

Application Note AN2208

Universal PID-Thermoregulator

Author: Andrew Smetana
Associated Project: Yes

Associated Part Family: CY8C27xxx
PSoC Designer Version: 4.2

Associated Application Notes: AN2120, AN2148

Abstract
This Application Note describes implementation of a digital temperature PID controller. Various
temperature control system configurations and aspects of their practical implementation are
analyzed. Two types of temperature sensors are applied: thermocouple and platinum RTD
sensor. The PSoC™ device supports two heat power control methods: phase and numeral
impulse. The wide variety of system configurations allows use of thermoregulators in different
industrial, commercial, and residential systems, where temperature control is needed.

Introduction
Regulators can be developed using analog and
digital techniques. Different mathematical
methods are needed to analyze and design
analog and digital regulators. Though digital
technology can replicate analog system
operation, its abilities go much further. For
example, nonlinear and self-adjusting systems,
which are difficult to create using only an analog
system, can be designed. The main issue in
digital control is regulator structure and
parameter definition.

After the parameters are determined,
implementation of controller algorithms is a
simple task.

Regulator systems are widespread in industry
applications. In many cases, the process is
passed with a preset temperature profile. These
applications need a corresponding regulator to
satisfy process requirements. The structure of the
simplest regulator is presented in Figure 1.

Σ Regulator
Gr Control object

w(t) e(t) u(t) y(t)

-1

z(t)

Figure 1. Structure of the Simplest Regulator

This structure presents an automatic control
system with feedback. See the following
definitions:

w(t): System function algorithm
u(t): Control effect
z(t): External disturbance impact, which must
be minimized
y(t): Output variable
e(t) = w(t) – y(t): Output variable y(t)
deviation from required value w(t)

3/2/2005 Revision A - 1 -

AN2208

Examples of output variables are: temperature in
the stove, the engine shaft rotation speed, liquid
level in the cistern, etc. The key to temperature
control is to constantly adjust the output variable,
y(t), so that it is near the value of w(t). Doing this,
will minimize the control error, e(t).

Temperature adjustments can be made with an
automatic Regulator, Gr (Figure 1), which is
described by control law:

u(t) = Gr[e(t)].

To select the correct control law, the automatic
regulator must know the mathematical model of
the control object:

y(t) = Go[u(t)].

The mathematical model is usually a nonlinear,
ordinary system of differential equations or
differential equations in partial derivatives.
Identifying the form and coefficients of these
equations is done via the control object
identification task. For conventional systems,
mathematical models are commonly used and
then the principal task is identification of equation
coefficients. In many cases, these coefficients
can be selected empirically during the system
tuning process or by performing some special
tests.

Some features of control systems with feedback
indicators are:

o Independent corrective action
initialization when control variables
deviate from reference values.

o Dynamic regulation of temperature
variation with minimal detail.

The control law in Equation (1) is the main factor
for designing automatic control systems. Ideally,
an optimal regulator synthesis could fulfill these
requirements. However, it is a challenge to find
one of good quality at an economical price.
Inexpensive alternatives used in many industry
applications are the simplest and most common
types of linear regulators: P-, PI- and PID-
regulators.

The ideal equation of a PID-regulator is:

⎥
⎦

⎤
⎢
⎣

⎡
++= ∫

t
D

I dt
tdeTde

T
teKtu

0

)()(1)()(ττ (1)

Where К is the controller gain, ТI is the integral
time constant and ТD is the derivative time
constant.

These three parameters can be selected during
the regulator tuning process to calculate the
system functioning algorithm.

The described automatic control system is
continuous. That is, it uses continuous time.

Using microprocessor techniques during
construction of the regulator, the input and output
variables must be measured in time and
converted to digital using the ADC. At the same
time, the PID-regulator equation should be
transformed by changing the derivatives by finite
differences and integrals by finite sums. Using
the following method for substitution of integrals
by finite sums, yields:

[]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−−+−+= ∑

=

k

i

D

I
keke

T
Tie

T
TkeKku

0 0

0)1()()1()()((2)

0
,...1,0
T
tk = counts out the discrete time.

The advantage of digital regulators is their ability
to operate remotely to easily exchange data
through multiple communication channels.
Despite this advantage, the analog method is still
the most reliable, most common, and its data is
easily converted to digital.

Regulator Characteristics
The developed regulator is implemented using
principles of a digital PID-controller. Its main task
is maintaining the object’s preset temperature
level in low- or high-wattage heaters. For
example, a low-wattage heater could be a
soldering iron, where a preset soldering
temperature is required. An example of a high-
wattage heater is an industrial electric stove. For
temperature sensors in this project, both resistive
temperature detectors RTD (HEL-700) and
thermocouple (T-type) sensors are used. Both
are widely used in the industry. There are two
methods for power transfer: phase and numeral-
impulse. The numeral-impulse method is used to
control the inertial load, which works on the
principle of sending in load some half-cycled of
AC mains with an immediate delay. In this
project, this method was modified to take into
account constant temperature fluctuation.

