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Abstract 
This Application Note describes implementation of a digital temperature PID controller. Various 
temperature control system configurations and aspects of their practical implementation are 
analyzed. Two types of temperature sensors are applied: thermocouple and platinum RTD 
sensor. The PSoC™ device supports two heat power control methods: phase and numeral 
impulse. The wide variety of system configurations allows use of thermoregulators in different 
industrial, commercial, and residential systems, where temperature control is needed. 
 
 
 
Introduction 
Regulators can be developed using analog and 
digital techniques. Different mathematical 
methods are needed to analyze and design 
analog and digital regulators. Though digital 
technology can replicate analog system 
operation, its abilities go much further. For 
example, nonlinear and self-adjusting systems, 
which are difficult to create using only an analog 
system, can be designed. The main issue in 
digital control is regulator structure and 
parameter definition.  

After the parameters are determined, 
implementation of controller algorithms is a 
simple task. 
 
Regulator systems are widespread in industry 
applications. In many cases, the process is 
passed with a preset temperature profile. These 
applications need a corresponding regulator to 
satisfy process requirements. The structure of the 
simplest regulator is presented in Figure 1. 

Σ Regulator
Gr Control object

w(t) e(t) u(t) y(t)

-1

z(t)

 
 

Figure 1. Structure of the Simplest Regulator  

This structure presents an automatic control 
system with feedback. See the following 
definitions: 
 

w(t): System function algorithm 
u(t): Control effect 
z(t): External disturbance impact, which must 
be minimized 
y(t): Output variable 
e(t) = w(t) – y(t): Output variable y(t) 
deviation from required value w(t) 

3/2/2005                                                                        Revision A                                                                       - 1 - 



AN2208 
 

 
 

Examples of output variables are: temperature in 
the stove, the engine shaft rotation speed, liquid 
level in the cistern, etc. The key to temperature 
control is to constantly adjust the output variable, 
y(t), so that it is near the value of w(t). Doing this, 
will minimize the control error, e(t). 
  
Temperature adjustments can be made with an 
automatic Regulator, Gr (Figure 1), which is 
described by control law: 
 
u(t) = Gr[e(t)].  
 
To select the correct control law, the automatic 
regulator must know the mathematical model of 
the control object: 
  
y(t) = Go[u(t)].  
 
The mathematical model is usually a nonlinear, 
ordinary system of differential equations or 
differential equations in partial derivatives. 
Identifying the form and coefficients of these 
equations is done via the control object 
identification task. For conventional systems, 
mathematical models are commonly used and 
then the principal task is identification of equation 
coefficients. In many cases, these coefficients 
can be selected empirically during the system 
tuning process or by performing some special 
tests.  
 
Some features of control systems with feedback 
indicators are: 

o Independent corrective action 
initialization when control variables 
deviate from reference values. 

o Dynamic regulation of temperature 
variation with minimal detail. 

 
The control law in Equation (1) is the main factor 
for designing automatic control systems. Ideally, 
an optimal regulator synthesis could fulfill these 
requirements. However, it is a challenge to find 
one of good quality at an economical price. 
Inexpensive alternatives used in many industry 
applications are the simplest and most common 
types of linear regulators: P-, PI- and PID-
regulators. 
 
The ideal equation of a PID-regulator is: 
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Where К is the controller gain, ТI is the integral 
time constant and ТD is the derivative time 
constant. 
 

These three parameters can be selected during 
the regulator tuning process to calculate the 
system functioning algorithm. 
 
The described automatic control system is 
continuous. That is, it uses continuous time.  
 
Using microprocessor techniques during 
construction of the regulator, the input and output 
variables must be measured in time and 
converted to digital using the ADC. At the same 
time, the PID-regulator equation should be 
transformed by changing the derivatives by finite 
differences and integrals by finite sums. Using 
the following method for substitution of integrals 
by finite sums, yields: 
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The advantage of digital regulators is their ability 
to operate remotely to easily exchange data 
through multiple communication channels. 
Despite this advantage, the analog method is still 
the most reliable, most common, and its data is 
easily converted to digital.   
 
