the application note AN75705 – Getting Started with EZ-USB
FX3. You can measure the throughput for all of the previously mentioned transfer types by following these
instructions:

1. Download the .zip file that contains the firmware, Control Center, C++ Streamer application, and Cypress USB
3.0 drivers attached with this application note.

2. Download one of the four image files using the USB Control Center (shown in Figure 3), which is provided in the
attachment. This is also installed as part of the FX3 SDK (<install directory>\Cypress\EZ-USB FX3
SDK\1.3\application\c_sharp\controlcenter\bin\Release).

3. Open the C++ Streamer application provided in the attachment, select the parameters as shown in Figure 2, and
click the Start button.

Data throughput is displayed in KB/s.

1 USB 3.0 introduces data bursting, which allows a certain number of data packets to be transferred over an endpoint without
requiring a handshake in between packets. An individual endpoint reports its burst capability (that is, the maximum number of
packets per burst) to the host via the SuperSpeed Endpoint Companion descriptor associated with the particular endpoint.

http://www.cypress.com/
http://www.cypress.com/?rID=59979
http://www.cypress.com/?rID=59979

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 6

Figure 3. USB Control Center

6 Isochronous Transfers

The isochronous transfer type is suitable for data streaming applications, such as audio and video. Isochronous
transfers provide guaranteed data bandwidth on the SuperSpeed bus, but they do not include handshakes or retries.

SuperSpeed isochronous endpoints support a maximum data packet payload size of 1024 bytes. Burst transactions
increase the data transfer rate because the producer of data need not wait for an ACK until a specified burst size has
been completed. The FX3 device supports the maximum burst size of 16 that is defined by the USB specification.
However, each SuperSpeed isochronous endpoint can request up to three burst transactions (iso-packets) in the
same service interval2, according to the USB 3.0 specification.

An isochronous transfer can specify the service interval as 2(bInterval-1) x 125 µs, where bInterval ranges from 1 to 16. A
SuperSpeed isochronous transfer type can move up to 1024 x 16 x 3 bytes per service interval. Taking the minimum
service interval as 125 µs, the maximum theoretical bandwidth for SuperSpeed isochronous transfer can be
calculated as (maximum packet size * burst size * number of iso-packets / service interval). That works out to 1024 x
16 x 3 / 125µ bytes/s or 375 Mbps (3 Gb/s).

Use the USBIsoSourceSink firmware example to measure SuperSpeed isochronous endpoint throughput on FX3.
The throughput depends on the burst length, buffer size3, iso-packets, and number of DMA buffers used.

You can change these parameters by using the definitions in the cyfxisosrcsink.h header file:

 The burst length for the isochronous endpoints is set using the CY_FX_ISO_BURST definition.

 The number of ISO packet bursts per service interval is set using the CY_FX_ISO_PKTS definition.

 The size of each DMA buffer used for transfer is set using the CY_FX_ISOSRCSINK_DMA_
BUF_SIZE definition.

 The number of DMA buffers used on each endpoint is set using the CY_FX_ISOSRCSINK_
DMA_BUF_COUNT definition.

2 For interrupt and isochronous endpoints, the specified interval at which the endpoint must be serviced by the host is known as the
“service interval.” The service interval for an interrupt or isochronous pipe is specified via the endpoint descriptor.

3 Configured for FX3 DMA buffers when initializing the DMA channels in FX3 firmware.

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 7

The CY_FX_ISO_BURST and CY_FX_ISO_PKTS parameters are set to 15 and 3, respectively, by default. Some
USB Hosts may not be able to support the transfer bandwidth required by this setting, and they fail to select the
configuration. In this case, you can lighten the bandwidth requirement by reducing the value of either of those
parameters.

After changing any of these parameters, you should recompile the application. The resultant firmware binary
(USBIsoSourceSink.img) can be loaded into FX3 RAM, and then the Streamer application can be used to measure
the transfer performance.