To simplify the tuning process for the
thermoregulator, the EIA-232 (RS-232) interface
is used and a command language developed.
Therefore, it is possible to use standard terminal
programs to set system parameters and obtain
current status information. The user-friendly
interface to control the device and monitor the
regulator process was developed using the
Win32 Application and C++Builder.

3/2/2005 Revision A - 2 -

AN2208

Using this setup, the universal thermoregulator
with different kinds of sensors, loads and power
control methods is determined. The desired
combination of system functions is dependent on
industry regulator requirements.

Regulator Flowchart
The regulator flowchart is presented in Figure 2.
Note that the gray blocks identify the external
units for the PSoC device.

The regulator structure consists of two main
parts: a synchronization system with a power
control block and a measurement module with a
PID-controller. These two subsystems work
independently and concurrently. The central unit
of the synchronization system is the interrupt
service (Network_Sync_ISR), which is called
each time a signal in the AC network crosses
zero level. Then this subroutine reads the last
value of the control signal (PID control value),
which is formed by the PID-controller block (PID
controller). Depending on the power control
method, the phase method or numeral-impulse
method is initiated to generate the control
signals. The power control method settings are
determined during PSoC device initialization after
reset, by questioning the jumpers (JUMPERS).
The phase method uses a pulse width modulator
(PWM) to form the control signal.

This signal is used to control the electronic switch
Power Switch (FET for the low power heater or
optotriac for the high power heater).

The analog piece of the synchronization system
is implemented by an external node (Network
Sync Circuit) and internal PSoC blocks. The zero
crossing detection module (Zero Crossing
Detection) uses the Schmitt trigger scheme,
which features internal hysteresis. This approach
preserves generation of multiple false
synchronization signals, especially in moments of
load commutation. Upon output from these
blocks, a digital signal is formed, which generates
an interrupt signal.

Consider the working principles. The active block
of this subsystem is the translation module
(Translation Module). It selects the sensor to
read its signals, depending on the jumpers’
states. Sensor selection is completed by means
of an internal multiplexer (MUX). The multiplexed
signal is gained by the instrumentation amplifier
module (INSTR AMP). The gain factor is different
for the thermocouple and RTD. The analog signal
is then converted into a digital representation
using ADC1.

Rref
Sensor

RTD
Sensor

TC
Sensor

TMP37
Sensor

RF LPF

TC Connection Control
Circuit

MUX INSTR
AMP ADC1

ADC2

Digital
Filter

Sensor
Connection

Control

Translation
Module

ADC code into
Temperature

PID
Controller

FLASH
Memory

Terminal
Command
Interpreter

Set PID’s Parameters

Get PID’s Parameters

Tcurr

PID
Constituents

EIA-232
(RS-232)

Network
Sync

Circuit

Zero
Crossing
Detection

PWM

PID Control Value

Interrupt Signal MUX
Power
Switch

AC
Mains

Regulator LED

AC
Mains

HEATER

JUMPERS

External

Internal

Power Control MethodSensor Kind

Sensor Error LED

Software

Duty Cycle

Network_Sync_ISR

Phase Power
Control

Pulses Count
Control

PC
(Optional)

Figure 2. Regulator Flowchart

3/2/2005 Revision A - 3 -

AN2208

To prevent external noise from influencing the
regulation process, the digital signal is passed
through a nonlinear digital filter (Digital Filter), on
which the output code ready for processing is set.
The translation module (Translation Module)
translates the ADC code into temperature values
using the sensors’ characteristic tables. The
translation methods and specific measurement
methods between the thermocouple and the RTD
are different. Thus, it is necessary to read the
voltage using RTD measurement on two
resistors, Rref Sensor and RTD Sensor, at the
same time. The RTD resistance is then
calculated and the corresponding temperature
value found using a table. The thermocouple
measurement method uses an additional low cost
temperature sensor TMP37, which measures the
thermocouple’s cold junction temperature. To
accomplish this, it utilizes ADC2. Note, ADC1 and
ADC2 work simultaneously. To get the absolute
temperature of a control object, the thermocouple
and TMP37 temperatures are calculated. The
object’s temperature is then passed to a PID-
controller unit, which compares this value with a
reference temperature and generates
corresponding control signals.

To reduce unwanted influence of stray radio
noise on thermocouple wires, the signal is
passed through an external RC low-pass filter
(RF LPF). The sensor break control is provided
by two units: TC Connection Control and Sensor
Connection Control. If a sensor break is detected,
the red LED turns on (Sensor Error LED), the
regulator output is set to zero (i.e., it disconnects
load), and the device waits for sensor connection.

