v

4
w

Ilg.
)

YPRESS

PERFEFORM

Cypress EZ-USB® FX3™ SDK

EZ-USB Suite User Guide

Version 1.3.3

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone (USA): 800.858.1810
Phone (Intl): 408.943.2600
http://www.cypress.com

EZ-USB Suite User Guide, Version 1.3.3

G

CYPRESS

PERFORM

Copyrights
Copyright © 2014 Cypress Semiconductor Corporation. All rights reserved.

EZ-USB, FX3, FX3S, CX3, FX2G2 and GPIF are trademarks of Cypress Semiconductor. All other trademarks or registered
trademarks referenced herein are the property of their respective owners.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may
appear in this document. No part of this document may be copied or reproduced in any form or by any means without the
prior written consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein.
Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or
failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

License Agreement
Please read the license agreement during installation.

EZ-USB Suite User Guide, Version 1.3.3 2

CYPRESS

PERFORM

1 EZ-USB SUITE ...ttt ettt e e e e e ettt et e e e s e s na et e e e e e e s e e et b e ee e e e e e e e e nnnrrereeeaens 4
0 R [011 7o To 18 el 1o o [PPSR 4
1.2 IDE FEAUIUIES.eeeeeeeeeeeeeeeeeeeeee ettt e e ee e ee e e ee e e se s e e e e e e e EnRnnnennnnnrnnnrnnnnnren 4
2 Creating an FX3 FirMWare PrOJECTuviiiiiiiii ittt e e 5
2.1 Starting the EZ-USB SUIt€ IDEuuuiiiiiiiiiiiiiiiiiiiiiiiiiieieieieieierereeererernnerenneneerarnrsrnnnnnnne 5
A O =T 1] o TRt 1= N o][o S 6
2.3 Creating a New Project Based 0N TEMPIALESuu s 11
3 JTAG Debugging Of FIrMWare PrOJECTScc.uviiiiiiiieiiiiie ettt 14
3.1 Debugging uSiNg SEQQEI J-LINKuuuuuuiuiuiuiuiuiirninieiernrerniniernrninrnnnre————————————. 14
3.2 Debugging With OPENOCNDuuuuiuiiiiiiiiiiiiieieiereree ... 21
4 CX3 CoNfIGUIAtion ULHITY ...eeeiiiiiiiieiiee et e e e e e 26
4.1 Introduction t0 the CX3 AEVICEuuuiiiiiieeii ittt e e e e e e 26
4.2 CX3 MIPI CSI-2 INLEITACEeetiieeiiiiitiet ettt ettt e e e et e e e e s e s abebreeeaeeeaenes 27
4.3 Configuring the CX3 DEVICEccccoe i 30
4.4 Using the CSI Configuration ULIlityooooeiiiie i 32
4.5 GPIF-Il interface 0N the CX3 ...t e e e e 44

EZ-USB Suite User Guide, Version 1.3.3 3

1 EZ-USB Suite

11

1.2

- <
£ CYPRESS

PERFORM

Introduction

EZ-USB Suite is the integrated development environment provided by Cypress for
firmware development and debugging using the EZ-USB FX3 and associated
parts.

EZ-USB Suite is based on the standard Eclipse Kepler IDE for C/C++ Developers,
and provides a few customizations that are FX3 device family specific.

IDE Features

The EZ-USB Suite IDE provides firmware development and debugging support for
FX3 applications. It also provides a mechanism to create new FX3 firmware
projects, and plug-ins for through which other FX3 applications such as Control
Center and GPIF-1l Designer can be accessed.

The IDE is integrated with the GNU ARM tool-chain for firmware compilation,
linking and debugging. The ARM GNU Eclipse plug-in is used for managed builds
and debugging.

The following chapters provide more detailed description on the IDE features.

EZ-USB Suite User Guide, Version 1.3.3 4

Creating an FX3 Firmware Project

YPRESS

PERFORM

This chapter outlines the steps involved in creating a FX3 firmware application,
using the GpifToUsb project from the SDK as a reference.

2.1 Starting the EZ-USB Suite IDE

Launch the EZ-USB Suite IDE by following the “All Programs -> Cypress -> Eclipse
-> EZ USB Suite” path from the Start Menu.

Workspace Launcher

Select a workspace

Cypress EZ IJSB Suite stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session,

Workspace: l D:\FX3WorkSpace v’ [Browse...

[[Juse this as the default and do not ask again

;} CYPRESS

FPERFORM

Figure 2-1: Workspace Selection Dialog
The IDE will prompt for a Workspace to be opened. If you have already created a

workspace, select it from the dropdown box. Otherwise, provide the path where the
new workspace has to be created and Click OK.

EZ-USB Suite User Guide, Version 1.3.3

2.2 Creating the Project

The easiest way to create a new FX3 firmware project under the Eclipse IDE, is to
import an existing project and make changes to it.

1. Choose the Import option under the File menu to bring up the Import options
window. Choose “Existing Projects into Workspace” from the “General”

group.

irg- S Q- | cfe— B 5 [Resource |

Select
Create new projects from an archive file or directory. E - 5

Select an import source:

[=-(= General
(&, archive File
=1 E isting Projects into Workspace:
(], File System
5 preferences

B CjC++

B s

= aGit

(= Install

(= RunjDebug

(= Tasks
(= Team

8= outline 523 _[E] Taskuist] & ¥ = 8
An outline is not avalable.

Location Type

Figure 2-2: Project Import Dialog

2. In the “Browse for Folder” window that pops up, navigate into the
firmware/basic_examples/cyfxgpiftousb folder in the FX3 SDK installation.

EZ-USB Suite User Guide, Version 1.3.3 6

Browse For Folder. IZ]

Select root directory of the projects to import

() Cypress USBSuite
¥ [eclipse
= [EZ-USB FX3 SDK
=13
1) doc
= (5 firmware
= I basic_examples
(£ cyfxbulklpauto_cpp
() cyfxbulklpautoenum
155 cyfxbulklpotg
(2 cyfxbulksresink
I cyfxbulkstreams
I3 cyfxflashprog
Cl=]
() continuous_read.cydsn
153 cyfxisolpauto
1) cyfxisolpmaninout
103 cyfxisosrc
15 cyfxisosresink
1) cyfxusbdebug
23 cyfxusbhost
1) cyfxusbotg
) boot_fw
() common
() cx3_examples v

|>

Folder: ‘ cyfxgpiftousb

Make New Folder

|

Figure 2-3: Folder Browse Dialog

3. Select the “Copy projects into workspace” option in the Import window, so
that we get a new copy of the source files that can be modified.

EZ-USB Suite User Guide, Version 1.3.3 7

CYPRESS

PERFORM

B Import

Import Projects o
Select a directory to search for existing Eclipse projects, @
-

(®) Select root directory: 1 C:\Program Files\Cypress\EZ-USB FX3 SDK|1 _:| [Browse. ..]

(O select archive file: ’ ‘

Projects:

GpifTaUsb (C:\Program Files\Cypress\EZ-USB FX3 SDK\L.3\firmwal [select Al

Deselect All

< | 2|

Copy projects into workspace

Working sets
[[Jadd project to working sets

® [Finish J[Cancel]

Figure 2-4: Import Projects Dialog

4. If desired, right-click the project name and use the “Rename” option to
rename the project. The respective source files in the project can also be
renamed as desired. If the header files are renamed, references to the
header file in the source files will need to be updated.

EZ-USB Suite User Guide, Version 1.3.3 8

I Resource - Fx3Example/fx3_usb_desc.c - Cypress EZ USB Suite
File Edit Source Refactor Mavigate Search Project CY Tools Run Window Help

W i E S QA I S B e
|75 Project Explorer &2) == Fx3_example.c [Fx3_example.h | [€) Fx3_usb_desc.c 2
" =) fg; 8 Y ## ~

where <install> is the Cypress software

= =5 Fx3Example ;
installation root directory path.