The isochronous throughput results obtained by varying the burst length, iso-packets, and buffering are tabulated in
Table 3 and Table 4. From those results, it is clear that the FX3 can deliver a performance close to the theoretical
bandwidth using isochronous endpoints. Therefore, the SuperSpeed isochronous throughput mainly depends on the
burst length and number of iso-packets per transfer.

Note: The throughput number for IN transfers with a burst length of 16 is significantly lower than that for transfers
with a burst length of 15. This is due to slower request scheduling by the USB Host; it is not caused by any change in
the data rate supported by the FX3 device. This can be verified by modifying the endpoint descriptor to report a burst
length of 15 while keeping the device-side endpoint configuration for a burst length of 16.

Table 3. Isochronous IN Endpoint Throughput Results

Burst length Iso-packets
Buffer size

(KB)
No. of buffers

Throughput
(KB/s)

Theoretical
(KB/s)

8 1 8 1 63,900 64,000

8 3 24 1 191,900 192,000

12 1 12 1 96,000 96,000

12 3 36 1 287,900 288,000

15 3 15 1 119,800 360,000

15 3 15 2 239,500 360,000

15 3 45 2 359,900 360,000

16 3 48 2 139,400 384,000

Note: These throughput numbers are measured by selecting 256 Packets per Xfer and 64 Xfers to Queue in the

Streamer application. These settings are preselected if you are using the Streamer application from the attachment.

Table 4. Isochronous OUT Endpoint Throughput Results

Burst length Iso-packets
Buffer size

(KB)
No. of buffers

Throughput
(KB/s)

Theoretical
(KB/s)

8 1 8 1 63,900 64,000

8 3 24 1 191,900 192,000

12 1 12 1 96,000 96,000

12 3 36 1 287,900 288,000

15 3 45 2 359,900 360,000

16 3 48 1 382,700 384,000

16 3 16 2 251,200 384,000

Note: These throughput numbers are measured by selecting 256 Packets per Xfer and 64 Xfers to Queue in the

Streamer application. These settings are preselected if you are using the Streamer application from the attachment.

As shown in these results, the use of DMA buffers large enough to hold one service interval’s worth of data is
recommended for optimum results. The FX3 firmware processing time for each DMA buffer is about 40 µs, which is
much lower than the duration of a service interval. If all data to be transferred during a service interval can be
accommodated in one DMA buffer, a single DMA buffer is sufficient to obtain the optimum transfer rate.

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 8

The Streamer application indicating the isochronous throughput is shown in Figure 4. As you can see, selecting the
maximum allowed values for the Packets per Xfer and Xfers to Queue options yields the best possible

performance.

Figure 4. Isochronous OUT Endpoint Throughput

7 Bulk Transfers

Bulk transfers are more suitable for devices that must communicate a high volume of data at a varying rate. In such
cases, the transfer can use all the available bandwidth. A SuperSpeed bulk transfer uses the bus depending on the
free bandwidth and ensures data transfer and data integrity, but with no bandwidth guarantee. The bulk transfer type
applies more to high-rate data transfer applications, such as mass storage devices. It can also be used for video data
transfers when the USB Host can sustain the required transfer rate.

SuperSpeed bulk endpoints support a maximum data packet payload size of 1024 bytes. These endpoints also
support burst sizes from 1 to 16. (A “burst” is a series of BULK packets that do not require individual ACKs from the
receiving end.)

Because no fixed bandwidth is allocated for a bulk transfer, the maximum theoretical throughput cannot be
determined. It depends on the free bandwidth available after accounting for the bandwidth allocated to all other
devices connected to the same USB Host. If the entire bandwidth is available for a single bulk transfer, the maximum
theoretical throughput for the bulk transfer will be about 4 Gbit/s, after reserving 20 percent of the possible transfers
for link and protocol-level overheads.

The USBBulkSourceSink example is used to measure the FX3 SuperSpeed bulk endpoint throughput, which
depends on the burst size, buffer size, and number of buffers.