A UART User Module is used for debugging and
to tune the thermoregulator block. The regulator’s
parameters are loaded through the PSoC’s Flash
memory. The UART also provides a means for
receiving regulator status. The software
implemented Terminal Command Interpreter
block interprets the command language of the
device terminal module.

Power Control
Two methods can be used to transfer power in
the load:

o Phase method, in which the value of
power delivered is determined in
changing of phase angle.

o Numeral-impulse control is performed by
whole half-cycles. Impulses are directly
carried after voltage in the AC mains
crosses zero level and during the time
the load is connected to the AC mains.
Some half-cycles are passed through
the load during this time.

The numeral-impulse method is utilized for power
control in loads with long reaction times (inertial
load). The advantage of this method is that load
commutation moments concur with moments of
zero crossing, so the level of radiated radio noise
is sharply reduced. The minimal amount of
energy entered in the load equals the energy that
is supplied during one AC mains half-cycle. For
example, to get a 10% increase, there is a need
to have a period of 10 half-cycles. In Figure 3А is
a sequence of impulses on control electrode for
30% power in load. The electronic switch is on
during the first three half-cycles, and off during
the last seven. This sequence is repeated.

1 2 3 987654 1

1 2 3 987654 1

0

0

1 2 3 987654 10

A

B

C
Figure 3. Numeral-Impulse Method

It is more logical to distribute half-cycles uniformly
during the whole sequence period when the
switch is on. The problem of uniform distribution
of N impulses in sequence with length M (N ≤ M)
is solved by Bresenham’s algorithm, which is
used in raster graphics for drawing slanting lines.
This algorithm is implemented using integer
arithmetic, simplifying the programming. Figure
3В depicts impulse distribution for the same 30%
power, but using Bresenham’s algorithm. The
raster line drawing using the same algorithm is
shown in Figure 3С. In this project, Bresenham’s
algorithm provides gradual temperature
adjustments without large fluctuations during the
regulation period.

3/2/2005 Revision A - 4 -

AN2208

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

AC mains

LOAD

Phase Control Numeral-Impulse Control

Figure 4. Power Control Method Comparison

Power control method comparisons are shown in
Figure 4. Note, a 30% half-cycle time of the
switch on in phase method, does not correspond
to 30% power transfer in load. For sinusoidal
signals, the output power has nonlinear
dependence on electronic switch phase angle
opening. This feature does not prevent correct
temperature regulation since the system includes
feedback contours.

Hardware Implementation
The hardware solution of this project is presented
in two parts: the PSoC internals and the
regulator’s external schematics.

Regulator Schematics
The regulator schematic circuit is presented in
Figure 5. The connecting link of all components is
the PSoC device, which reads and processes
sensor signals. It then generates control signals
and provides communication through the UART.

To provide network synchronization, the following
elements are used: a transformer, a diode
rectifier, and also a circuit formed from resistor
R14 and Zener Diode D5 with a stabilizing
voltage, 3.3V. The output Net_Sync of this circuit
is connected to the PSoC comparator. The
resistor R15 is used for discharging stray
capacitance, which is not able to reset the
sinusoidal signal to reach zero level.

The resistors R16, R17 and FET Q1 are used to
control the low power load. This load on the
schematic is depicted as resistor R12. The
optotriac U5 is used to control high power
heaters. The control signal, Gate Control, is
generated by the PSoC. The regulation process
is provided by LED D6.

The power supply of digital electronics is
recognized by the voltage regulator L78M05 and
corresponding capacitors/filters С9, С10, С11,
С12. The supply unit diode D2 prevents smooth
signal flow into the synchronization circuit.

The regulator uses three kinds of sensors:
resistors (R11, RTD1), thermocouple, and
temperature sensor TMP37. For temperature
measurement on the basis of platinum RTD, a 4-
wire measurement circuit is used. The advantage
of this method is precise measurement
regardless of the length of connecting wires (from
sensor to board). The RTD sensor resistance is
calculated according to the following equation:

11
11

R
V
V

R
R

R
RTD

RTD= (3)

The circuit for measuring voltage on the
thermocouple is presented by functional blocks.
Components R5, R6, R8, R9 and C3, C6, C7
form a low-pass filter to filter out RF noise.
Resistors R1, R2, R3 and R4 are used to bring
the thermocouple signal into the working range of
the instrumentation amplifier. For the
thermocouple connection, two digital pins are
utilized (P2[5] and P2[7]). These pins are set to
logic 1 and 0. If the thermocouple breaks, the
ADC output is set at the maximum code and the
LED D1 turns on. The RTD connection control is
achieved without use of digital pins; only the ADC
code is controlled digitally. In temperature
measurement mode, P2[5] and P2[7] are in High-
Z state. The sensor, TMP37, is used to measure
temperature of thermocouple cold junction.
According to its output, the set voltage is directly
proportional to the temperature of its package.
This sensor provides 500 mV output at 25ºC and
its scale factor equals 20 mV/ºC. The absolute
temperature is measured as:

TCTMP TTT ∆+= 37 (4)

The type of sensor (thermocouple or RTD) and
power control method (phase or numeral-
impulse) can be selected using jumper J2.