[} Includes

[#- (= continuous_read.cydsn f;ﬁ T
(= Debug "j"

[S) cyfx_gec_startup.5
[eyfxgpifzconfig.h
[€) eyfxtx.c

[€) Fx3_example.c

[B) Fx3_example.h

[€) Fx3_usb_desc.c

| @ makefile

)-8

®

#include "fx3_example.h"

=+

)

/* Standard device descriptor for USB 3.0 %/
const uintS_t CyFxUSB30DeviceDscr[] _ attribute ({({aligned (32))) =
{

&+

*

B readme.txt 0x12, /* Descriptor size */
CY USSP USB DEVICE DESCR, /* Device descriptor type */
0Ox00,0x03, /*® USB 3.0 %/
ox00, /% Device class */
0ox00, /* Device sub-class */
= = - = 0x00, /* Device protocol */
of Outline &3 El Taskuist = ox09, /* Maxpacket size for EPO : 2%9 #/
5 laz 3& \s o %~ 0xB4,0x04, /* Vendor ID */
= 0xF1,0x00, /* Product ID */
= fx3_example.h y
c . 0x00,0x00, /* Device release nuwber */ v
@ © CyFxUSB30DeviceDscr : © hE
® ° CyFxiUSB20DeviceDscr
c ez s o A A<=l ra e R &
@ © CyFxUSBBOSDscr | const win & Tasks (Bl Consoledsd 4 ¢8| BEE % B-r5-=0

®° CyFxiUSBDeviceQualDscr : con

c \CDT Build Console [Fx3Example]
@ CyFxUSBSSConfigDscr : const uin B B

o° CyFxUSBHSConfigDscr *###%%* Build of configuration Debug for project Fx3Example #*#*%% E
®° CyFxUSBFSConfigDscr :
:Z Eyixﬂ:g;trlngfLa:gIDDDscr “ SEke Sl
@c CyFXUSBPar:‘.‘Iu att;)ure scr "t 4 Building file: ../fx3_usb_desc.c
@c YR % et scr ‘»r"” r"“r""‘*'[] Invoking: ARM Sourcery Windows GCC C Compiler
oo Uep0aDecr COnE bR __||aru-none-esbi-gec -D_ CYUSP_TX_ =1 -I"C:\Program Files\Cypress\EZ-USB FX3
®° CyFxusbDscralignBuffer : const uint?_t] SDKV1.3\/firmware/u3p firmware/inc” -I.. -00 -ffunction-sections -fdata-sections -Wall
-Wa, -adhlns="fx3_usb_desc.o.lst” -c -fmessage-length=0 -MMD -MP -MF"fx3_ usb_desc.d"
< | B -MT"£x3_ush_desc.d” -mcpu=arm9Z6ej-s -mthunb-interwork -g -gdwarf-2 -o "fx3_usb_desc.o" b

FTR I S M|

Figure 2-5: EZ USB Suite Eclipse Based IDE

5. Add additional source files as required. This can be done in one of two
ways:

a. Right-click the project name and select the “New -> Header File” or
“‘New -> Source File” option as appropriate.

EZ-USB Suite User Guide, Version 1.3.3 9

CYPRESS

PERFORM

Bl C/C++ - Cypress EZ USB Suite

File Edit Source Refactor Mavigate Search Run Project CY Tools Window Help
: Ti o e e RO -0 Q ™E

i [Project Explarer 53 =

~

[
dir

=5 BulkLpAutoCpp |
R =2 Go Into
% File

Open in New Window [¥ File from Template

(= Copy Ctrl+C (¥ Folder
) (& Class
|h] Header File

B source File

¥ Delete Delete

L4 =
159urce &% Source Folder
Rename... F2 [T C Project
I Proj
Dy Tmport... |c¥] C++ Project
223 Export... [Other... Ctrl+N
Build Project
Clean Project
2 | Refresh FS

Close Project
Close Unrelated Projects

Figure 2-6: Adding new source files to a project
b. Copy the file into the project folder inside the workspace and use the

Refresh (F5 key) option to make it visible in the project.

6. The build settings for the project will already be functional. Right-Click on the
project name and use the “Properties” menu item to view and modify the
build settings.

7. Build the project to verify that the project import and renaming is successful.

EZ-USB Suite User Guide, Version 1.3.3 10

CYPRESS

PERFORM

2.3 Creating a New Project Based on Templates

Another way to create a new FX3 firmware project is to use the Create Project
based on Templates option provided by EZ-USB Suite.

1. Select the New -> Project option from the File menu.

Bl C/C++ - Cypress EZ USB Suite

#-8 Edit Source Refactor MNavigate Search Run Project CY Tools Window Help
[E=] Makefile Project with Existing Code b
Open File. .. | [6%] C++ Project
- [C Project

Convert to a C/C++ Project (Adds C/C++ Nature)
| Convert to a C/C++ Autotools Project

2% Source Folder

("% Folder
J |¢7 source File

] Rename... E2 |7 Header File

& Refresh Fs5 | 7 File from Template
Convert Line Delimiters To »| @ Class
| (7 Task
| £5 other... Chri+h
Switch Workspace 4
Restart
g2y Import...
&7y Export...
Propetties Alt+Enter
Exit

Figure 2-7: Selecting the New Project Menu ltem

2. Choose the “Cypress -> FX3 Project” option from the resulting popup
window and click on “Next”.

EZ-USB Suite User Guide, Version 1.3.3 11

Il New Project

Select a wizard

Wizards:

| @ (= General
®H-E cvs
== Cypress
& FX2LP Praject

Pl F 3 Project

>\
® z -

Figure 2-8: Choosing project type to be created

3. Three project templates are provided. The cyfx3bootappgcc template
creates a project based on the FX3 boot library. The cyfxbulksrcsink
template creates a project that does not include a GPIF-II configuration. The
slfifoasync template creates a project that includes a GPIF-II configuration.
Select the “Create the Project using one of the Templates” checkbox, select
the desired template, provide a name for the project; and click “Finish” to
create the project.

EZ-USB Suite User Guide, Version 1.3.3 12

= - BX
FX3 Project
Create MNew FX3 Project

Project Meme Fx3TestProjI

Create the Project using one of the Templates

cyfx3bootappacc
cyfxbulksresink
slfifoasyac

® Next = [Finish][Cancel

Figure 2-9: Creating the template based project

EZ-USB Suite User Guide, Version 1.3.3 13

JTAG Debugging of Firmware Projects

CYPRESS

PERFORM

The ARM9 core on the FX3 and related devices support the standard ARM JTAG
TAP block and all of the JTAG pins are made available on the device package. This
means that any standard JTAG debugger and tools can be used to debug FX3
firmware projects.

The following sub-sections provide instructions on how the Segger J-Link Debug
Probe and the Cypress CY7C65215 USB serial device can be used for debugging
firmware projects. Similar sequences can be followed when using other debug
probes.

3.1 Debugging using Segger J-Link

The following procedure can be used to debug FX3 projects from the Eclipse IDE
on all supported platforms (Windows, MacOS and Linux).

Download and install the latest J-Link GDB Server software from the Segger web
page: https://www.segger.com/jlink-gdb-server.html

The command line version of the GDB server program is used for the following
steps.

EZ-USB Suite User Guide, Version 1.3.3 14

https://www.segger.com/jlink-gdb-server.html

—-—=__:?

=2 CYPRESS

PERFORM

1. Select and right-click on the project to be debugged, and select the “Debug
As -> Debug Configurations...” option.

= C/C++ - Eclipse
File Edit Source

Refactor Navigate

Search Project Run ‘Window Help

& B~ Qv B G- E B O ENI®dE Y

[0y ProjectE.. 32 <
SRR

- [5 BulkLpAutgCanl

- S CaUveOvs
5 cyulpp
21 Fx3Bootlpy

> 25 PX3SMassSt

fre
i

| 8

L E

=

h-4

MNewy

Go Into
Open in New Window

Copy

Paste

Delete

Rernove from Context
Source

Move...

Rename...

Import...
Export...

Build Project
Clean Project
Refresh

Close Project

Close Unrelated Projects

Build Configurations
Make Targets

Index

Show in Rermote Systems view
Profiling Tools

Convert To..,

Profile As

Debug &5

Run &s

Compare With

Restore from Local History...
Run C/C++ Code Analysis

Team

Ctrl+C
Ctrl+Y
Delete
Ctrl +Alt+Shift+Down

F2

F5

20 FileSize-0x20004200 Offset=0x00013000 Flags=0x220000@5

7 FileSize=0x00002497 Offset=0x00023000 Flags=0x22000005

5 FileSiz

2d5 Offset

33000 Flag:

=}

3 FileSiz

L

v

f3 Offset

1Local C/C++ Application

| Debug Configurations...

LkLpAutoCpp. el f"
filename

3ulkLpAutoCpp.elf
o P Pp
|

Figure 3-1: Creating debug configuration: Start

EZ-USB Suite User Guide, Version 1.3.3

38000 Flag

15

2. In the Debug Configurations popup window, right-click the “GDB Segger J-
Link debugging” option and select “New”.

= Debug Configurations

Create, manage, and run configurations 9
Q)

| B3~ Configure launch settings from this dialog:

type filter text 7 - Press the 'New' button to create a configuration of the selected type.

[C] C/C++ Application - Press the 'Duplicate’ button to copy the selected configuration,

[€] C/C++ Attach to Applic

{1

[E] C/C+ Postmortem Det ¥ - Press the 'Delete’ button to rermove the selected configuration,

[T] C/C++ Remote Applical | 5o - Press the 'Filter' button to configure filtering options,

[©] GDB Hardware Debuggi) . . ' . -

[S] GDE OpenOCD Debugg - Edit or view an existing configuration by selecting it.

[c] GDBE SEGGERf—————]

B Launch Grou| New ilaunch perspective settings from the 'Perspectives' preference page.
Duplicate

Delete

< I »

Filter matched 8 of 8 items
Figure 3-2: Creating debug configuration: Segger J-Link

3. A“<ProjName> Debug” configuration will be created. The settings for the
configuration need to be entered as below.

EZ-USB Suite User Guide, Version 1.3.3 16

4. No changes are required under the “Main” tab.

= Debug Configurations

Create, manage, and run configurations

| x‘ B3~ || Name: BulkLp&utoCpp Debug

type filter text [5] Main %5 Debugger| B Startup| %/ Source| £ Common |
[T] C/C++ Application ' - .
[T] C/C++ Attach to Applicatior
[€] C/C++ Postmortermn Debugg Debug'BulkLpAutoCpp.elf

C/C++ Application:

==# CYPRESS

PERFORM

(X5

[€] C/C++ Remote Application

Variables... HSearchProject..‘H Browse... l

E’ GDB Hardware Debugging
[E] GDB OpenOCD Debugging || | Preject:
4 [c] GDB SEGGER J-Link Debuggai BulkLpAutoCpp
[c] BulkLpAutoCpp Debug o))
Launch Group Build {if required) before launching

Build configuration: Debug

Browse...