You can vary these parameters by modifying the definitions provided in the cyfxbulksrcsink.h header file:

 The burst length for the endpoints is set using the CY_FX_EP_BURST_LENGTH definition.

 The size of each DMA buffer used for the data transfer is set using the CY_FX_
BULKSRCSINK_DMA_BUF_SIZE definition.

 The number of DMA buffers used for each endpoint is set using the CY_FX_
BULKSRCSINK_DMA_BUF_COUNT definition.

The bulk throughput results obtained for various burst lengths and buffer sizes are tabulated in Table 5 and Table 6.

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 9

Table 5. Bulk IN Endpoint Throughput Results

Burst length Buffer size (KB) No. of buffers Throughput (KB/s)

8 16 1 263,100

8 16 2 448,300

12 24 1 305,000

12 24 2 450,000

16 48 2 454,300

16 16 2 351,800

16 16 1 120,500

Note: These throughput numbers are measured by selecting 256 Packets per Xfer and 64 Xfers to Queue in the

Streamer application. These settings are preselected if you are using the Streamer application from the attachment.

Table 6. Bulk OUT Endpoint Throughput Results

Burst length Buffer size (KB) No. of buffers Throughput (KB/s)

8 16 1 249,900

8 16 2 360,100

12 24 1 289,000

12 24 2 377,000

16 48 2 405,000

16 16 2 364,900

16 16 1 153,800

Note: These throughput numbers are measured by selecting 256 Packets per Xfer and 64 Xfers to Queue in the

Streamer application. These settings are preselected if you are using the Streamer application from the attachment.

From these results, you can see that in the best case (no other connected USB Devices sharing bus bandwidth), bulk
transfers can provide better throughput than isochronous transfers. The tables show that the SuperSpeed bulk
endpoint throughput depends on the burst length, buffer size, and number of DMA buffers used.

As in isochronous transfer, using large DMA buffers, which can hold multiple bursts of data, improves the
performance. The throughput dependency on the buffer size can be explained using the following calculations:

With a burst size of 16, the best throughput obtained is 454,300 KB/s.

 Number of 16-KB bursts processed per second = 28,400

 Average time for a 16-KB data transfer = 35 µs

 Average time for a 32-KB data transfer = 70 µs

Each DMA buffer is turned around by the firmware application using a pair of CyU3PDmaChannelGetBuffer and
CyU3PDmaChannelCommitBuffer API calls. Performance benchmarking shows that a pair of GetBuffer and
CommitBuffer API calls costs about 40 µs of CPU time.

From Table 5 and Table 6, it can be seen that limiting each DMA buffer to one burst (16 KB) or less would cause the
firmware processing to set the throughput limit. By increasing the size of each buffer to 32 KB (two bursts of 16K KB
each), you can ensure that the average transfer time for one buffer is greater than the average firmware processing
time for one buffer. Such a setting yields the optimum performance for bulk data transfers when there is firmware
intervention.

The maximum throughput for the bulk IN endpoint is 454,300 KB/s or 3.7 Gbit/s, and the throughput for the bulk OUT
endpoint is 405,000 KB/s or 3.31 Gbit/s. The Streamer application indicating the bulk throughput is shown in Figure 5.

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 10

Figure 5. Bulk IN Endpoint Throughput

8 Interrupt Transfers

The interrupt transfer type is more suitable for devices that require high data reliability for a small data volume with a
guaranteed maximum service interval. The SuperSpeed interrupt transfers provide a guaranteed service interval and
a guaranteed data transfer using handshakes and retries. The interrupt transfer type is more applicable to HID
devices, such as mice or keyboards, and is not commonly used in throughput-critical applications.

SuperSpeed interrupt endpoints support a maximum data packet payload size of 1024 bytes. Per the USB 3.0
specification, SuperSpeed interrupt transfer supports a burst size up to only three packets. Moreover, it supports only
one burst transaction per service interval. The service interval for interrupt transfers is defined in the same way as it is
for isochronous transfers. The maximum theoretical bandwidth for a SuperSpeed interrupt transfer, using the service
interval of one microframe, or 125 µs, can be calculated as (maximum packet size * burst size / service interval),
which is (1024 x 3 / 125µ) bytes/s or 23.43 Mbps.

