

 PSoC Creator Concept Component Data Sheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

 Version 1.30 Page 1 of 14

Features

 Serial GPIO bus Target interface component
to be used in conjunction with Serial Attached
SCSI (SAS) or Serial ATA (SATA) hard drives

 Compliant with Small Form Factor committee
specification SFF-8485

 Supports up to 4 SAS/SATA hard drives

 Support for vendor specific L[3:0] bits

 Support for 64 ms bus timeout function

Contents

General Description Input/Output Connections Parameters

Placement Resources Application Programming
Interface (APIs)

Sample Firmware Source
Code

Interrupt Service Routine Registers

DC and AC Electrical
Characteristics

Revision History

General Description

The SGPIO_Target component is an interface component that supports the SFF-8485 Serial
GPIO (SGPIO) industry standard, providing support for 4 SAS/SATA hard drives. SGPIO is a
4-wire bus used between a host bus adaptor (HBA) and a backplane. Of the 4 signals, 3 are
driven by the SGPIO Initiator in the HBA (sclock, sload and sdataout) and 1 by the SGPIO
Target in the backplane controller (sdatain). Typically, the HBA is a storage controller located
inside a server, desktop, rack or workstation computer which interfaces with hard disk drives
(HDDs) to store and retrieve data.

SGPIO Target
v1.30

SGPIO_Target PSoC Creator Concept Component Data Sheet

Page 2 of 14 Version 1.30

When to use an SGPIO_Target

The SGPIO_Target component should be used in HDD enclosure applications that support the
SFF-8485 SGPIO industry standard. Each SGPIO_Target component supports 4 HDDs.
Multiple SGPIO_Targets can be instantiated in the same PSoC device to extend support for
more HDDs and more HBAs.

Input/Output Connections

This section describes the various input and output connections for the SGPIO_Target.

Input May Be
Hidden

Description

sclock N SGPIO reference clock provided by the SGPIO Initiator, typically
located in the HBA. According to the SFF-8485 specification, this
clock frequency can be no more than 100 kHz

sload N SGPIO load signal primarily used for synchronization purposes
between the Initiator and Target. This signal also optionally
transmits 4 bits of vendor specific information (termed L[3:0] in the
SFF-8485 specification)

sdataout N SGPIO Initiator data out. This data is primarily used to send LED
indicator data to the SGPIO Target. There are 3 bits defined per
drive, resulting in a 12-bit serial stream for a 4 drive application

clock N This clock is used for internal logic timing. Must be set at least 8x
the frequency of sclock. Typically 1MHz

Output May Be
Hidden

Description

sdatain N SGPIO Initiator data in. This data is used to receive data from the
SGPIO Target regarding HDD status such as presence, errors etc.

interrupt N Active high output pin asserted when a new 12-bit frame of
sdataout is received from the Initiator

PSoC Creator Concept Component Data Sheet SGPIO_Target

Version 1.30 Page 3 of 14

Parameters

Drag an SGPIO_Target component onto your design and double-click it to open the Configure
dialog.

Basic Tab

This tab is used to set the single operational parameter of the component.

Figure 1 – SGPIO Target Basic Tab

Vendor Specific

This parameter is used to enable or disable capturing of the L[3:0] vendor specific bits
transmitted on the sload signal by the SGPIO Initiator immediately following the sload sync
pattern. Valid range for this parameter is true or false. Default setting is true.

Placement

There are no specific placement requirements for this component.

SGPIO_Target PSoC Creator Concept Component Data Sheet

Page 4 of 14 Version 1.30

Resources

The SGPIO_Target uses the following device resources:

Configuration

Digital Blocks API Memory (Bytes)

Data
Paths

Macro
Cells

Status
Registers

Control/Count7
Registers Flash SRAM

Default 2 13 1 2 826 2

Application Programming Interface

Application Programming Interface (API) routines allow you to configure the component using
firmware. The following table lists and describes the interface to each function. The
subsequent sections cover each function in more detail.

By default, PSoC Creator assigns the instance name SGPIO_Target_1 to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
SGPIO_Target.