[¥] Select configuration using 'C/C++ Application’

() Enable auto build () Disable auto build

© Use workspace settings Configure Workspace Settings...

75 m "G
Filter matched 9 of 9 items

@

Figure 3-3: Creating debug configuration: Main tab

EZ-USB Suite User Guide, Version 1.3.3

Rewert

17

=
CYPRESS

PERFORM

5. On the “Debugger” tab, browse and select the path to the J-Link GDB Server
executable, specify “ARM9” as the Device Name and select JTAG as the
debug interface.

< Debug Configurations
Create, and run i i ﬁ*
2X| B3~ MName: BulkLpAutoCpp Debug
type filter text [B Main | %5 Debugger . B Startup | B Source) B Commen
[E] C/C++ Application J-Link GDB Server Setup £

[€] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[€] C/C++ Remote Application Executable: C:\Program Files (x86)\SEGGERMLink_V490%LinkGDBServerCL.exe I Browvse.., | | Variables...
[©] GDB Hardware Debugging

[V] Start the J-Link GDB server locally Connect to running target

Device name: ~ ARMS Supported device names.

[€] GDB OpenOCD Debugging _ = =

4 [T] GDB SEGGER J-Link Debugging Endianness: @litle ©Big
[] BulkLpAutoCpp Debug Connection: @ USB @I (USB serial or IP name/address)

cLaunchiGraup Interface: OSWD ©JTAG
Initial speed:) Auto) Adaptive @ Fixed 1000 kHz
GDB port: 2331
SWO port: 2332 [V]\erify downloads [V Initialize registers on start
Telnet port: 2333 [V]Local hostonly [] Silent

Log file: | Browse... 3

Other options: -5

[¥] Allocate console for the GDB server [7] Allocate console for semihosting and SWO |

GDEB Client Setup

Executable: ${cross_prefixjgdb$ cross_suffix}

Other options:

Commands: set mem inaccessible-by-default off 4

Remote Target

Host name or IP address: | localhost =
Port humber: 2331

Appl Revert
Filter matched 9 of 9 items [PPY] l eve

Figure 3-4: Creating debug configuration: Debugger tab

EZ-USB Suite User Guide, Version 1.3.3 18

6. On the “Startup” tab, disable the “Enable flash breakpoints”, “Enable
semihosting” and “Pre-run reset and halt” options using the corresponding

checkboxes.

= Debug Configurations

Create, and run confi

ER, AN =R
type filter text

[€] C/C++ Application
[€] C/C++ Attach to Application
[€] C/C++ Postrnortern Debugger
[€] C/C++ Remote Application
[©] GDB Hardware Debugging
[©] GDB OpenOCD Debugging

4 [C] GDB SEGGER J-Link Debugging

[©] BulkLp&utoCpp Debug

= Launch Group

Filter matched 9 of 9 items

Figure 3-5: Creating debug configuration: Startup Tab

Name: BulkLp&utoCpp Debug

[l Main [%5 Debugger B Startup B/ Source| =] Common
Initialization Commands

[¥]Initial Reset and Halt. Type: Low speed: 1000

JTAG/SWD Speed: @ Auto Adaptive () Fixed kHz

[T1Enable flash breakpoints.

[]Enable semihasting. Console routed to: [/| Telnet GDB client
Enable SWO. CPU freq: | 0 Hz. SWO freq: 0

Load Symbols and Executable

[¥] Load symbaols
@ Use project binary: BulkLpAutoCpp.elf
) Use file:
Symbols offset (hex):

[¥] Load executable
@ Use project binary: BulkLpAutoCpp.elf

Use file:
Executable offset (hex):
Runtime Options
[T Set program counter at (hex):

[V] Set breakpoint at: main

kHz

Hz. Port mask: | 0x1

Run Commands

[Pre-run reset and halt. Type:

Workspace...

=

L

[

Apply

J [

Revert

7. Click on “Apply” to save settings, and then click on “Debug” to start

debugging.

EZ-USB Suite User Guide, Version 1.3.3

19

8. If a “Confirm Perspective Switch” popup window (as shown below) appears,
select “Yes” to switch to the Debug perspective. The “Remember my
decision” checkbox can be ticked to prevent this popup from appearing in
subsequent debug sessions.

= Confirm Perspective Switch
'.6] This kind of launch is configured to open the Debug perspective when it suspends.
~ This Debug perspective is designed to support application debugging. It
incorporates views for displaying the debug stack, variables and breakpoint

management.,

Do you want to open this perspective now?

(] Remember my decision

Yes J [No

Figure 3-6: Creating debug configuration: Perspective switch

9. Execution stops at the “main ()” function. Additional breakpoints can be
placed at this stage, and the Resume, Step Into or Step Over actions can be
used to run through the code.

< Debug - BulkLpAutoCpp/cyfxbulklpauto.cpp - Eclipse
File Edit Source Refactor Mavigate Search Project Run Window Help

e |G % -0 - QW iENB @R B = Jr=00 4 e S Quick

%5 Debug 52 gl Y= 8 9= Variables ©g Breakpoints 3 Registers 52 "2 Peripher:

4 [c] BulkLpAutoCpp Debug [GDB SEGGER J-Link Debugging]

4 1@ BulkLpAutoCpp.elf _— -
4 o Thread [1] <main> {Suspended : Breakpoint)

1010
= main() at cyfxbulklpauto.cpp:580 0x4001952c un rﬁ g
s C\Program Files (xB6\SEGGERNJLink_4900\LinkGDBServerCL.exe ':":; '12 5
i arm-none-eabi-gdb o
ol sp 0x10001ff8
st Ir 1073866368
el pe 0x4001952c <main{)>
4| n
Name : pc

Hex:0x4@01952¢
Decimal :1073845548

Aot .naARARRAAara

Lg] cyfxbulklpauto.cpp 232 {gdb[6].proc(42000].threadGroup[il],gdb[6].proc[42000].0Sthread([1]).thread[1].frame[0] = 8 gf

£k
/
* Main function
*

int

main (void)

CyU3PIoMatrixConfig t io_cfg;

CyU3PReturnStatus_t status = OV _U3P_SUCCESS;
#if 1

uint8_t *str = new uint8_t[5];

delete str; 4
#endif

/* Initialize the device */

status = CyU3PDevicelnit (NULL);

if (status l= OV U3P_SUCCESS)

goto handle_fatal_error;
¥ A

Figure 3-7: Debug session stopped at breakpoint

EZ-USB Suite User Guide, Version 1.3.3 20

3.2

10.Click on “Terminate” to stop the debug session.

Debugging with OpenOCD

Open On-Chip Debugger (OpenOCD) is an open source debugger implementation
that supports a variety of debugger probes. The CY7C65215 Cypress USB Serial
part on the CYUSB3KIT-003 development kit provides a debugger interface that
works with OpenOCD.

A version of OpenOCD binary that supports debugging using the CY7C65215 part
is provided with the FX3 SDK, under the OpenOCD folder. This binary is based on
the OpenOCD 0.8.0 release and only supports the CY7C65215 part as a debug
interface.

If any other OpenOCD compliant debug probe (such as the Olimex ARM JTAG
debug probe) is being used, replace the OpenOCD binary provided with a version
that supports the target debug probe. The rest of the instructions are interface
independent, and apply to any OpenOCD compliant debug probe.

The latest version of OpenOCD sources can be downloaded from:
http://sourceforge.net/projects/openocd/files/openocd/. Pre-compiled binaries for
Windows can be obtained from:
http://www.freddiechopin.info/en/download/category/4-openocd.

Note: When using OpenOCD on Linux or Mac platforms, the libraries that the
OpenOCD binary depends on; need to be copied to the system folders. Please
change to the <FX3_INSTALL_PATH>/OpenOCD/<platform> folder and run the
script.sh script to do this. No specific installation steps are required on Windows
platforms.

The procedure for setting up OpenOCD based JTAG debugging is shown below:

1. Select and right-click on the project to be debugged, and select the “Debug
As -> Debug Configurations...” option. See Figure 3-1.

EZ-USB Suite User Guide, Version 1.3.3 21

http://sourceforge.net/projects/openocd/files/openocd/
http://www.freddiechopin.info/en/download/category/4-openocd

2. In the Debug Configurations popup window, right-click the “GDB OpenOCD
debugging” option and select “New”.

= Debug Configurations

Create, manage, and run configurations

] =] }\ v Configure launch settings from this dialog:
type filter text ¥ - Press the 'New' button to create a configuration of the selected type.
[€] C/C++ Application = - Press the 'Duplicate’ button to copy the selected configuration.