Regulator Characteristics 
The developed regulator is implemented using 
principles of a digital PID-controller. Its main task 
is maintaining the object’s preset temperature 
level in low- or high-wattage heaters. For 
example, a low-wattage heater could be a 
soldering iron, where a preset soldering 
temperature is required. An example of a high-
wattage heater is an industrial electric stove. For 
temperature sensors in this project, both resistive 
temperature detectors RTD (HEL-700) and 
thermocouple (T-type) sensors are used. Both 
are widely used in the industry. There are two 
methods for power transfer: phase and numeral-
impulse. The numeral-impulse method is used to 
control the inertial load, which works on the 
principle of sending in load some half-cycled of 
AC mains with an immediate delay. In this 
project, this method was modified to take into 
account constant temperature fluctuation. 
 
To simplify the tuning process for the 
thermoregulator, the EIA-232 (RS-232) interface 
is used and a command language developed. 
Therefore, it is possible to use standard terminal 
programs to set system parameters and obtain 
current status information. The user-friendly 
interface to control the device and monitor the 
regulator process was developed using the 
Win32 Application and C++Builder. 
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Using this setup, the universal thermoregulator 
with different kinds of sensors, loads and power 
control methods is determined. The desired 
combination of system functions is dependent on 
industry regulator requirements.  
 
Regulator Flowchart   
The regulator flowchart is presented in Figure 2. 
Note that the gray blocks identify the external 
units for the PSoC device.  
 
The regulator structure consists of two main 
parts: a synchronization system with a power 
control block and a measurement module with a 
PID-controller. These two subsystems work 
independently and concurrently. The central unit 
of the synchronization system is the interrupt 
service (Network_Sync_ISR), which is called 
each time a signal in the AC network crosses 
zero level. Then this subroutine reads the last 
value of the control signal (PID control value), 
which is formed by the PID-controller block (PID 
controller). Depending on the power control 
method, the phase method or numeral-impulse 
method is initiated to generate the control 
signals. The power control method settings are 
determined during PSoC device initialization after 
reset, by questioning the jumpers (JUMPERS). 
The phase method uses a pulse width modulator 
(PWM) to form the control signal.  

This signal is used to control the electronic switch 
Power Switch (FET for the low power heater or 
optotriac for the high power heater). 
 
The analog piece of the synchronization system 
is implemented by an external node (Network 
Sync Circuit) and internal PSoC blocks. The zero 
crossing detection module (Zero Crossing 
Detection) uses the Schmitt trigger scheme, 
which features internal hysteresis. This approach 
preserves generation of multiple false 
synchronization signals, especially in moments of 
load commutation. Upon output from these 
blocks, a digital signal is formed, which generates 
an interrupt signal.  
 
Consider the working principles. The active block 
of this subsystem is the translation module 
(Translation Module). It selects the sensor to 
read its signals, depending on the jumpers’ 
states. Sensor selection is completed by means 
of an internal multiplexer (MUX). The multiplexed 
signal is gained by the instrumentation amplifier 
module (INSTR AMP). The gain factor is different 
for the thermocouple and RTD. The analog signal 
is then converted into a digital representation 
using ADC1. 
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Figure 2. Regulator Flowchart 
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To prevent external noise from influencing the 
regulation process, the digital signal is passed 
through a nonlinear digital filter (Digital Filter), on 
which the output code ready for processing is set. 
The translation module (Translation Module) 
translates the ADC code into temperature values 
using the sensors’ characteristic tables. The 
translation methods and specific measurement 
methods between the thermocouple and the RTD 
are different. Thus, it is necessary to read the 
voltage using RTD measurement on two 
resistors, Rref Sensor and RTD Sensor, at the 
same time. The RTD resistance is then 
calculated and the corresponding temperature 
value found using a table. The thermocouple 
measurement method uses an additional low cost 
temperature sensor TMP37, which measures the 
thermocouple’s cold junction temperature. To 
accomplish this, it utilizes ADC2. Note, ADC1 and 
ADC2 work simultaneously. To get the absolute 
temperature of a control object, the thermocouple 
and TMP37 temperatures are calculated. The 
object’s temperature is then passed to a PID-
controller unit, which compares this value with a 
reference temperature and generates 
corresponding control signals.  
 