Function Description

SGPIO_Target_Start() Start the component

SGPIO_Target_Stop() Stop the component and disable hardware blocks

SGPIO_Target_Init() Initializes the component

SGPIO_Target_Enable() Enables hardware blocks

SGPIO_Target_EnableInt() Enables interrupts from the component

SGPIO_Target_DisableInt() Disables interrupts from the component

SGPIO_Target_GetIntStatus() Returns pending interrupt status

SGPIO_Target_GetStatus() Returns all status bits from the component

SGPIO_Target_WriteTxData(uint16 txData)
Writes a new 12-bit sdatain value into the transmit FIFO ready for
transmission on the next frame to the SGPIO Initiator

SGPIO_Target_ReadRxData()
Returns the most recently received 12-bit sdataout frame or sload
L[3:0] vendor specific data (if enabled). If vendor specific data is
enabled, that data is loaded after the sdataout in that frame

SGPIO_Target_ClearTxBuffer() Resets and empties the transmit FIFO

SGPIO_Target_ClearRxBuffer() Resets and empties the receive FIFO

SGPIO_Target_ResetTimeout() Resets the SGPIO bus activity detection logic

PSoC Creator Concept Component Data Sheet SGPIO_Target

Version 1.30 Page 5 of 14

Function Description

SGPIO_Target_GetTimeoutStatus() Returns the status of SGPIO bus activity detection logic

SGPIO_Target_SaveConfig() Save current state of component before entering low power mode

SGPIO_Target_RestoreConfig()
Restores previous state of the component after waking from low
power mode

SGPIO_Target_Sleep() Put component into low power mode

SGPIO_Target_Wakeup() Wake component from low power mode

SGPIO_Target PSoC Creator Concept Component Data Sheet

Page 6 of 14 Version 1.30

void SGPIO_Target_Start(void)

Description: Enables the SGPIO_Target component. Calls the Init() API if the component has not been
initialized before. Calls Enable().

Parameters: None

Return
Value:

None

Side
Effects:

None

void SGPIO_Target_Stop (void)

Description: Disables the SGPIO_Target component.

Parameters: None

Return
Value:

None

Side
Effects:

None

void SGPIO_Target_Init (void)

Description: Initializes the SGPIO_Target component.

Parameters: None

Return
Value:

None

Side
Effects:

None

void SGPIO_Target_Enable (void)

Description: Enables hardware blocks within the SGPIO_Target component.

Parameters: None

Return
Value:

None

Side
Effects:

None

PSoC Creator Concept Component Data Sheet SGPIO_Target

Version 1.30 Page 7 of 14

void SGPIO_Target_EnableInt(void)

Description: Enables generation of the interrupt signal. An active high interrupt signal will be generated
when a new 12-bit frame of data has been received from the Initiator on sdataout.

Parameters: None

Return
Value:

None

Side
Effects:

None

void SGPIO_Target_DisableInt(void)

Description: Disables generation of the interrupt signal.

Parameters: None

Return
Value:

None

Side
Effects:

None

uint8 SGPIO_Target_GetIntStatus(void)

Description: Returns the state of the interrupt signal for polling mode operation

Parameters: None

Return
Value:

0 = no interrupt pending
Non-zero = interrupt pending

Side
Effects:

None

SGPIO_Target PSoC Creator Concept Component Data Sheet

Page 8 of 14 Version 1.30

uint8 SGPIO_Target_GetStatus(void)

Description: Returns all status bits of the component

Parameters: None

Return
Value:

Bit Field Information

b0 Sync bit. 1=SGPIO bus synchronized to sload. 0=not synchronized

b1 SGPIO bus activity sticky bit. 1=no activity, 0=activity

b2 Receive FIFO not empty. 1=at least one 12-bit word is in the receive
FIFO, 0=no data in the receive FIFO. Receive FIFO is 4x 12-bit words
deep

b3 Transmit FIFO not full. 1=the transmit FIFO has space for at least one 12-
bit word. 0=the transmit FIFO is full. Transmit FIFO is 4x 12-bit words
deep

b7:4 Reserved. Returns all zeroes

Side
Effects:

None

void SGPIO_Target_WriteTxData(uint16 txData)

Description: Writes a new 12-bit sdatain data word into the transmit FIFO ready for transmission on the
next frame. The FIFOs are 4 deep (4x 12-bits), however to remain properly synchronized
with the SGPIO initiator, it is recommended that this API is called once per interrupt
generated.