[T] C/C++ Attach to Application
[€] C/C++ Postmortern Debugger
[€] C/C++ Remote Application
[€] GDB Hardware Debugging
[T] GDB OpenOCHNahunnina

4 [C] GDB SEGGERJ| [T Mew

¥ - Press the 'Delete’ button to remove the selected configuration,
5w - Press the 'Filter' button to configure filtering options,

- Edit or view an existing configuration by selecting it.

|
[©] BulkLpAut| Duplicate |Configure launch perspective settings from the 'Perspectives’ preference page.
@ Launch Group| Delete ‘

Figure 3-8: Creating debug configuration: OpenOCD

3. A“<ProjName> Debug” configuration will be created. The settings for the
configuration need to be entered as described in the next steps.

EZ-USB Suite User Guide, Version 1.3.3 22

4. No changes are required under the “Main” tab.

= Debug Configurations

Create, ge, and run config

X| B3~

type filter text

[€] C/C++ Application
[T] C/C++ Attach to Application
[€] C/C++ Postrortem Debugger
[€] C/C++ Remote Application
[] GDB Hardware Debugging
[©] GDB OpenOCD Debugging
[] BulkLpAutoCpp Debug (1)
[€] GDB SEGGER J-Link Debugging
[] BulkLpAutoCpp Debug
@ Launch Group

[N

[N

Filter matched 10 of 10 items

Name: | BulkLpAutoCpp Debug (1)

[E] Main . % Debugge;‘ B> Startup| B2 Source| =) Common

C/C++ Application:
DebughBulkLpAutoCpp.elf

Project:
BulkLpAutoCpp
Build {if required) before launching

Build configuration:

) Enable auto build
© Use warkspace settings

PERFORM

Wariables... HSearchProject...H Browse...]

[¥] Select configuration using 'C/C++ Application'

(") Disable auto build

Configure Workspace Settings...

Figure 3-9: Creating OpenOCD debug configuration: Main tab

EZ-USB Suite User Guide, Version 1.3.3

Browse..,

Revert

23

=
£ CYPRESS

PERFORM

5. On the “Debugger” tab, browse and select the path to the OpenOCD
executable, and selecting the OpenOCD configuration file provided with the
SDK under “Config options”. Please note that the full path to the config file
needs to be provided here, and may need to be enclosed in quotes if it
includes spaces.

= Debug Configurations
Create, manage, and run configurations ; @'\
= X \ =3~ || Name: BulkLpautoCpp Debug (1)
type filter text [E] Main | %5 Debugger . B> Startup| 57 Source| &I Common
[C] C/C++ Application OpenOCD Setup -

C/C++ Attach to Applic [V] Start OpenOCD locally
[€] C/C++ Postrnorter Det

[€] C/C++ Remote Applical Executable: C:\Program Files (x86)\Cypress\EZ-USB FX3 SDK\L3WT Wariables..,

|c | GDB Hardware Debuggi GDE port: 3333
4 GDB OpenOCD Debugg
[€] BulkLpAutoCpp Deb || | Telnet port: 4444

4 [C| GDB SEGGER J-Link Deb :
Log file: Browse..,
[€] BulkLpAutaCpp Deb 2
@ Launch Group Config options: £ "C:\Program Files (x86)\Cypress\EZ-USE FX3 SDK\L3WTAG\OpenOCD -

\Configharm926ejs_fx3.cfg'|

m

Allocate console for OpenOCD Allocate console for the telnet connection

GDB Client Setup

Executable: ${cross_prefixlgdb${cross_suffix} Browse... | | Variables..,

Other options:

Commands: set mem inaccessible-by-default off G

Debug Options
[7] Connect to running target

Remote Target ~

< | m » [

Appl Revert
Filter matched 10 of 10 items PPY H gre

Figure 3-10: Creating OpenOCD debug configuration: Debugger tab

EZ-USB Suite User Guide, Version 1.3.3 24

6. On the “Startup” tab, disable the “Enable ARM semihosting” and “Pre-run
reset” options using the corresponding checkboxes.

= Debug Configurations :
Create, , and run confi i @
%X | B~ Name: BulkLpAutoCpp Debug (1)
type filter text [5] Main | %5 Debugger | B+ Startup %/ Source| =1 Common
[£] C/C++ Application Initialization Commands =

[T] C/C++ Attach to Application
[€] C/C++ Postmortem Debugger
[€] C/C++ Remote Application
[©] GDB Hardware Debugging

[©] GDB OpenOCD Debugging

[] BulkLp&utoCpp Debug (1) —
[€] GDB SEGGER J-Link Debugging | Enable ARM semihasting,
" et BulkEpAUtacHp Debug Load Symbols and Executable
= Launch Group

Vllnitial Reset. Type: init

[

[

V| Load symbols
© Use project binary: BulkLpAutoCpp.elf

Use file: Warkspace File Systern.
Symbols offset (hex):

V| Load executable L

© Use project binary: BulkLp&utoCpp.elf
Use file: Workspace File System,
Executable offset (hex):

Runtime Options

| Set program counter at (hex):

V| Set breakpoint at: main

Run Commands

_|Pre-runreset. Type: halt

V| Continue 2

[Apply J [Revert

Filter matched 10 of 10 iterns
Figure 3-11: Creating OpenOCD debug configuration: Startup Tab

7. Click on “Apply” to save settings, and then click on “Debug” to start
debugging.

8. If a “Confirm Perspective Switch” popup window (as shown below) appears,
select “Yes” to switch to the Debug perspective. The “Remember my
decision” checkbox can be ticked to prevent this popup from appearing in
subsequent debug sessions. See Figure 3-6.

9. Please note that firmware download using the CY7C65215 debug probe is a
slow process and can take about 30 to 40 seconds. Wait for the firmware
download to be completed before the session is ready for debugging.

10.Execution stops at the “main ()” function. Additional breakpoints can be
placed at this stage, and the Resume, Step Into or Step Over actions can be
used to run through the code. See Figure 3-7.

11. Click on “Terminate” to stop the debug session.

EZ-USB Suite User Guide, Version 1.3.3 25

4 CX3 Configuration Utility

PERFORM

This section provides an introduction to MIPI CSI-2 interface on the CX3 device

and provides a usage guide for the CX3 Configuration tool available as part of the

Cypress EZ USB Suite Eclipse based IDE. More details on the CX3 part are

available on the Cypress website at http://www.cypress.com/cx3/

4.1 Introduction to the CX3 device
The CX3 is a variant of the FX3 device that features an integrated MIPI CSI-2

receiver mated to the GPIF as shown in the CX3 Logic block diagram. This device

provides the ability to add USB 3.0 connectivity to Image Sensors implementing the
MIPI CSI-2 interface.

LOGIC BLOCK DIAGRAM

11

JTAG
Memory System
ARMI26EJ-S <:> Controller <:> RAM
I I ss 3 SR
Fixed Peripheral g | SsRx+
g 4, |2 | ronton (g = iy i
Interface GPIF™ || HSIFS T
H Peripheral % "
—
I’C_SCL | , UART SPI 1’s
I’C_SDA I'c
Figure 4-1: CX3 Device Block Diagram
The MIPI CSI-2 interface on the CX3 supports 1 to 4 CSI-2 data lanes and
RAWS8/10/12/14, YUV422, and RGB888/666/565 image formats. It reads image
26

EZ-USB Suite User Guide, Version 1.3.3

http://www.cypress.com/cx3/

4.2
4.2.1

4.2.2

==# CYPRESS

PERFORM

data from the sensor, de-packetizes it and sends it in to the parallel interface of the
fixed-function GPIF-II interface on the CX3.

As the GPIF-II signals on CX3 are connected internally to the MIPI CSI-2 Interface
block, it is not possible make use of the GPIF-II to talk to any external devices. The
control signals on the interface are also fixed, and only the width of the data bus
can be selected from the values of 8-bit, 16-bit and 24-bits. CX3 firmware
applications typically make use of a pre-defined GPIF-II configuration with changes
being made only to the data bus width and the counter limits used.

Support for the MIPI CSI-2 interface is provided through a new firmware library
added to the SDK (cyu3mipicsi.a). The APIs provided by the library and the data
structures and enumerations used by this interface are provided through the
cyu3mipicsi.h header file.

CX3 MIPI CSI-2 interface

Data Lanes

The MIPI CSI-2 interface on the CX3 supports 1 to 4 CSI-2 data lanes each
capable of transfers of up to 1 Gbps. The number of data lanes to be selected for a
CX3 application will depend upon the number of data lanes provided by the Image
Sensor and the total required data transfer rate.

MIPI CSI-2 stream formats supported by the CX3

The MIPI CSI-2 interface on the CX3 supports the following stream formats and
output modes:

Table 4-1: Stream formats supported by CX3

Bayer format 8-bits per

RAWS CY_U3P_CSI_DF_RAWS) O0x2A 8-Bit Output: RAW[7:0]
pixel data stream.
Bayer format 10-bits per . ,
RAW10 CY_U3P_CSI_DF_RAW10 . 0x2B 16-Bit Output: 6’'b0, RAW[9:0]
pixel data stream.
Bayer format 12-bits per . ,
RAW12 CY_U3P_CSI_DF_RAW12 . 0x2C 16-Bit Output: 4'b0,RAW[11:0]
pixel data stream.
Bayer format 14-bits per)
RAW14 CY_U3P_CSI_DF_RAW14 0x2D 16-Bit Output: 2'b0,RAW[13:0]

pixel data stream.