3/2/2005 Revision A - 5 -

AN2208

J3

CON2

1
2

R2
1 K

~12 V

Gate Control

C9
0.1 mkF

REG_MODE

D4

Network_LED

R13
820

R4
10 K

Test -

D1

Sensor_Error_LED

A
C
n
e
t
w
o
r
k

TC+

R12

LOW Power Heater

TC-

U3 L78M05/TO220

1

2

3VIN

G
N
D VOUT

R6

100 K

VCC

R17
10 K

R3
10 K

R20

100

C13
0.1 mkF

TxD

R19
HIGH Power Heater

C5

0.1 mkF

VCC

R16

1 K

C12
1000 mkF

C2

0.1 mkF

Rref +

D6

Regulator_LED

VCC

RTD -

J1

CON2

1
2

RTD +

R14
10 K

J2

JUMPER4

1 2
3 4
5 6
7 8

R15
680

R9

100 K

C10
1000 mkF

U4

TMP37

1

3

2V
ss

G
N
D

Vout

T
h
e
r
m
o
c
o
u
pl
e

c
o
n
n
e
c
t
o
r

R11
1 K

- +

D3

BRIDGE

1

4

3

2

SENSOR KIND

RxD

U2

MAX232

1
3
4
5

16

15 2
6

12
9

11
10

13
8

14
7

C1+
C1-
C2+
C2-

VCC

GND V+
V-

R1OUT
R2OUT

T1IN
T2IN

R1IN
R2IN

T1OUT
T2OUT

C6
0.1 mkF

t

RTD1

HEL-700

Q1

NTP10N60

R18
10 K

OPTOTRIAC

R7
300

C3
0.1 mkF

Test +

Net_Sy nc

D2

DIODE

C1
1 mkF

C8

0.1 mkF

R5

100

D5

3.3 N

P1

DB9 (Female)

5
9
4
8
3
7
2
6
1

R8

100

VCC

RTD +

R10
10 K

RTD -

Rref -

C11
0.1 mkF

Rref -

VCC

U5

S202T02

3

42

1

<Doc> <Rev Code>

Thermoregulator

B

1 1Thursday , June 24, 2004

Title

Size Document Number Rev

Date: Sheet of

R1
1 K

Net_Sy nc

U1

CY8C27443

1
2
3
4
5
6
7
8
9

10
11
12
13
14 15

16
17
18
19
20
21
22
23
24
25
26
27
28P0[7]

P0[5]
P0[3]
P0[1]
P2[7]
P2[5]
P2[3]
P2[1]
SMP
P1[7]
P1[5]
P1[3]
P1[1]
Vss P1[0]

P1[2]
P1[4]
P1[6]
Xres

P2[0]
P2[2]
P2[4]
P2[6]
P0[0]
P0[2]
P0[4]
P0[6]

Vcc

C4

0.1 mkF

Gate Control

Rref +

T1

TRANSFORMER

1 5

4 8

C7
0.1 mkF

3/2/2005 Revision A - 6 -

Figure 5. Regulator Schematic Circuit

AN2208

To provide communication with the PC through
the COM port, a standard level shifter, such as
MAX232, can be used.

PSoC Internals
The internal chip configuration is presented in
Figure 6. Implementation of the internal structure
consists of the following components: an
instrumentation amplifier (INSAMP), two ADCs
(ADC) united in a single module, a comparator
(CMP), a digital communication module (UART),
and the pulse width modulator (PWM).

To gain signals from the sensors, the
instrumentation amplifier is used and is placed in
analog blocks ACB02, ACB03, and ASD13. For
multiplexing the input signal from the sensor, the
multiplexers in 2-d and 3-d analog columns are
used. The bit assignments for the amplifier inputs
are defined in register AMX_IN.

The amplifier zero shift measurement is
performed by short circuiting its inputs. For this,
the input’s multiplexer in 2-d analog column is
used (controlled by register ABF_CR0). The gain
factor is dependent on the sensor type. The gain
signal is given on the input of the ADC2

Figure 6. PSoC Internal Configuration

3/2/2005 Revision A - 7 -

AN2208

This ADC2 property ClockPhase2 is set to SWAP
to provide synchronization with the output of the
instrumentation amplifier. The ADC is a dual ADC
and occupies the following analog and digital
blocks: ASC10, ASC12, DBB00, DBB01, DBB10,
and DBB11. Another ADC (ADC1) is used to
measure the signal from the TMP37 sensor. Its
input is connected directly to Р2[1].