To reduce unwanted influence of stray radio 
noise on thermocouple wires, the signal is 
passed through an external RC low-pass filter 
(RF LPF). The sensor break control is provided 
by two units: TC Connection Control and Sensor 
Connection Control. If a sensor break is detected, 
the red LED turns on (Sensor Error LED), the 
regulator output is set to zero (i.e., it disconnects 
load), and the device waits for sensor connection. 
 
A UART User Module is used for debugging and 
to tune the thermoregulator block. The regulator’s 
parameters are loaded through the PSoC’s Flash 
memory. The UART also provides a means for 
receiving regulator status. The software 
implemented Terminal Command Interpreter 
block interprets the command language of the 
device terminal module. 
 
Power Control 
Two methods can be used to transfer power in 
the load: 

o Phase method, in which the value of 
power delivered is determined in 
changing of phase angle. 

o Numeral-impulse control is performed by 
whole half-cycles. Impulses are directly 
carried after voltage in the AC mains 
crosses zero level and during the time 
the load is connected to the AC mains. 
Some half-cycles are passed through 
the load during this time. 

 

The numeral-impulse method is utilized for power 
control in loads with long reaction times (inertial 
load).  The advantage of this method is that load 
commutation moments concur with moments of 
zero crossing, so the level of radiated radio noise 
is sharply reduced. The minimal amount of 
energy entered in the load equals the energy that 
is supplied during one AC mains half-cycle. For 
example, to get a 10% increase, there is a need 
to have a period of 10 half-cycles. In Figure 3А is 
a sequence of impulses on control electrode for 
30% power in load. The electronic switch is on 
during the first three half-cycles, and off during 
the last seven. This sequence is repeated. 
 

1 2 3 987654 1

1 2 3 987654 1

0

0

1 2 3 987654 10

A

B

C  
Figure 3. Numeral-Impulse Method 

 
It is more logical to distribute half-cycles uniformly 
during the whole sequence period when the 
switch is on. The problem of uniform distribution 
of N impulses in sequence with length M (N ≤ M) 
is solved by Bresenham’s algorithm, which is 
used in raster graphics for drawing slanting lines. 
This algorithm is implemented using integer 
arithmetic, simplifying the programming. Figure 
3В depicts impulse distribution for the same 30% 
power, but using Bresenham’s algorithm. The 
raster line drawing using the same algorithm is 
shown in Figure 3С. In this project, Bresenham’s 
algorithm provides gradual temperature 
adjustments without large fluctuations during the 
regulation period. 
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Figure 4. Power Control Method Comparison 

 
Power control method comparisons are shown in 
Figure 4. Note, a 30% half-cycle time of the 
switch on in phase method, does not correspond 
to 30% power transfer in load. For sinusoidal 
signals, the output power has nonlinear 
dependence on electronic switch phase angle 
opening. This feature does not prevent correct 
temperature regulation since the system includes 
feedback contours.  
 
Hardware Implementation  
The hardware solution of this project is presented 
in two parts: the PSoC internals and the 
regulator’s external schematics. 
 
Regulator Schematics 
The regulator schematic circuit is presented in 
Figure 5. The connecting link of all components is 
the PSoC device, which reads and processes 
sensor signals. It then generates control signals 
and provides communication through the UART. 
 
To provide network synchronization, the following 
elements are used: a transformer, a diode 
rectifier, and also a circuit formed from resistor 
R14 and Zener Diode D5 with a stabilizing 
voltage, 3.3V. The output Net_Sync of this circuit 
is connected to the PSoC comparator. The 
resistor R15 is used for discharging stray 
capacitance, which is not able to reset the 
sinusoidal signal to reach zero level.  
 