RGB 888 format 24- bits .
RGB888 CY_U3P_CSI_DF_RGB888] 0x24 24-Bit Output: R[7:0],G[7:0],B[7:0]
per pixel data stream.

RGB666 RGB 666 format 24- bits 24-Bit Output:
CY_U3P_CSI_DF_RGB666_0 i 0x23
Mode 0 - - - - - per pixel data stream. 2'b0,R[5:0],2’b0,G[5:0], 2’b0,B[5:0]

EZ-USB Suite User Guide, Version 1.3.3 27

CYPRESS

PERFORM

RGB666 RGB 666 format 24- bits 24 Bit Output: 6'b0,R[5:0],G[5:0],
CY_U3P_CSI_DF_RGB666_1 . 0x23
Mode 1 per pixel data stream. B[5:0]
RGB565 RGB 565 format 24- bits 24 Bit Output:
Mode 0 CY_U3P_CSI_DF_RGB565_0 or pixel data stream 0x22 2'b0,R[4:0],3'b0,G[5:0],
perp ' 2'b0,B[4:0],1°b0
RGB565 RGB 565 format 24- bits 24 Bit Output:
CY_U3P_CSI_DF_RGB565_1) 0x22
Mode 1 - - - - - per pixel data stream. 3'b0,R[4:0],2’'b0,G[5:0], 3'b0,B[4:0]
RGB565 RGB 565 format 16-bits .
CY_U3P_CSI_DF_RGB565_2 . 0x22 16 Bit Output: R[4:0],G[5:0], B[4:0]
Mode 2 per pixel data stream.
YUV422 8- YUV422 format 8-bits per 8 Bit Output: P[7:0]
. CY_U3P_CSI_DF_YUV422 8 0 . Ox1E
BitModeO | = = ~ ~ - pixel data stream. Data Order: UL,Y1,V1,Y2,U3,Y3,....
) 16 Bit Output: P[15:0]
YUV422 8- YUV422 format 8-bits per
) CY_U3P_CSI_DF_YUV422 8 1) Ox1E Data Order:
Bit Mode 1 pixel data stream.
{U1,Y1},{V1,Y2},{U3,Y3},{V3,Y4}...
16 Bit Output: P[15:0]
YUV422 8- CY U3P CSI DE YUV422 8§ 2 YUV422 format 8-bits per Ox1E
Bit Mode 2 - T il pixel data stream. Data Order:
{Y1,U1},{Y2,v1}{Y3,U3},{Y4,V3}....
) 16 Bit Output: 6'b0,P[9:0]
YUv422 YUV422 format 10-bits
. CY_U3P_CSI_DF_YUV422_10 . Ox1F Data Order:
10-Bit - - - = - per pixel data stream.
Ul,Y1,V1,Y2,U3,Y3,V3,Y4.

If the GPIF interface used is larger than the width of the output stream (e.g. if a 24-
bit GPIF Il interface is used for the CY_U3P_CSI_DF_YUV422 8 1 type) the
upper bits on the GPIF Il interface will be padded with Os.

4.2.3

MIPI CSI-2 interface clocks

The primary clocks on the MIPI CSI-2 interface of the CX3 are shown in Figure 4-2

below.

The interface takes a reference clock as its input and generates the required
clocking using a PLL and multiple clock dividers on the PLL generated clock. Clock
configuration parameters are a part of the CyU3PMipicsiCfg_t structure which
passed to the CyU3PMipicsiSetintfParams() API to configure the CSI-2 interface.

EZ-USB Suite User Guide, Version 1.3.3

28

CSIRX LP <-> HS CLK DIVIDER CSI_RX_CLK

> (2/418)
REFCLK » PLL |PLL CLK
PARALLEL OUTPUT CLOCK PCLK
> (PCLK) DIVIDER >

(21418)

Figure 4-2: CX3 MIPI CSI-2 Interface Clocks

A brief description of each of the clocks is provided below:
1. Reference Clock (REFCLK)

This is the input reference clock provide to the MIPI-CSI interface. This input clock
should be between 6 and 40 MHz.

2. PLL Clock (PLL_CLK)

The PLL_CLK is the primary clock on the MIPI CSI-2 interface. The minimum legal
value for PLL clock is 62.5 MHz and maximum legal value for the PLL is 1 GHz.

All other internal/output clocks are derived from this clock.

The PLL clock frequency is generated from the Input Reference Clock using the
following equation:

PLL _CLK = REFCLK * [(plIFbd + 1)/(plIPrd + 1)] /(2"plIFRS)

where
plIPrd is the input divider whose range is between 0 and OxOF.
plIFbd is the feedback divider whose range is between 0 and Ox1FF.

plIFRS is the frequency range selection parameter which takes the following
values:

0 if PLL Clock is between 500MHz- 1GHz.

1 if PLL Clock is between 250MHz- 500MHz.
2 if PLL Clock is between 125MHz- 250MHz.
3 if PLL Clock is between 62.5MHz- 125MHz.

EZ-USB Suite User Guide, Version 1.3.3 29

4.3

E.g.

If RefClk is 19.2 MHz, plIFbd is 69, plIPrd is 1, and PLL Clock range is in the
500MHz-1GHz range (i.e. pllFrs = 0),

PLL_Clock (MHz) = 19.2 * [(69+1)/(1+1)])/(2"0)
= 19.2 * [70/2]/1
= 672 MHz

For the same values, changing PLL frequency range to 125-250MHz (plIFrs = 2)
will change the PLL Clock value to

PLL_Clock (MHz) = 19.2 * [(69+1)/(1+1)]/(2"2)
=19.2 * [70/2])/4
=168 MHz

3. CSIRX LP<—>HS Transition Clock

This clock is used for detecting the CSI link LP<->HS transition. It is generated by
dividing the PLL_Clock by a value of 2, 4 or 8.

The minimum value for this clock is 10Mhz and maximum value for this clock is
125MHz.

4. Output Parallel Clock (PCLK)

This clock is the PCLK output which drives the fixed-function GPIF interface on the
CX83. It is generated by dividing the PLL_Clock by a value of 2, 4 or 8.

The maximum value for this clock is 100MHz.

Configuring the CX3 Device

The typical CX3 application is a USB Video Class (UVC) compliant Camera
application that streams video or still image data captured by an Image Sensor to a
host PC. Most parts of a CX3 system design are common, with the only variations
being in the Image Sensor and data formats chosen.

The typical steps involved in UVC implementations using the CX3 device are:
1. Configuring the image sensor as required.

2. Configuring the MIPI CSI-2 interface on the CX3 device based on the image
sensor settings.

3. Defining the USB descriptors for the application based on the image formats
to be supported.

4. Implementing the actual image streaming logic using CX3/FX3 APIs.

5. Implementing the sensor control operations required to handle requests on
the Video Control interface (e.g. brightness, pan — tilt — zoom etc.)

EZ-USB Suite User Guide, Version 1.3.3 30

43.1

4.3.2

4.3.3

The EZ-USB Suite application provides a CX3 Configuration utility that helps in
steps 2, 3 and 4. The actual image sensor control (step 1) and the control interface
handling (step 5) are sensor dependent, and not handled by the tool.

MIPI CSI-2 Configuration

The MIPI CSI-2 interface on CX3 is configured using the
CyU3PMipicsiSetintfParams() API. This API takes an input parameter of type
CyU3PMipicsiCfg_t which contains various configurations like output data format,
clock dividers and configuration parameters, number of CSI data lanes to use,
horizontal resolution etc.

The CSI Configuration Utility generates the data required to configure the interface
in the form of C code which can be embedded into the firmware application.

Defining the USB Descriptors

The UVC specification defines the format for the USB configuration descriptors for
all UVC compliant devices. The size of the configuration descriptor can stretch to
200 bytes or more depending on the number and types of video formats and
resolutions supported. Putting together the descriptors in a fully spec compliant
manner across all three USB connection speeds (SuperSpeed, Hi-Speed and Full
Speed) is a cumbersome process.

The CSI Configuration Utility generates the USB descriptors based on the settings
provided. The descriptor data is generated in the form of C code which can be
embedded into the firmware application.

Video Streaming Logic

The firmware design and implementation to handle video streaming includes
elements such as:

1. Defining the buffering requirements for the video stream.

2. Setting up the DMA connection from the GPIF-II interface to the USB
endpoint

3. Handling Video Streaming control requests to negotiate the video format and
resolution.

4. Managing the actual video data transfer with UVC header addition.

The CSI configuration tool generates C header and source files that implement this
logic. These files can be used along with the CSI-2 configuration file and the USB
descriptor file to create the UVC firmware project.

The next section describes the usage of the MIPI CSI-2 Configuration tool provided
as part of the EZ-USB Suite IDE.

EZ-USB Suite User Guide, Version 1.3.3 31

4.4
44.1

4.4.2

£ CYPRESS

PERFORM

Using the CSI Configuration Utility

Creating a new CX3 Configuration Project
From the File menu of the EZ USB Suite IDE, select the New - Other option.