Parameters: uint16 txData

Bit Field Information

b11:0 12-bit data for transmission to Initiator on sdatain in next frame (3
bits per drive). Drive 0 data is in the least significant bits.

b15:12 Reserved. Don’t care.

Return
Value:

None

Side
Effects:

None

PSoC Creator Concept Component Data Sheet SGPIO_Target

Version 1.30 Page 9 of 14

uint16 SGPIO_Target_ReadRxData(void)

Description: Returns the most recently received 12-bit sdataout frame and sload vendor specific L[3:0]
data (if enabled). If vendor specific data is enabled, that data is loaded after the sdataout
frame is loaded into the receive FIFO. That is, when an interrupt is received from this
component and vendor specific data is enabled, the 1

st
 call to this API will return the

sdataout data and the 2
nd

 call will return L[3:0] vendor specific data. If vendor specific data
is disabled, this API should be called only once per interrupt.

Parameters: None

Return
Value:

Bit Field Information

b11:0 When the data returned is 12-bit sdataout data received from the
Initiator, there are 3 bits per drive available. Drive 0 data is in the
least significant bits.

When the data returned is vendor specific L[3:0] data, that data is
returned in the 4 least significant bits. The most significant bit (b11)
will always be set to 1 indicating that the sload sync pulse was also
received.

b15:12 All zeroes

Side
Effects:

Calling this API will automatically de-assert the interrupt signal

void SGPIO_Target_ClearTxBuffer(void)

Description: Resets and empties the transmit FIFO.

Parameters: None

Return
Value:

None

Side
Effects:

None

void SGPIO_Target_ClearRxBuffer(void)

Description: Resets and empties the receive FIFO.

Parameters: None

Return
Value:

None

Side
Effects:

Calling this API will automatically de-assert the interrupt signal

SGPIO_Target PSoC Creator Concept Component Data Sheet

Page 10 of 14 Version 1.30

void SGPIO_Target_ResetTimeout(void)

Description: Resets the SGPIO bus activity logic in the verilog hardware. To meet the SFF-8485
specification of detecting 64 msec of no activity, this API should be called once per msec.
At the subsequent msec interval, the SGPIO_Target_GetTimeoutStatus() API should be
called to determine if there has been any bus activity in the past msec. If no activity was
detected, a “no activity” counter variable in SRAM should be incremented. If no activity
continues for 64 msec, then the timeout condition has been detected.

Parameters: None

Return
Value:

None

Side
Effects:

None

uint8 SGPIO_Target_GetTimeoutStatus(void)

Description: Returns the status of SGPIO bus activity detection logic

Parameters: None

Return
Value:

Side
Effects:

0 = SGPIO bus activity detected since the last SGPIO_Target_ResetTimeout() API call
Non-zero = no SGPIO bus activity detected

None

void SGPIO_Target_SaveConfig(void)

Description: This API is used to save the configuration of the SGPIO_Target component prior to PSoC
entering low-power sleep mode. Currently, the only parameter stored is the interrupt
enable state of the component.

Parameters: None

Return
Value:

None

Side
Effects:

None

PSoC Creator Concept Component Data Sheet SGPIO_Target

Version 1.30 Page 11 of 14

void SGPIO_Target_RestoreConfig(void)

Description: This API is used to restore the configuration of the SGPIO_Target component after PSoC
exits low-power sleep mode. Currently, the only parameter restored is the interrupt enable
state of the component.

Parameters: None

Return
Value:

None

Side
Effects:

None

void SGPIO_Target_Sleep(void)

Description: This API is used to configure the SGPIO_Target component for minimum power
consumption prior to PSoC entering low-power sleep mode. Saves the enable state of the
component, stop it and backup non-retention data to SRAM.