The comparator (CMP), in ACB01, provides AC
synchronization. This module is software
configured to create a Schmitt trigger. The analog
signal enters the comparator’s input from P0[7]
and is digitally output. The Schmitt trigger output
is connected to Comparator Bus 1, which
generates an interrupt signal upon zero crossing
detection.

When using the phase power control method, a
PWM is needed. With its help, the AC mains’
frequency is calculated during device initialization
and load commutation is determined.

The UART occupies the DCB02 and DCB03
blocks. It operates at a baud rate of 115200. The
UART utilizes the 16-byte command buffer to
implement the communication interface. The
receiver’s input is on P1[2], and the transmitter
output is on P0[1]. The module is clocked from
frequency source VC3 equal to SysClk/26.

Firmware Implementation
The regulator firmware consists of modules
based in separate source files. Each module
executes its own functions. See the following:

o Initialization procedure and main
regulation cycle. (main.c).

o PID-controller subroutine (regulator.c).
o Synchronization module presented in

the interrupt service routine (ISR)
(sync_int.c).

o Interpolation and searching subroutines
in sensor tables (tc_get_t.c).

o Terminal interface, which provides
communication using EIA-232 (RS-232)
interface (terminal.c).

Each module is discussed in more detail below.

main.c
This file is the main connection/link of the
firmware. Its flowchart is shown in Figure 9. It
executes two main functions: device initialization
and regulation. During the initialization process,
when all of the PSoC modules start, jumpers
determine which current sensor type and power
control method is used. Current settings are
saved in variables SENSOR_TYPE and
REG_METHOD, which are passed in subroutines
Set_Sensor() and Set_Regulation_Mode().

When the sensor type is assigned, the pointer to
the corresponding sensor’s table is initialized,
and the instrumentation amplifier gain is set.

For the phase method, the AC main half-cycle is
determined using the
Calculate_Circuit_Frequency() subroutine and
the phase graduation step is calculated. The half-
cycle is saved in variable
Current_Network_Period, and the phase
graduation step in variable phase_step. To
calculate the AC main half-cycle, the interrupt
service routine is used and its working principles
are implemented. After zero crossing detection,
the PWM is started and it works towards the next
zero crossing condition. After that, it is stopped,
and its current counter value is read and
considered as a half-cycle.

When using the numeral-impulse power control
method, it is necessary to disconnect the PWM
from the GPIO. This is done by modifying the
PRT1GS register.

After the initialization procedure is complete, the
regulation cycle begins. This cycle (besides the
main tasks of reading and processing sensor
signals and sending their results to the regulator)
executes the sensor connection control function,
is_sensor_connected(). This control is done once
every 32 cycles. If a sensor break is detected, the
heater is disconnected and a red LED turns on.
Also, during each cycle, the presence of a UART
command is verified. If a command is detected,
then its processing subroutine terminal() is called.
A visual description of this cycle is shown in
Figure 9.

tc_get_t.c
After the sensor signals are read, the
corresponding object’s temperature must be
determined. The sensor (RTD and thermocouple)
characteristic tables are stored in the PSoC Flash
memory. In this project, tables are built with 1ºC-
steps in the temperature range [-100 to 400]ºC.
The tables for the thermocouple and the RTD are
based in the tc_data.h and rtd_data.h files. The
last table’s element index is assigned in macro
definition MEASURE_RANGE in the includes.h
file.

To obtain more precise regulation, temperature
interpolation is done to a quarter degree. The
user can modify the interpolation step by
changing the macro definition N in the includes.h
file. Note that N is a power of two. For example, if
N=2, then the interpolation step equals 1/2N =
1/4ºC. It enables the PID-controller to react from
a small temperature deviation and restore the
reference temperature.

3/2/2005 Revision A - 8 -

AN2208

Interpolation assumes that the characteristic
interval of the sensor is linear.

When the temperature is measured using a
thermocouple and after the signals are digitized,
the ADC code clearly corresponds to the defined
temperature. To minimize presser time, the table
is built from ADC code, but does not use
corresponding voltages. All of the table’s
calculations can be implemented using any
programming language. The table’s file for this
project tc_data.h is generated automatically. The
value of table’s element index was calculated
according to the following equation:

6.2
2024.93_

13
••= TCUcodeADC (5)

In this equation, voltage is expressed in volts.
93.024 is the gain of the instrumentation
amplifier. (Gain can be an additional source of
calculation error, as it can float slightly.) 13 is the
digit capacity of the ADC and 2.6 volts is the
measurement range of the ADC.

The ADC code is calculated and its
corresponding temperature value in the table is
found. The accordance between temperature and
the table’s element index is calculated using the
following equation:

IndexZeroTNoElementT ___ −= (6)

Element_No is the table’s element index and
T_Zero_Index is the table’s element index that
corresponds to 0ºС.

This parameter is assigned in the includes.h file.