I Mew Alt+Shifte » |F9 Project..
Upen File... : Eoldar
Clos= Chri=% * File
Close All Ctrl+ Shift+ W = Task
L] Save Corles = Untitled Text File
Save A [Exarmple..
=] Save All Crl+ Shift+ &
\g Seve rivsnety " Othir.., CirleN

Figure 4-3: CX3 Configuration File Creation Menu

-
= MNew

R —— e [[[]

L R < Ty

Select a wizard

Wizards:

type filter tesxct
=

» Example EMF Model Creation Wizards

= Git

= Jawa

= Jawa Emitter Templates

EMF Forms

= Plug-in Developrment
= Sirius
= Tasks
= Wser Assistance
= Other

B4 cDO Project

o CHE3 Configuration Erojectl

Mesxt = Fimish Cancel

Figure 4-4: CX3 Configuration Project Creator

Image Sensor Selection and Configuration

The first step in configuring the CX3 UVC project is to define the properties of the
image sensor being used in the system. This includes properties like the type of
sensor, still image and video capture support, the format and resolution of the

images etc.

Configurations for the Aptina AS0260 and OmniVision OV5640 sensors are
provided as part of the tool, and you can use these directly if these sensors are
being used. If other sensors are being used, the wizard can be used to input the
sensor properties for conversion into the required format.

EZ-USB Suite User Guide, Version 1.3.3

32

4.4.2.1 CX3 Configuration Project Creation

The CX3 Configuration Project Creation Wizard provides three possible
alternatives for configuring the newly created project:

1. Create a Configuration with Basic Settings
2. Select a Pre-Defined Configuration
3. Select an User defined Configuration

The steps for configuring the MIPI CSI-2 interface and image sensor using each of
the three possible options are described in the following sub-sections.

4.4.2.1.1 Configuration with Basic Settings
1. Click on Create a Configuration with Basic Settings Radio Button and
provide a new name to the project. Click on Finish button to start generating
relevant configuration data.
= I = m

CX3 Configuration Project

Sensor Selection
@ Create a Configuration with Basic Settings

Select a Pre Defined Configuration

Select an User defined Configuration

Praoject

Marme ox3_mipicsi_project

{"Z\- [Finish] | Cancel

Figure 4-5: CX3 Configuration Project Selector

EZ-USB Suite User Guide, Version 1.3.3 33

An empty Image Sensor Configuration window with no pre-defined sensor
and frame opens up. A new CX3 Project is created under the Eclipse workspace
as well.

 “mu3config.oyex D1
Image Sensor Configuration
/] Use Senser Configuration for C33 MIPI Receiver Configuration
+ Sensor Configuration D
Sersar
THS-Prepare 00 ns
THS-Zera 00 ne

Input Vides Format | YUY2 =]

Output Video Format |16-Bit |

= Frame Configuration

Resclution Mame Data Lanes CSI Clock [MHz] H-Active [P«d] H-Blanking [Pxl] V-Active [Line] V-Blanking [Line] Frame Rate [fps] Video Support Image Support

Figure 4-6: Image Sensor Configuration Stage

Input the desired sensor configuration and select the appropriate video format
from the dropdown list provided in the configuration window.

a. A name string can be provided for the sensor.

b. The THS-Prepare value represents the duration for which the sensor
drives the CSI data lane LP-00 line state before starting the HS
transmission. This value can be determined from the image sensor
datasheet.

c. The THS-Zero value represents the duration for which the sensor
drives the HS-0 state before transmitting the sync sequence. This
value can also be determined from the image sensor datasheet.

d. The Input Video Format represents the video picture encoding format
supported by the sensor. This has to be selected from the drop-down
list.

e. The Output Video Format represents the data size of each pixel in the
image stream. This has to be selected from the drop-down list.

- Semnsor Configuratiomn

Sensor M
THSS-Prepare 0.0
THS-Fero 0.0

Input Videcoc Forrmat | L2

Dutput Wideo Forrmat |1E—Bit

Figure 4-7: Image Sensor Configuration

EZ-USB Suite User Guide, Version 1.3.3 34

4. Each Image Sensor may be capable of supporting multiple video resolutions
and frame rates. The Frame Configuration area of the Image Sensor
configuration wizard can be used to input the supported (desired) frame
resolutions and frame rates. The properties to be specified for each frame
configuration includes:

a. A name string to identify the configuration.

The number of CSI-2 data lanes used.

The CSI-2 clock frequency used.

The H-Active value represents the frame width in number of pixels.

®© a0 o

The H-Blanking value represents the horizontal blanking period after
each line of image data is transferred.

f. The V-Active value represents the frame height in number of pixels.

g. The V-Blanking value represents the vertical blanking period after
each frame is transferred, and is represented in terms of number of
lines.

h. The streaming rate in terms of number of frames per second.
i. Support for video and/or still image capture.

~ Frame Configuration

Resolution Mame Data Lanes CSIClock [MHz] H-Active [Px]] H-Blanking [Px]] V-Active [Line] V-Blanking [Line] Frame Rate [fps] Video Support Image Support
)H Resolution0 2 315.0 2592 50 1944 5 15.0 true true

Image Sensor Configuration | CX3 Receiver Configuration | cyu3mipicsi.c | cyod_uvedsere | cyod_uvch | cyod_uvac
Figure 4-8: Frame Configuration

Multiple user defined frame configurations can be added by pressing (+) button
for every configuration required. Frame configurations can also be deleted from
the current project by pressing (X) button. Deleted configurations can be
reinstated by pressing using the undo key (Ctrl+Z). Still Image and Video
support in CX3 project can be enabled or disabled using the buttons below
remove (X) button.

Entering any invalid configuration parameters will trigger warnings at the next
stage, i.e., CX3 receiver configuration.

The configuration parameters can be stored as a custom configuration by
pressing the Save button located at upper right corner of the window. Once

EZ-USB Suite User Guide, Version 1.3.3 35

saved, these configurations will be available for selection as User defined
configurations in other projects.

4.4.2.1.2 Using Pre-Defined Configurations

1. Click on the Select a Pre-Defined Configuration Radio Button and select
any of the pre-defined configurations from the dropdown list. Configurations for
the Aptina AS0260 and OmniVision 5640 sensors are provided in this version of
the configuration utility. Provide a name for the newly created project and click
on Finish button to start generating project configuration data.

= CX3 Configuration Project Creation Wizard TS T ——c—|

CX3 Configuration Project

Sensor Selection
Create a Configuration with Basic Settings

‘ © Select a Pre Defined Configuration e rac /S640. cycx]
-, 2 = rgbl6_as0260.cycx

Select an User defined Configuration rgb24_as0260.cycx ‘

P = uvd22 as0260.cycx i

rojec &Em:x:_. |

Name oyoS _yuv422 ov5640

‘?i‘ | < Back | Next > [Finish J [Cancel ﬂ
u B —

Figure 4-9: CX3 Configuration Project Selector

2. The Image Sensor Configuration window with pre-loaded sensor and
frame configurations pops up. A new firmware project is created under the
Eclipse workspace as well.

o yvd22_ovse40.cycx i

Image Sensor Configuration

Use Sensor Configuration for CX3 MIPI Receiver Configuration

 Sensor Configuration
Sensor | OV5640
THS-Prepare | 20.0
THS-Zere | 70.0
Input Video Format | YUY2
Output Video Format | 16-EBit

= Frame Configuration

Resolution Mame Data Lanes €SI Clock [MHz] H-Active [Pxl] H-Blanking [Pxl]] V-Active [Line] V-Blanking [Line] Frame Rate [fps] Video Support Image Support

Wosm 2 315.0 2592 50 1944 5 15.0 true true
i 1080p 2 3150 1920 50 1080 5 300 true true
ko 720p 2 3150 1280 50 720 5 300 true true
k™ Vga 1 3150 640 50 480 5 300 true true

Figure 4-10: Using pre-defined Image Sensor Configurations

EZ-USB Suite User Guide, Version 1.3.3 36

= CvpRESS

PERFORM

The Image Sensor Configuration window lists the pre-defined sensor and frame
configurations for the selected Image Sensor. Listed frame configurations can
be deleted from the current project but cannot be altered with new values.
Deleted configurations can be reinstated using the undo key (Ctrl+Z).

Configuration parameters cannot be modified in pre-defined configuration
option, but can be stored as a custom configuration by pressing Save button
located at upper right corner of window.

4.4.2.1.3 User Defined Configuration

A sensor configuration created and saved using the steps in Section 4.4.2.1.1, can
be re-used to create new CX3 projects. To do this, click on Select an User-
Defined Configuration Radio Button and select the desired configuration from the
dropdown box. Name the newly created project and click on Finish button to start
generating project configuration data.

r% Jm— Eé

CX3 Configuration Project

Sensor Selection
() Create a Configuration with Basic Settings

() Select a Pre Defined Configuration

@ Select an User defined Configuration l:]

cx3config.oycx
Project uvd22_ow5640.cycx }

Mame o3 _custom_project

"f?:' [Finish] [Cancel

Figure 4-11: Selecting a user defined image sensor configuration

Refer to Section 4.4.2.1.2 for the steps to modify the image sensor configuration.