The USBIntrSourceSink example is used to measure the FX3 SuperSpeed interrupt endpoint throughput. As in
isochronous transfer, the DMA buffer is chosen as equal to the amount of data to be transferred per service endpoint.
A single DMA buffer is sufficient for obtaining the maximum throughput.

The burst size for the interrupt endpoint is set using the CY_FX_INTR_BURST_SIZE definition in the cyfxintrsrcsink.h

header file.

The throughput obtained for interrupt transfers is close to the theoretical limits, and it is the same for both IN and OUT
endpoints. Table 7 gives the throughput obtained for interrupt transfers at various burst size settings.

Table 7. Interrupt IN/OUT Endpoint Throughput Results

Burst length Buffer size (KB) No. of buffers Throughput (KB/s) Theoretical (KB/s)

1 1 1 7900 8000

2 2 1 15,900 16,000

3 3 1 23,900 24,000

Note: These throughput numbers are measured by selecting 256 Packets per Xfer and 64 Xfers to Queue in the

Streamer application. These settings are preselected if you are using the Streamer application from the attachment.

The Streamer application indicating the interrupt throughput is shown in Figure 6.

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 11

Figure 6. Interrupt IN Endpoint Throughput

9 GPIF-to-USB Performance on an AUTO DMA Channel

The transfer performance obtained in all the previous examples is influenced by the firmware execution, and it gives
good results when the size of the DMA buffers is kept large. The GpifToUsb firmware example attached with this
application note measures how the data transfer performance varies with the endpoint burst setting, as well as the
size and number of DMA buffers.

This example uses a minimal GPIF state machine that continuously fills data whenever a DMA buffer is available on
the GPIF side. This state machine does not require an external device to drive any signals and commits full DMA
buffers only at the fastest possible rate. The GPIF II Designer project for this state machine is attached with the
application note in the continuous_read.cydsn folder.

GPIF II data is sent to the USB Host over a bulk IN endpoint through an AUTO DMA channel (which does not require
any firmware intervention). There is no firmware involvement in the data path in this example, so these results can be
used to determine how the transfer throughput is affected solely by the burst size, buffer size, and number of buffers.

These parameters are varied using definitions in the cyfxgpiftousb.h header file:

 The burst size for the endpoint is set using the CY_FX_EP_BURST_LENGTH definition.

 The size of each DMA buffer used is set using the CY_FX_DMA_BUF_SIZE definition.

 The number of DMA buffers used is set using the CY_FX_DMA_BUF_COUNT definition.

The maximum theoretical performance possible is determined by the GPIF interface data rate. In this case, the GPIF
interface is run at a clock rate of 100.8 MHz with a 32-bit-wide data bus. This translates to a maximum possible data
rate of 403.2 MB/s.

Figure 7 shows a graph that illustrates how the transfer performance varies with the burst length setting for various
amounts of DMA buffering used. Each of the curves in the graph represents different amounts of total DMA buffering,
ranging from a single buffer holding one burst of data to four buffers holding three full bursts.

The performance obtained with a single DMA buffer is consistently low because the GPIF transfer pauses while the
USB transfer is happening, and vice versa. The graph shows that the transfer performance increases with burst
length, up to a burst length of 8 KB and then levels off. It also shows that the transfer performance increases with a
buffer size up to a total buffer depth of four burst transfers and then levels off.

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 12

This graph shows that the optimal settings for GPIF-to-USB bulk-based applications are a burst length of 8 KB and a
total buffering of about 32 KB. Further increases in burst length and buffering give only marginal performance
improvements at the expense of increased RAM use.