The elements in the RTD table are resistance
values corresponding to temperatures. To
increase the quality of interpolation, each element
is multiplied by 10. The following equation is
used:

10)1001(432
0 ••+••−•+•+= TCTCTBTARRT (7)

R0 is the sensor resistance at 0ºС. A, B, and C
are the sensor characteristic coefficients and 10
is the interpolation enhancing coefficient.

Searching the Algorithm
Beginning with the physical properties of the
heating/cooling process, an object’s temperature
cannot change in spurts. In other words,
temperature change is a continuous function
through time. Searching is carried out relative to
last fixed temperature.

The previous and next temperatures are found
using interpolation. The direction along the table
is determined to reach the current temperature. A
flowchart for this algorithm is shown in Figure 7.
This flowchart uses the following symbols:

o ADC – current ADC code, for which the
temperature is looking.

o curr – determines the result of previous
search at the start of search procedure.

o prev – stores previous values to curr.
o next – stores value following curr.

The algorithm executes cyclically. The absolute
difference between the desired quantity ADC and
the current value from table curr is not minimal.

START

prev = get_prev()
next = get_next()

dp = abs(ADC-prev)
dc = abs(ADC-curr)
dn = abs(ADC-next)

dp < dc

p = p - 1

curr = next

dn < dc

p = p + 1

curr = next

NO

YES

YES

return p

NO

Figure 7. Search Algorithm

regulator.c
After interpolating and searching the tables, the
subroutine of the PID-controller is called in the
manner by which the current temperature was
determined. The subroutine’s parameter is the
object’s temperature.

3/2/2005 Revision A - 9 -

AN2208

3/2/2005 Revision A - 10 -

[])1()()()()(
0

−−+•+•= ∑
=

kekeKieKkeKku D
k

i
Ip

Upon the output of the regulator, the digital code
is set based on the control signals.

The regulation algorithm is implemented
according to the following equation:

(8)

Differentiation amplifies noise. To reduce the
influence of differentiation, derivatives are
calculated using two data points. To calculate the
derivative in this project, the numerical method of
left fifth differences was utilized:

)316364825(
12

1
43210

0
−−−−

=
+−+−≈ yyyyy

hdt
dy

tt
 (9)

This method reduces the influence of noise on
the final result.

The flowchart of the PID-controller algorithm is
presented in Figure 10. The software control
implementation must limit each element to a fixed
range.

Following is a description of each regulator
parameter and corresponding variable in the
program:

o Tref – reference temperature, which is
kept up by the regulator.

o Prop_Gain – proportional gain
parameter (KP).

o Intl_Gain – integral gain parameter
(KI).

o Deri_Gain – derivative gain parameter
(KD).

o PROP_REG_LIMIT – working range of
proportional element.

o INTL_REG_LIMIT – working range of
integral element.

o DERI_REG_LIMIT – working range of
derivative element.

o REG_RANGE – working range of
regulator (set in degrees).

o PWM_RESOLUTION – determines the
number of regulation steps. For the
phase method, this is the amount of
segments on which a half-cycle is
divided. For the numeral-impulse
method, this is the regulation period in
half-cycles.

All of these parameters are based in the 255th
block of Flash memory starting at address
0x3FC0. Parameters can be changed in-system
using the terminal program.

o SCALE_FACTOR – this is a divider by
which the calculated control value is
limited in the range
[0..PWM_Resolution]. This parameter
is used in the following equation:

FACTORSCALE
DenTermIntlTermopTermPrPWMcount

_
++

= (10)

The SCALE_FACTOR parameter is set in
firmware and cannot be modified via the UART.
This should be noted when tuning the PID-
controller.

The output controller value is determined by the
value of PWMcount and is limited in range by
[0..PWM_Resolution].

sync_int.c
The network synchronization subroutine is
implemented as an ISR from the comparator bus.
Figure 8 shows its flow.

START

Mode = 1 PWM_Start
Mode=2

Mode = 2 PWM_Stop
Mode=0

Mode = 3

PWM_Stop
PWM_WritePeriod (Current_Network_Period)
PWM_WritePulseWidth (duty_cycle)
PWM_Start

Mode = 4 Execute Bresenheim algorithm to determine
contol signal

Send control signal to port

FINISH

YES

YES

YES

YES

NO

NO

NO

NO

Figure 8. Synchronization ISR

This ISR is implemented in the form of a finite
state machine. That is, it remembers its previous
state. This feature is used by Bresenham’s
algorithm to generate control signals during
periodic AC main half-cycles.

As can be seen in Figure 8, the subroutine works
in four modes, each determined by the global
variable mode. Modes 1 and 2 are used to
determine the AC main half-cycle. In Mode 1
(after zero crossing detection), the PWM starts
and Mode 2 switches on automatically. In Mode
2, the PSoC device waits for the next zero
crossing condition.