Parameters: None

Return
Value:

None

Side
Effects:

None

void SGPIO_Target_Wakeup(void)

Description: This API is used to configure the SGPIO_Target component for active power consumption
after PSoC exits low-power sleep mode. Restore non-retention data from SRAM. Re-
initialize the component and re-enable it if it was enabled before going to sleep

Parameters: None

Return
Value:

None

Side
Effects:

None

SGPIO_Target PSoC Creator Concept Component Data Sheet

Page 12 of 14 Version 1.30

Sample Firmware Source Code

Some C language examples demonstrating the basic functionality of the SGPIO_Target
reference component are shown below. These examples assume that the component has
been placed in a design with the default name "SGPIO_Target ".

Note: If you rename your component you must also edit the example code as appropriate to
match the API names to the component name you specify.

Example 1: Polling Mode Operation with VendorSpecific disabled. Code in main.c:

#include <device.h>

#include "SGPIO_Target.h"

uint16 sdout;

void main()

{

 SGPIO_Target_Start(); /* Start SGPIO_Target */

for(;;)

{

 while(!SGPIO_Target_GetIntStatus()); /* Wait for receive data */

 sdout = SGPIO_Target_ReadRxData(); /* Get Initiator data */

 SGPIO_Target_WriteTxData(0x0249); /* 001 for all 4 drives */

 }

}

Example 2: Interrupt Mode Operation with VendorSpecific parameter enabled through the
component customizer. Assumes an ISR component is added to the top level design and
named “SGPIO_INT_1”. Code in main.c:

#include <device.h>

#include "SGPIO_Target.h"

uint16 sdout1, sdout2; /* Globals used by ISR */

void main()

{

 CYGlobalIntEnable; /* Enable CPU interrupts */

 SGPIO_INT_1_Start(); /* Start interrupt component */

 SGPIO_Target_Start(); /* Start SGPIO_Target */

 SGPIO_Target_EnableInt(); /* Enable SPGIO_Target Interrupts */

while(1){}; /* Do everything in ISR */

}

PSoC Creator Concept Component Data Sheet SGPIO_Target

Version 1.30 Page 13 of 14

Code in SGPIO_INT_1.c:

CY_ISR(SGPIO_INT_1_Interrupt)

{

 /* Place your Interrupt code here. */

 /* `#START SGPIO_INT_1_Interrupt` */

 sdout1 = SGPIO_Target_ReadRxData(); /* Read SDOUT Data */

 sdout2 = SGPIO_Target_ReadRxData(); /* Read Vendor Specific L[3:0] Data */

SGPIO_Target_WriteTxData(0x0249); /* 001 encoding for all 4 drives */

 /* `#END` */

}

Interrupt Service Routine

The SGPIO_Target component does not provide any interrupt service routine APIs
automatically. Designers wishing to use interrupts for this component should add an ISR
component from the Cypress standard catalog in Creator and follow Sample Firmware Source
Code example 2 above.

Registers

The SGPIO_Target has several control and status registers that are used by the firmware APIs
to control operation and monitor status. None of these registers are directly accessible by user
firmware.

DC and AC Electrical Characteristics
The following values are indicative of expected performance and based on initial
characterization data.

SGPIO_Target DC Specifications

Parameter Description Conditions Min Typ Max Units

Idd Block current
consumption

<tbd> <tbd> <tbd> <tbd> μA

SGPIO_Target AC Specifications

Parameter Description Conditions Min Typ Max Units

sclock SGPIO bus clock Normal operation 32 100 100 kHz

SGPIO_Target PSoC Creator Concept Component Data Sheet

Page 14 of 14 Version 1.30

Revision History

This section lists the major changes in the component from the previous version.

Version Description of Changes

1.0 First release

1.10 Changed symbol terminal names
Changed reference timing clock from bus_clock to a clock at least 8x sclock
Corrected figure 1 label
Corrections to sample code

1.20 Added support for PSoC 5
Added low power management APIs in the _PM file

1.30 Updated for compatibility with PSoC Creator v2.0
Re-classified as “Concept” component

© Cypress Semiconductor Corporation, 2011. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of
Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark , and PSoC Creator™, and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered
trademarks referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used
only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code
except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described
herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical
components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support
systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