Figure 7. Variation of USB Performance with Burst Size

GPIF to USB Performance against Burst Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

1 2 4 8 15 16

Burst length in KB

P
e
rf

o
rm

a
n

c
e
 i

n
 M

B
p

s

1 burst

2 burst

3 burst

4 burst

8 burst

12 burst

Table 8. indicates the throughput numbers obtained using this firmware application for various values of the endpoint
burst length, DMA buffer size, and number of DMA buffers. It shows how the GPIF-to-USB transfer performance
varies with the individual DMA buffer size for various burst lengths. Four DMA buffers are used in all cases, and the
variation is only in the size of an individual DMA buffer.

Figure 8 shows that DMA buffers that can hold two burst transfers of data will deliver significantly better performance
than buffers that can hold one burst transfer of data. Further increases in buffer size have little to no benefit. This
graph shows that the ideal DMA buffer size is two times the endpoint burst length.

Table 8. GPIF-to-USB Bulk Transfer Throughput Results

Burst
length
(KB)

Size of each
DMA buffer

Performance with 1 DMA
buffer (KB/s)

Performance with
2 DMA buffers

(KB/s)

Performance with
3 DMA buffers

(KB/s)

Performance with
4 DMA buffers

(KB/s)

1 1 burst 115,200 229,000 308,500 310,800

1 2 bursts – – – 346,700

1 3 bursts – – – 356,800

2 1 burst 160,600 333,100 346,000 347,100

2 2 bursts – – – 369,600

2 3 bursts – – – 377,300

4 1 burst 196,000 368,800 369,600 370,100

4 2 bursts – – – 381,900

4 3 bursts – – – 385,600

8 1 burst 202,100 380,700 382,100 382,100

8 2 bursts – – – 387,700

8 3 bursts – – – 389,500

16 1 burst 170,700 386,900 387,700 388,600

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 13

Burst
length
(KB)

Size of each
DMA buffer

Performance with 1 DMA
buffer (KB/s)

Performance with
2 DMA buffers

(KB/s)

Performance with
3 DMA buffers

(KB/s)

Performance with
4 DMA buffers

(KB/s)

16 2 bursts – – – 391,200

16 3 bursts – – – 394,000

Note: These throughput numbers are measured by selecting 256 Packets per Xfer and 64 Xfers to Queue in the

Streamer application. These settings are preselected if you are using the Streamer application from the attachment.

Figure 8. Variation of USB Performance with DMA Buffer Size

GPIF to USB Performance against Buffer Size

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

1 burst 2 burst 3 burst

Size of each DMA buffer

P
e
rf

o
rm

a
n

c
e
 i

n
 M

B
p

s

1

2

4

8

15

16

10 Host Controller Performance Comparison

The USB data throughput obtained also depends on the capabilities of the USB Host used. To illustrate this
dependency, the SuperSpeed bulk IN throughput was measured for different USB 3.0 host controllers while keeping
all other test parameters the same. The test was carried out using the USBBulkSourceSink example on multiple
machines running Windows 7.

Table 9 compares the throughput of four built-in USB 3.0 host controllers. Intel’s host controllers outperform other
USB 3.0 host controllers by about 20 percent, as the table shows. Generally, the throughput with the USB 3.0 add-on
cards will be less compared to the built-in USB 3.0 host controllers.

Table 9. Bulk IN Throughput for Host Controllers

USB 3.0 host
controller (built-in)

Throughput
(KB/s)

Driver
version

PC information OS Application
Burst
length

Max.
packet

size
(bytes)

Packets/
xfer

Xfers to
queue

Intel® USB 3.0
eXtensible Host
Controller

450,400 1.0.9.254

Intel Core™ i5-3210M
CPU, Intel 7 Series/c216
Chipset Family, 2.5 GHz,
4 GB RAM, Service
Pack 1

Win 7
64 Bit

C++ Streamer 16 1024 256 64

Renesas Electronics
USB 3.0 Host
Controller

352,100 2.0.34.0

Intel Core i7 CPU,
Chipset : Intel 3400
series, 4 GB RAM,
Service Pack 1

Win 7
 64 Bit

C++ Streamer 16 1024 256 64

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 14

USB 3.0 host
controller (built-in)