AN2208

When this condition becomes true, the PWM is
stopped and the variable mode is set to 0 (this is
the signal for the subroutine
Calculate_Circuit_Frequency() to finish half-cycle
measuring). Then, in the main program, the
current PWM counter is read and treated as half-
cycle.

Mode 3 is used by the phase method to form
control signals. This subroutine branch starts the
PWM with a given duty cycle. In Mode 4, the
Bresenham’s algorithm, which is utilized by the
numeral-impulse power control method, is
implemented.

terminal.c
To make in-system regulator tuning and
configuration easier, a UART is included in its
structure. The command language that enables
communication with the PSoC device by means
of standard terminal programs (e.g.,
HyperTerminal) is based on the UART. The
СOM-port is configured as follows:

o Baud Rate (bit/sec): 115200
o Data Bits: 8
o Parity: None
o Stop Bits: 1

Using the implemented commands, regulator
parameters can be edited and saved to Flash.
Also, there are commands for receiving current
status information. The full list of supported
commands is presented in Table 1.

The carriage return symbol is used (ASCII code
0x0D) as a command terminator. Therefore, after
typing a command, it is necessary to press the
[Enter] key. The UART uses [Space Bar] (ASCII
code 0x20) as a parameter delimiter in the
command. All commands are to be typed using
capital letters.

Note that after the setting command is entered,
and in the case of its successful completion, the
UART sends the answer “OK!” If an inadmissible
command is entered, the answer is “Unknown!”

Terminal Program
To send commands automatically to the PSoC
and to create a user-friendly interface, a program
was developed using Win32 Application and
C++Builder. The program allows the user to
visually parameterize, and also enables real-time
graph building. Graphs are constructed
simultaneously. The first graph shows the
dependence of temperature on time. In the
second graph, the values of proportional integral
and derivative constituents are traced. These
tools make it easier for the user to tune the
regulator. Figure 11 shows the appearance of the
main application.

Interface Elements
Once the program is started, communication with
the thermoregulator must be established. Select
the COM-port to which the PSoC device is
connected. Communication is then set by
pressing the CONNECT with PSoC button. After
connection is established, the user can tune the
regulator.

Controller parameters are entered in the text
fields. To save the typed parameters to Flash,
press the SAVE REGULATOR PARAMETERS IN
PSoC’S FLASH button. The terminal program
does not correct entered data. It merely sends
the data to the PSoC, which translates data
strings into a digital representation. If invalid
symbols are detected, this parameter is assigned
a zero. The data is returned to the terminal
program and shown in the corresponding text
fields. Note that writing to Flash works correctly if
the device is not in debug mode. Using the PSoC
ICE, it takes about 150 ms to write one Flash
block, but on an actual chip, this time is about 10
ms.

Use the following buttons to construct the graph:

o START construction of graph – start
graph constriction.

o CLEAR graphs – clear graph forms.
o STOP construction of graph – stop

graph construction.

To show the graphs on the screen, check Show
Temperature Graph and Show PID Constituents
Graph.

As graphs are constructed in real-time, note that
the regulator status is received with the frequency
of 5 Hz. Figure 12 shows examples of graph
forms.

3/2/2005 Revision A - 11 -

AN2208

Table 1. List of Terminal Commands

Command Format Description

GET T To get object’s temperature (integer and fraction).
For example:
GET T

70 3

Current temperature equals 70 + ¾ = 70.75ºC (if interpolation step is ¼).

GET P Get current proportional element (PropTerm).

GET I Get current integral element (IntlTerm).

GET D Get current derivative element (IntlTerm).

GET Get current temperature, proportional, integral and derivative elements.
For example:
GET

70 3 1000 -500 300

 70 3 – temperature
 1000 – proportional element
 -500 – integral element
 300 – derivative element

PG <NUMBER> Set proportional gain (PropGain).
For example:
PG 4000

 OK!

IG <NUMBER> Set integral gain (IntlGain).

DG <NUMBER> Set derivative gain (DeriGain).

PL <NUMBER> Set limitation of proportional element (PROP_REG_LIMIT).

IL <NUMBER> Set limitation of integral element (INTL_REG_LIMIT).

DL <NUMBER> Set limitation of derivative element (DERI_REG_LIMIT).

RR <NUMBER> Set regulation range in degrees (REG_RANGE).

PWM_RES <NUMBER> Set regulation step quantity (PWM_RESOLUTION).

CONNECT Set connection with PSoC. For example:
CONNECT

OK!

SET_T <NUMBER> Set reference temperature (Tref).

