
Using Interrupts

The difference between "wired" and "weird" is only minimal

A cooking-recipe has many similarities with a program: It tells what 
to do with which resources in which order. Instructions like "Whip 
the egg-white until stiff" does not differ much from usual pseudo-
code. Now imagine you are stirring a cake dough and suddenly the 
door-bell rings. You put aside your equipment and open the door. 
The postman delivers a parcel which you sign for, close the door 
leaving the parcel on the mantelpiece and continue with your cake. 
When now you have got a balll-pen in your hand instead of your 
wooden spoon something with your interrupt has gone wrong.

One major task an embedded designer has to care for are the 
interrupts, sometimes called "Exceptions". A designer not only 
cares for interrupts, he will use and handle them because they 
make project realization easier or even possible. Interrupts 
-depending on the IDE you use- are often encapsulated in 
functions or objects helping to maintain their properties.

An interrupt halts the actual program flow and executes an 
associated piece of code named "interrupt handler". When the 
handler finishes the original environment of the interrupted program
is restored and the execution resumes at the point where the 
program has been halted. While the handler executes, only 
interrupts with a higher priority will be served from now on (if any) 
until the handler finishes.

The interrupt in an embedded micro is normally generated by a 
programmable pice of hardware named "Interrupt Controller Unit" 
(ICU) which usually allows for 

• Setting an interrupt priority1

• Masking interrupts

1 Trough historical reasons are lower priority numbers used to define higher 
priorities

39



• Defining the signal edge or a level generating the interrupt

• Firing an interrupt by software command

Some ICUs require to clear the interrupt explicitly, some ICUs do 
that automatically and some clearing can be done within the 
encapsulated interrupt-code, get acquainted with your embedded 
handbook. But always the source of the interrupt has to be cleared 
before the handler finishes, otherwise when the handler finishes 
and interrupts are allowed again the non-cleared source would 
instantly fire the same interrupt again and again.

Since interrupts may fire at any time within the normal program flow
without caring for C-statements or lines of code some pitfalls are 
associated with them, I will later explain how to handle those.

Keep handlers short! That minimizes jitter in the timing and helps to
reduce side effects due to a loss of responsiveness while the 
handler is executed.
Avoid loops in handlers. An absolute no-go is to wait for an event or
to use delays in a handler. Check especially system-functions you 
call from within a handler for delay-loops, as for instance writing to 
LCDs or peripherals may induce them. A very common practice is 
just to set a flag within the handler and exit. In the main-loop the 
flag is tested, acted upon the result and reset back again. This of 
course only works when the expected frequency of the interrupts is 
less than the frequency of the main-loop.

Using interrupts can come in very handy. A common use is to catch
the incoming data of an interface, store them into a "Circular 
Buffer" (Pg. 23) and retrieve them when there is time to do so. 
While all other tasks the embedded performs are running (nearly) 
uninterrupted the characters get collected in the background. What 
additionally is needed is an indicator that a complete message has 
arived.

39



Sending data over an interface is best done with interrupts, too. A 
common pitfall when programming this function is to forget to copy 
the data to be sent into a memory area since the original data may 
disappear when have been stored in a local variable (Pg. 32) of the
calling program.

Reading sensors and averaging the readings in the background will
increase the program performance. Since always there is a value 
ready to work with there is no need for waiting for a conversion 
ready.

39


	Using Interrupts