Throughput
(KB/s)

Driver
version

PC information OS Application
Burst
length

Max.
packet

size
(bytes)

Packets/
xfer

Xfers to
queue

ASMedia Host
Controller

370,200 1.12.5.0

AMD FX™-4100 Quad
Core Processor, 8 GB
RAM, 3.60 GHz, Service
Pack 1

Win 7
64 Bit

C++ Streamer 16 1024 256 64

AMD USB 3.0 Host
Controller

362,900 1.1.0.153
AMD A6-3670 APU, 2.70
GHz, 8 GB RAM, Service
Pack 1

Win 7
64 Bit

C++ Streamer 16 1024 256 64

NEC Electronics USB
3.0 Host Controller

300,200 1.0.19.0
Intel Core i5-2540M CPU,
2.60 GHz, 4 GB RAM,
Service Pack 1

Win 7
64 Bit

C++ Streamer 16
1024
Bytes

256 64

11 Operating System Performance Comparison

The USB throughput can also depend on the operating system and the software running on the USB Host.

SuperSpeed bulk IN throughput was measured for different operating systems while keeping the other test
parameters the same. This test was carried out with the USBBulkSourceSink application using the configuration that
delivers the maximum data transfer rate. The Intel 3.0 host was used on all operating systems (Windows, Mac OS,
and Linux).

SuperSpeed isochronous IN throughput was measured for different operating systems. This test was carried out with
the USBIsoSourceSink application using the configuration that delivers the maximum data rate. The Intel 3.0 host
was used on all operating systems.

A console application based on the open source libusb library was used to measure throughput with Linux and Mac
OS operating systems. To use this console application, download the FX3 SDK for Linux and FX3 SDK for Mac OS
from www.cypress.com/?rID=57990.

The performance comparisons are tabulated in Table 10 and Table 11. From the results, you can see that the
isochronous throughput for Linux is less compared with Windows and Mac OS X. It is less because the Linux kernel
restricts the size of the USB transfer to less than or equal to 32 KB. Therefore, the burst size and the ISO-Mult setting
should be set in such a way that their product does not exceed 32 KB.

Table 10. Bulk IN Throughput for Operating Systems

Operating
system

Windows 7
(Intel host)

Windows 8
(Intel host)

Mac OS X
v10.10

(Intel host)

Linux (kernel
3.11.0-12,
Intel host)

Throughput
(KB/s)

454,300 453,500 420,100 425,400

Table 11. Isochronous IN Throughput for Operating Systems

Operating
system

Windows 7
(Intel host)

Windows 8
(Intel host)

Mac OS X
v10.10

(Intel host)

Linux (kernel
3.11.0-12,
Intel host)

Throughput
(KB/s)

359,800 359,900 356,400 256,000

http://www.cypress.com/
http://www.cypress.com/?rID=57990

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 15

12 Other Factors Affecting Throughput

As described previously, throughput varies depending on the host controller and operating system. If you connect
multiple USB Devices to the same host, throughput may drop. Cypress recommends that you use a USB-IF certified
USB cable to achieve the best results. USB Devices connected to host adapter cards provide a lower throughput
compared with integrated USB host controllers.

In applications in which data is being transferred from/to external devices connected over the GPIF II interface, the
throughput also depends on the GPIF II data transfer rate and CPU processing time if it needs to touch the data.

When using bulk endpoints for such transfers, maximize the number of DMA buffers. This helps to counteract the
impact on throughput resulting from long pauses in data transfer on the USB Host side.

When using isochronous transfers, Cypress recommends that each DMA buffer be capable of holding one service
interval’s worth of data. Because the host guarantees the transfer bandwidth in this case, a large number of buffers is
not required.