EZ-USB Suite User Guide, Version 1.3.3 37

4.4.3

CX3 MIPI Receiver Configuration

Once the Image Sensor Configuration is complete, select the CX3 MIPI Receiver
Configuration tab positioned at the bottom of currently opened window.

e yuvd22_ovSE40.cyex 5

CX3 MIPI Receiver Configuration

~ CX3 Configuration Summary

CX3 Configuration I QV5640_YUY2_5M

Configuration Name | OV5640_YUY2_5M

Description

~ MIPI C5I2 Inputs (From Image Sensor)

CSIClock | 315
Data Lane |2

THS-Prepare | 90.0

MHz Min:303.11
Lanes

ns [Min:46.35 | Max:04.52]

~ X3 MIPI Interface Configuration
REFCLK 19.20
Pre Divider Value 2

MHz [Min: 6 | Max: 40]

[Min: 1 | Max: 16]

PLL QutRange [500M-1G

THS-Zero | 70 ns [Min:61.35] Multiplier of Unit Clk 65 [Min:52.00 | Max:104.00]
Frame Rate | 15.0 fps PLL Out Cleck 624.00 MHz
H-Active | 2592 Pixel Output Parallel Clock Divider [8 v]
H-Blanking | 50 Pixel Output Pixel Clock (MHz): 78.00 MHz [Min:77.24|Max:100]
V-Active | 1944 Line CSIRX Clock Divider [5 v]
V-Blanking | 5 Line Data Format | YUY?

Data Format | YUV2

 MIPL CSI2 Inputs (Timing)

CSIRX LP<->HS Clock [MHz): 78.00
Fifo Delay 1
FIFO Delay Time 15

¥ (X3 MIPI Interface Configuration

byte
us [Min :.00] Max :12.66]

Image Sensor Configuration | CX3 Receiver Configuration | cyu3mipicsi.c | cyod_uvedser.c | eyod_uveh | cyod_uve.c
Figure 4-12: CX3 MIPI Receiver Configuration Stage

The CX3 MIPI Receiver Configuration Window is split into the following sub-
sections:

4.4.3.1 CX3 Configuration Summary

The CX3 Configuration Summary section allows you to choose from among the
frame configurations entered in the Image Sensor Configuration phase. When a
frame configuration is selected from the drop-down list, the CSI-2 interface
properties for the corresponding frame configuration will be displayed in the other
sections of the window. The description text box allows you to provide a description
for the configuration which will be added to the generated firmware source in the
form of comments. Therefore, the description text should not contain /*’ or */°
character combinations.

v (X3 Configuration Summary v (X3 Configuration Summary

X3 Configuration | OV5640_YUY2_720p C)3 Configuration |OVS640.YUY2.720p

Configuration Name O\‘S&O_:VU‘(E_SM
Description OV5640_YUY2_1080p

Description 0‘.‘5640_VUY2_720i

Figure 4-13: CX3 Configuration Summary

Configuration Name = OV5640 _YUY2 720,

EZ-USB Suite User Guide, Version 1.3.3 38

4.4.3.2 MIPI CSI-2 Inputs

4.4.3.3

The MIPI CSI-2 inputs section will display values passed from Image Sensor
Configuration Stage for matching the Image Sensor’s output parameters. These
values are provided for information, and cannot be modified in this tab. You have to
go back to the Image Sensor Configuration tab in order to change any of these
settings.

= MIFI C512 Inputs (From Image Sensor)

CSI Clock | 315 MHz Min:303.11
Data Lane |2 Lanes
TH5-Prepare | 90.0 ns [Min:d5.35 | Max84.52]
THS-Zero | 70 ns [Min:a1.35]
Frame Rate | 15.0 fps
H-Active | 2592 Pixel
H-Blanking | 50 Pixel
V-Active | 1944 Line
V-Blanking | 5 Line
Data Format | YLY2

Figure 4-14: MIPI CSI-2 Inputs

The CSI Clock frequency and the Data Lane entries along with the frame properties
are used to compute the total input data throughput on the GPIF-II interface from
the MIPI CSI-2 block.

CX3 MIPI Interface Configuration

The MIPI Interface Configuration section lists the CX3 MIPI CSI-2 configuration that
has been computed based on the Image Sensor and frame properties. These value
typically do not need to be modified, though the tool allows the user to make
modifications.
~ (X3 MIPI Interface Configuration
REFCLE 19.20 MHz [Min: & | Max: 40]
Pre Divider Value 2 [Min: 1 | Max: 16]

PLL OutRange [500M-1G ~|

Multiplier of Unit Clkk 65 [Min:53.00 | Max:104.00]
PLL Out Clock 624.00 MHz
Output Parallel Clock Divider |8 - |
COutput Pixel Clock (MHz): 78.00 MHz [Min:77.24|Max:100]
CSIRX Clock Divider |8 - |

Data Format | vL'v2
CSIRX LP=->HS Clock (MHz): 78.00
Fifo Delay 1 byte
FIFQ Delay Time 15 us [Min :.00] Max :12.66]

EZ-USB Suite User Guide, Version 1.3.3 39

Figure 4-15: CX3 MIPI Interface Configurations

The first field in this section is the REFCLK frequency being provided to the block.
This value along with the Pre Divider Value, PLL Out Range and Multiplier of Unit
Clock is used to generate the plIPRD, pllFbd and pllFrs parameters which provide
the PLL_CLK frequency using the equation listed in Section 4.2.3.

Once the PLL clock frequency has been set, the Output Pixel Clock (PCLK) and
CSI RX clock frequency can be obtained by selecting the appropriate divider value
as shown in the image below.

Output Parallel Clock Divider |8 -

Output Pixel Clock (MHz): i MHz [Min:77.24|Max100]
CSIRX Clock Divider [

Figure 4-16: Selecting Clock Dividers

4.4.3.4 MIPI CSI2 Inputs / CX3 MIPI Interface Configuration

These values are calculated by the utility and are fixed for each frame
configurations. These values serve as input and output parameters for the MIPI
interface part on CX3, and are provided here for information.

= MIPI C512 Inputs (Timing) = X3 MIPI Interface Configuration
H-Active 24.38 us H Active 25.40 us
H-Total 30.72
o e PHY Time Delay Value 9.0
V-Active 3318 s
V-Total 3334 ms H Active 0

H Blanking 403.0

Figure 4-17: MIPI Inputs

The CX3 MIPI Receiver Configuration window will throw warnings if any invalid
parameters had been provided while configuring the sensor or by modifying the
values in the CX3 MIPI Interface Configuration section. These warnings can be
seen by hovering the mouse cursor over the warning symbols painted in color red.
These warnings can be rectified by providing acceptable values in the sensor
configuration tab.

EZ-USB Suite User Guide, Version 1.3.3 40

4.4.4

4441

e tyuvi22_ovsBa0.cycx 33
CX3 MIPI Receiver Configuration

~ £X3 Confiquration Summany

3 Configuration [QVS640_YUV2_5M -

Configuration Name | OV5640_YUY2_5M

Description

w MIPI CS12 Inputs (From Image Sensor) ¥ X3 MIPI Interface Configuration

REFCLK 19.20 MHz [Min: 6 | Mae 40]
Lanes Pre Divider Value 2 [Min: 1 | Max: 16]

[Min:48.00 | Mzx97.00] PLL OutRange [500M-1G -]

[Min:63.00] Muttiplier of Unit Clkc 65 [Min:53.00 | Max:104.00]

PLL Out Clock 62400 MHz
H-Acive 5B Pl Output Perallel Clock Divider [8 -
H-Blanking [500 Pl Output Pixel Clock (MHz): 78.00 IEMHz [MinSOBQ\Max;lOO]I
v Active [958 e CSIRX Clock Divider [8 -
V-Blanking [5 Line Data Format | YUY2
CSIRX LP<->HS Clock (MHz): 78.00
uv2
Data Format | YUY2 Fifo Delay 1 byte
FIFO DalayT\meE us [Min:8.24] Max:25.64]
~ MIPICSI2 Inputs (Timing) ~ CX3 MIPLInterface Configuration

Image Sensor Configuration | CX3 Receiver Configuration | cyu3mipicsi.c| cyod_uvedscr.c| cyod_uveh cyod_uve.c

Figure 4-18: Warnings shown in CX3 MIPI Receiver Configuration tab
Please note that the warnings do not block the tool from generating the interface
configuration source code. These only indicate errors detected during sanity
checks performed by the tool, and can be over-ridden if the user is sure that the
changes are valid.

Adding the Configuration to the Firmware Project
As mentioned above, the CX3 configuration utility generates the following pieces of
C source code, which can be added to the application firmware project.

1. MIPI CSI-2 Configuration data for each frame configuration

2. USB descriptors for the UVC application

3. Header file defining the USB pipe and DMA buffer properties.

4. Source file implementing the actual video streaming logic.

The following sub-sections describe the procedure to add each of these to the
firmware project.

Adding the CX3 CSI-2 Configurations

Move to the “cyu3mipicsi.c” tab once all CX3 MIPI CSI-2 Interface related
configuration parameters are finalized. This tab contains the generated data
structures that provide the CSI-2 configuration parameters corresponding to each
frame configuration in the project.

This code can be saved to the related CX3 project, by pressing the Save button
located at the upper right corner of window.

EZ-USB Suite User Guide, Version 1.3.3 41

{8 Package Explorer 52 = B #7 "yuvd22_ovS640.cycx EL =1

=] i - o 0]
5| CX3 Configuration - Source [=
4 = cyod yuvd22 ov5640

| cyfx gee_startup S

= cyﬁ<b<c 22 Cypress CX3 configuration settings file
= makefile T —
#r yuvd22_ovsbdD.cyc 4

Copyright Cypress Semiconductor Corporation, 2013,
AllRights Reserved

UNPUBLISHED, LICENSED SOFTWARE.