GET_ALL_PARAMS Get all parameters. For example:
GET_ALL_PARAMS

70 250 3 0 7000 20000 8000 15 10 2

 70 – reference temperature (Tref)
 250 – proportional gain (PropGain)
 3 – integral gain (IntlGain)
 0 – derivative gain (DeriGain)
 7000 – limitation of proportional element (PROP_REG_LIMIT)
 20000 – limitation of integral element (INTL_REG_LIMIT)
 8000 – limitation of derivative element (DERI_REG_LIMIT)
 15 – regulation range (REG_RANGE)
 10 – regulation step quantity (PWM_RESOLUTION)
 2 – interpolation coefficient (N). Interpolation step = 1/2NºC

3/2/2005 Revision A - 12 -

AN2208

START

Questioning jumpers, then sets sensor
kind and power control method

Initialize hardware

Is sensor connected? Light on Sensor Error LED

Shutdown Error LED

Shutdown Heater

NO

YES

Zero_Data = get_zero_offset()

Sensor_Kind = RTD_Sensor?

Sensor_Data=get_sensor_data(RTD_Sensor)

Vrtd=Sensor_Data – Zero_Data

Sensor_Data=get_sensor_data(Rref_Sensor)

Vref=Sensor_Data – Zero_Data

Rrtd = (Vrtd * Rref / Vref) * 10

Sensor_Temperature = get_temp(Rrtd)

YES

Sensor_Data=get_sensor_data(TC_Sensor)

Vtc = Sensor_Data – Zero_Data

Get TMP37 data in tmpData

Tcj = tmpData*2600/(20*8192)

T = get_temp(Vtc)

NO

Sensor_Temperature = Tcj + T

regulator(Sensor_Temperature)

Has UART got command?

NO

Process command
YES

Figure 9. Main Loop

3/2/2005 Revision A - 13 -

AN2208

START

CurrError = Tref – Tcurr

PropTerm = CurrError * PropGain

Limit PropTerm in range
[-Prop_Reg_Limit..+Prop_Reg_Limit]

Calculate derivative constituent DeriTerm
using formula of left fifth differences and

multiply it by DeriGain

Limit DeriTerm in range
[-Deri_Reg_Limit..+Deri_Reg_Limit]

LastError = CurrError

AccuError = AccuError + CurrError

Limit AccuError in range
[-Intl_Reg_Limit..+Intl_Reg_Limit]

IntlTerm = AccuError * IntlGain

Limit IntlTerm in range
[-Intl_Reg_Limit..+Intl_Reg_Limit]

CurrError > reg_range

PWMcount = PWM_Resolution
AccuError = 0

YES

CurrError > reg_range

NO

PWMcount = 0
AccuError = 0

YES

PWMcount = (PropTerm + IntlTerm + DeriTerm) /
SCALE_FACTOR

NO

Limit PWMcount in range
[0..PWM_Resolution]

set_control_value (PWMcount)

FINISH

Figure 10. PID-Controller Flowchart

3/2/2005 Revision A - 14 -

AN2208

Figure 11. Terminal Program’s Main Window

Conclusion
The PID-thermoregulator described in this
Application Note involves different variations of
temperature control systems. The following
options are available: load type, temperature
sensor type (thermocouple or RTD), and power
control method (phase or numeral-impulse).
These options simplify thermoregulator design for
specific applications. Among the advantages of
the presented thermoregulator is the UART’s
precise tuning capability. The associated terminal
program allows users to visually observe the
regulation process and easily adjust as needed.

To adapt this thermoregulator to specific
technology conditions, only minimal changes to
software are necessary. Most of the changes are
due to the type of sensor used (thermocouple or
RTD). In this case, the sensor’s characteristic
table must be generated and inserted in the
regulator project along with minute modifications
to the macro definitions in the includes.h file.
Then the PID-parameter’s tuning can be
performed by means of the terminal program.

About the Author
Name: Andrew Smetana

Title: Undergraduate Student
Education: Ukraine National University

“Lvov Poltechnic.”
Computer Engineering Chair.

Contact: andrew_smetana@ukr.net

3/2/2005 Revision A - 15 -

mailto:andrew_smetana@ukr.net

AN2208

Figure 12. Graph Construction using Terminal Program

3/2/2005 Revision A - 16 -

AN2208

 Cypress Semiconductor

2700 162nd Street SW, Building D
Lynnwood, WA 98037
Phone: 800.669.0557

Fax: 425.787.4641
http://www.cypress.com/ / http://www.cypress.com/support/mysupport.cfm
Copyright © 2005 Cypress Semiconductor Corporation. All rights reserved.

PSoC™, Programmable System-on-Chip™, and PSoC Designer™ are PSoC-related trademarks of Cypress.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.

The information contained herein is subject to change without notice. Made in the U.S.A.

3/2/2005 Revision A - 17 -

http://www.cypress.com/
http://www.cypress.com/support/mysupport.cfm

	Application Note
	AN2208
	Universal PID-Thermoregulator
	Introduction
	Regulator Characteristics
	Regulator Flowchart
	Power Control
	Hardware Implementation
	Regulator Schematics
	PSoC Internals
	Firmware Implementation
	Terminal Program
	Conclusion
	About the Author