The resistors R16, R17 and FET Q1 are used to 
control the low power load. This load on the 
schematic is depicted as resistor R12. The 
optotriac U5 is used to control high power 
heaters. The control signal, Gate Control, is 
generated by the PSoC. The regulation process 
is provided by LED D6. 
 
The power supply of digital electronics is 
recognized by the voltage regulator L78M05 and 
corresponding capacitors/filters С9, С10, С11, 
С12. The supply unit diode D2 prevents smooth 
signal flow into the synchronization circuit. 

The regulator uses three kinds of sensors: 
resistors (R11, RTD1), thermocouple, and 
temperature sensor TMP37. For temperature 
measurement on the basis of platinum RTD, a 4-
wire measurement circuit is used. The advantage 
of this method is precise measurement 
regardless of the length of connecting wires (from 
sensor to board). The RTD sensor resistance is 
calculated according to the following equation: 
 

11
11

R
V
V

R
R

R
RTD

RTD=                         (3) 

 
The circuit for measuring voltage on the 
thermocouple is presented by functional blocks. 
Components R5, R6, R8, R9 and C3, C6, C7 
form a low-pass filter to filter out RF noise. 
Resistors R1, R2, R3 and R4 are used to bring 
the thermocouple signal into the working range of 
the instrumentation amplifier. For the 
thermocouple connection, two digital pins are 
utilized (P2[5] and P2[7]). These pins are set to 
logic 1 and 0. If the thermocouple breaks, the 
ADC output is set at the maximum code and the 
LED D1 turns on. The RTD connection control is 
achieved without use of digital pins; only the ADC 
code is controlled digitally. In temperature 
measurement mode, P2[5] and P2[7] are in High-
Z state. The sensor, TMP37, is used to measure 
temperature of thermocouple cold junction. 
According to its output, the set voltage is directly 
proportional to the temperature of its package. 
This sensor provides 500 mV output at 25ºC and 
its scale factor equals 20 mV/ºC. The absolute 
temperature is measured as:  
 

TCTMP TTT ∆+= 37                         (4) 
 

The type of sensor (thermocouple or RTD) and 
power control method (phase or numeral-
impulse) can be selected using jumper J2. 
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To provide communication with the PC through 
the COM port, a standard level shifter, such as 
MAX232, can be used. 
 
PSoC Internals 
The internal chip configuration is presented in 
Figure 6. Implementation of the internal structure 
consists of the following components: an 
instrumentation amplifier (INSAMP), two ADCs 
(ADC) united in a single module, a comparator 
(CMP), a digital communication module (UART), 
and the pulse width modulator (PWM).  
 

To gain signals from the sensors, the 
instrumentation amplifier is used and is placed in 
analog blocks ACB02, ACB03, and ASD13. For 
multiplexing the input signal from the sensor, the 
multiplexers in 2-d and 3-d analog columns are 
used. The bit assignments for the amplifier inputs 
are defined in register AMX_IN.   
 
The amplifier zero shift measurement is 
performed by short circuiting its inputs. For this, 
the input’s multiplexer in 2-d analog column is 
used (controlled by register ABF_CR0). The gain 
factor is dependent on the sensor type. The gain 
signal is given on the input of the ADC2 

 

 
Figure 6. PSoC Internal Configuration 
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This ADC2 property ClockPhase2 is set to SWAP 
to provide synchronization with the output of the 
instrumentation amplifier. The ADC is a dual ADC 
and occupies the following analog and digital 
blocks: ASC10, ASC12, DBB00, DBB01, DBB10, 
and DBB11. Another ADC (ADC1) is used to 
measure the signal from the TMP37 sensor. Its 
input is connected directly to Р2[1]. 
 
The comparator (CMP), in ACB01, provides AC 
synchronization. This module is software 
configured to create a Schmitt trigger. The analog 
signal enters the comparator’s input from P0[7] 
and is digitally output. The Schmitt trigger output 
is connected to Comparator Bus 1, which 
generates an interrupt signal upon zero crossing 
detection. 
 