=

CONFIDENTIAL AND PROPRIETARY INFORMATION
WHICH IS THE PROPERTY OF CYPRESS.

=

22 Use of this file is governed

22 by the license agreement included in the file

#

#2 «<install>/license/license bt

22 where <install> is the Cypress software
22 installation root directory path.
=

Finclude "cyu3mipicsi.h”

Image Sensor Configuration | CX3 Receiver Configuration | cyu3mipicsi.c| cyexd_uvedser.c| cyod_uveh | cyod_uvec

Figure 4-19: Utility generated CX3 Configuration Source file

4.4.4.2 Adding the USB Descriptors

Move to the “cycx3_uvcdscr.c” to view the USB descriptors that are generated
based on the configuration provided. The USB configuration descriptors will contain
frame descriptors corresponding to each of the frame configurations in the project.
This file can be added to the related CX3 project by pressing the Save button
located at the upper right corner of window.

[# Package Explorer 52 = B & *yuind22_ovS640.cycx 32 = B8
O & - .
5| CX3 Descriptor - Source [E
4 2 cyod_yuvd22_ov5640

| eyfx_gec_startup.S
|| cyfxbec

o~
Cypress USB 3.0 Platform source file (cycd_uvedser.c)
= makefile e T
o yuvd22_ov5640.cycx e

22 Copyright Cypress Semiconductor Corporation, 2010-2013,
22 All Rights Reserved

#2 UNPUBLISHED, LICENSED SOFTWARE.

t=-3

COMNFIDENTIAL AND PROPRIETARY INFORMATIOM
WHICH IS THE PROPERTY OF CYPRESS.

B

Use of thisfile is governed

by the license agreement included in the file
B

«<install>/license/license.bdt
##
where <install> is the Cypress software

installation root directory path.
#2

Image Sensor Configuration | CX3 Receiver Configuration | cyu3mipicsi.c | cyod_uvedscre| cyod uvch | cyod_uve.c

Figure 4-20: Utility generated CX3 Descriptor Source file

4.4.4.3 Adding CX3 UVC Definitions

Move to the “cycx3_uvc.h” tab to view the application definitions generated based
on the streaming parameters. These definitions can be added to the related CX3
project by pressing the Save button located at the upper right corner of window.

EZ-USB Suite User Guide, Version 1.3.3 42

[& Package Explorer 7
2%

4 = cyod_ yuvd22_ovSe40

| ofx_gec_startup.5

cyfxbe.c

=| makefile

r yuvd22_ovsd0.cycx

= g

-

= fynd 22 ovs640.cycx 52

CX3 UVC Header - Source

k=3

Copyright Cypress Semiconductor Corporation, 2013-2014,
2 All Rights Reserved

UNPUBLISHED, LICENSED SOFTWARE.

##

&2 COMNFIDENTIAL AND PROPRIETARY INFORMATION

WHICH IS THE PROPERTY OF CYPRESS.
#

&2 Use of this file is governed
by the license agreement included in the file
E

<install>license/license.tt

&2 where <install> i the Cypress software
installation root directory path.

Zifndef INCIIINEN CVCY3 TIVC H
Image Sensor Configuration CX3 Receiver Configuration | cyudmipicsi.c | cyod_uvedserc | cyod_uvah | cyod_uvec

Figure 4-21: Utility generated CX3 Header file

4.4.4.4 Adding CX3 UVC application logic

Move to the “cycx3_uvc.c” tab to view the generated UVC application source code.
This file can be added to the related CX3 project by pressing the Save button
located at the upper right corner of window.

After saving to the project, the contents of this file can then be edited to add custom
handling for any UVC Video Control requests.

[& Package Explorer 52

= 5|
4 = oyod yuvd2? ovs640
| cyod_uvch
cyad_uvedser.e
| cyfx_gee_startup.S
| eyfxc

=| makefile

o yund22_ov5640.cycx

4.4.5

= 0

sty 22 ovSe40.cyex 11 = 0

U

CX3 UVC - Source

2 Copyright Cypress Semiconductor Corporation, 2013-2014,
All Rights Reserved

#2# UNPUBLISHED, LICENSED SOFTWARE.

E=-3

CONFIDENTIAL AND PROPRIETARY INFORMATION
WHICH IS THE PROPERTY OF CYPRESS.

k=

Use of this file is governed

by the license agreement included in the file

=z

<install>/license/license bt

##

#2 where <install> is the Cypress software

installation root directory path.

J/* Thic annliratinn evamnle imnlemnete a ISR TV 11 camnliant viden ramera nn the C¥2 0cinn an

Image Sensor Configuration | CX3 Receiver Configuration | cyudmipicsi.c | cyod_uvedsere qyod_uvch cyod_uvec

Figure 4-22: Utility generated CX3 UVC Source file

Locking the CX3 Project Configuration

Click the Close (X) Button to exit from the configuration utility once the project
configuration is completed successfully and the code has been saved. The utility
will prompt for saving any changes.

EZ-USB Suite User Guide, Version 1.3.3

43

4.5

45.1

[£ PackageExplorer & = O ¥ "yuvd22_ovS640.cyck 5 = 0
gl v

= = CX3 UVC - Source BE
4 = cyod_yuvd22_ovs640
| eyed_uvec at
| eyed_uveh I
] cyod_uvedscrc ## Cypress CX3 Firmware Example Source (cyad _uve.c)
| oyfx_gec_startup.S Bfo-ooooooo-oooooooooooooooos
| cyfutee #
cyumipicsi.c l.m Cop).tnght Cypress Semiconductor Corporation, 2013-2014,
= makefile ## All Rights Reserved
= #2 |UNPUBLISHED, LICENSED SOFTW £3
o yuvd22_ov5640.cycn P S Save Resource
CONFIDENTIAL AND PROPRIETA| _
#2 WHICH IS THE PROPERTY OF CVI |0| "yuvd22_ov5640.cycx’ has been modified. Save changes?
E=1 " 4
#2# |se of this file is govemed a
by the license agreement include
E=3
<install>/license/license.bdt V=] | by | | £
=1

where <install» is the Cypress soff
installation root directory path.
=1

/* This annliratinn evamnle imnlemnete a ISR LIV 11 comnliant viden camera nn the CY3 ncinn an

Image Sensor Configuration | CX3 Receiver Configuration cyudmipicsi.c | cyod_uvedser.c | eyod_uveh | oyod_uvec
Figure 4-23: CX3 Project Configuration Lock Window

Code for the USB descriptors, sensor and CSI-2 interface configuration structures
and streaming application logic would have been generated by the tool and added
to the project. The project can now be compiled and used like any standard
FX3/CX3 firmware project.

GPIF-Il interface on the CX3

The CX3 device makes use of the GPIF-II interface to connect the DMA and USB
blocks to the MIPI CSI-2 interface. Since the GPIF-II Interface connectivity is fixed,
a custom GPIF-II configuration is not useful. A fixed-function GPIF-II Configuration
is used by the CX3 firmware to move the data from the CSI-2 interface block to the
DMA block.

GPIF-Il Waveform

The GPIF Il state machine on the CX3 implements the state machine shown in
Figure 4-24. The state machine makes the parallel data provided by the MIPI CSI-2
available for transfer over two GPIF-II sockets which can be connected to a Many
to One DMA channel.

The functionality of this state machine is similar to the GPIF Il state machine
described in Application Note AN75779 - How to Implement an Image Sensor
Interface with EZ-USB® FX3™ in a USB Video Class (UVC) Framework.

Detailed description of this state machine along with instructions on creating CX3
based application projects is provided in the Application Note AN90369 - How to
interface a MIP| CSI-2 Image Sensor with EZ-USB® CX3.

EZ-USB Suite User Guide, Version 1.3.3 44

http://www.cypress.com/?rID=62824
http://www.cypress.com/?rID=62824
http://www.cypress.com/?docID=48612
http://www.cypress.com/?docID=48612

CYPRESS
Wait for Wait for
Frame Done
E D
/v 'F\V4 <, \Frame Bangje
Wait for Wait for
Start on Frame Valid, Frame Valid, Start on
Socket 0 Load Load Socket 1
DATA_COUNT DATA_COUNT
FV &LV FV &LV
m ' <« ILV & 'DATA Limit
LV & DATA Limit
Wait for Transfer Transfer Wait for
. Socket O data T > Socket 1 data, —
Line Valid with DATA =0, DATA =0, Line Valid with
Socket 0 active DATA++ DATA++ Socket 1 active

LV & DATA Limit

i Wait for
Line Valid with
Socket 0 full
#FV
v
Frame end
with partial _Frame end
i with full buffer
buffer in _
in Socket 0,
Soaiud Intr CPU
Intr CPU

M DATA Li m><Lv & DATA :mn\/

Wait for N
Line Valid with
Socket 1 full
L!FV
\ 4
Frame end
Frame end with partial
with full buffer pan
_ buffer in
in Socket 1,
AGGH Socket 1,
Intr CPU

Figure 4-24: CX3 GPIFII State Machine

EZ-USB Suite User Guide, Version 1.3.3

45