Where no data manipulation is being performed by the FX3 firmware, use AUTO DMA channels to avoid any
performance limitation due to the firmware design. If firmware-based data manipulation is required, it will be faster to
move the data using DMA callbacks than it will be doing it from a thread. One such example is a USB Video Class
application, in which header information is added to data blocks by the firmware. In addition, Cypress strongly
recommends that you keep critical data processing code to a minimum by removing debug messages. AN75779 –
How to Implement an Image Sensor Interface with EZ-USB FX3 in a USB Video Class (UVC) Framework provides an
example of how the firmware implements the UVC.

Using the release version of the FX3 API and RTOS libraries is recommended; set the compiler optimization level to
“-O2” or “-O3.”

13 Other Resources

AN65974 – Designing with the EZ-USB FX3 Slave FIFO Interface explains the details of the Slave FIFO interface and
includes performance measurements for a Slave FIFO application. Refer to the section, “Steps in streaming
transfers,” for throughput measured using a Slave FIFO application.

Refer to section 2.4 of the FX3 SDK troubleshooting guide for details on USB link-level factors that can affect system
throughput. This document is part of the FX3 SDK installation in the C:\Program Files\Cypress\EZ-USB FX3
SDK\1.3\doc folder. For more details on the USB SuperSpeed protocol, refer to the USB 3.0 specification
(http://www.usb.org/developers/docs/).

14 Summary

This application note provided guidelines on how to achieve optimum USB 3.0 throughput using EZ-USB FX3. It
analyzed changes in throughput caused by various transfer parameters to identify the most critical parameters for
each transfer type. It also compared the throughput for host controllers and operating systems, describing the factors
that affect USB throughput.

http://www.cypress.com/
http://www.cypress.com/?rID=62824
http://www.cypress.com/?rID=62824
http://www.cypress.com/?rID=51581
http://www.usb.org/developers/docs/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 16

Document History

Document Title: AN86947 - Optimizing USB 3.0 Throughput with EZ-USB® FX3™

Document Number: 001-86947

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4084414 MDDD 08/01/2013 New Specification

*A 4305036 RSKV 03/12/2014 Control Center, C++ Streamer and USB 3.0 drivers are added to the
attachment

Attached C++ Streamer application is modified such that Packets per Xfer is
defaulted to 256 and Xfers to Queue is defaulted to 64.

Streamer application user interface is explained

Table 9 is updated with the more details of test setup (host controller driver
version, PC information, Streamer application settings)

*B 4864015 MDDD 07/29/2015 Added ISOC throughput comparison table across different operating systems.

Sunset review

http://www.cypress.com/

Optimizing USB 3.0 Throughput with EZ-USB® FX3™

 www.cypress.com Document No. 001-86947 Rev. *B 17

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

EZ-USB and West Bridge are registered trademarks, and Benicia, CX3, FX2LP, FX3, and FX3S are trademarks, of Cypress Semiconductor Corp. All
other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2013-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/?id=1062&source=anxxxxx
http://www.cypress.com/?id=1936&source=anxxxxx
http://www.cypress.com/?id=24&source=anxxxxx
http://www.cypress.com/?id=1933&source=anxxxxx
http://www.cypress.com/?id=2308&source=anxxxxx
http://www.cypress.com/?id=64
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1932&source=anxxxxx
http://www.cypress.com/?id=167&source=anxxxxx
http://www.cypress.com/?id=10&source=anxxxxx
http://www.cypress.com/psoc/&source=anxxxxx
http://www.cypress.com/?id=1573&source=anxxxxx
http://www.cypress.com/?id=2232&source=anxxxxx
http://www.cypress.com/?id=4749&source=anxxxxx
http://www.cypress.com/?id=4562&source=anxxxxx
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203&source=anxxxxx
http://www.cypress.com/?app=forum&source=anxxxxx
http://www.cypress.com/?id=2200&source=anxxxxx
http://video.cypress.com/video-library/video/PSoC
http://www.cypress.com/?id=1162&source=anxxxxx
http://www.cypress.com/?id=4&source=anxxxxx
http://www.cypress.com/