When using the phase power control method, a 
PWM is needed. With its help, the AC mains’ 
frequency is calculated during device initialization 
and load commutation is determined. 
 
The UART occupies the DCB02 and DCB03 
blocks. It operates at a baud rate of 115200. The 
UART utilizes the 16-byte command buffer to 
implement the communication interface. The 
receiver’s input is on P1[2], and the transmitter 
output is on P0[1]. The module is clocked from 
frequency source VC3 equal to SysClk/26.  
 
Firmware Implementation 
The regulator firmware consists of modules 
based in separate source files. Each module 
executes its own functions. See the following: 
 

o Initialization procedure and main 
regulation cycle. (main.c). 

o PID-controller subroutine (regulator.c). 
o Synchronization module presented in 

the interrupt service routine (ISR) 
(sync_int.c). 

o Interpolation and searching subroutines 
in sensor tables (tc_get_t.c). 

o Terminal interface, which provides 
communication using EIA-232 (RS-232) 
interface (terminal.c). 

 
Each module is discussed in more detail below. 
 
main.c 
This file is the main connection/link of the 
firmware. Its flowchart is shown in Figure 9. It 
executes two main functions: device initialization 
and regulation. During the initialization process, 
when all of the PSoC modules start, jumpers 
determine which current sensor type and power 
control method is used. Current settings are 
saved in variables SENSOR_TYPE and 
REG_METHOD, which are passed in subroutines 
Set_Sensor() and Set_Regulation_Mode().  

When the sensor type is assigned, the pointer to 
the corresponding sensor’s table is initialized, 
and the instrumentation amplifier gain is set.  
 
For the phase method, the AC main half-cycle is 
determined using the 
Calculate_Circuit_Frequency() subroutine and 
the phase graduation step is calculated. The half-
cycle is saved in variable 
Current_Network_Period, and the phase 
graduation step in variable phase_step. To 
calculate the AC main half-cycle, the interrupt 
service routine is used and its working principles 
are implemented. After zero crossing detection, 
the PWM is started and it works towards the next 
zero crossing condition. After that, it is stopped, 
and its current counter value is read and 
considered as a half-cycle.  
 
When using the numeral-impulse power control 
method, it is necessary to disconnect the PWM 
from the GPIO. This is done by modifying the 
PRT1GS register.  
 
After the initialization procedure is complete, the 
regulation cycle begins. This cycle (besides the 
main tasks of reading and processing sensor 
signals and sending their results to the regulator) 
executes the sensor connection control function, 
is_sensor_connected(). This control is done once 
every 32 cycles. If a sensor break is detected, the 
heater is disconnected and a red LED turns on. 
Also, during each cycle, the presence of a UART 
command is verified. If a command is detected, 
then its processing subroutine terminal() is called. 
A visual description of this cycle is shown in 
Figure 9. 
 
tc_get_t.c 
After the sensor signals are read, the 
corresponding object’s temperature must be 
determined. The sensor (RTD and thermocouple) 
characteristic tables are stored in the PSoC Flash 
memory. In this project, tables are built with 1ºC-
steps in the temperature range [-100 to 400]ºC. 
The tables for the thermocouple and the RTD are 
based in the tc_data.h and rtd_data.h files. The 
last table’s element index is assigned in macro 
definition MEASURE_RANGE in the includes.h 
file. 
 
To obtain more precise regulation, temperature 
interpolation is done to a quarter degree. The 
user can modify the interpolation step by 
changing the macro definition N in the includes.h 
file. Note that N is a power of two. For example, if 
N=2, then the interpolation step equals 1/2N = 
1/4ºC. It enables the PID-controller to react from 
a small temperature deviation and restore the 
reference temperature.  
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Interpolation assumes that the characteristic 
interval of the sensor is linear. 
 
When the temperature is measured using a 
thermocouple and after the signals are digitized, 
the ADC code clearly corresponds to the defined 
temperature. To minimize presser time, the table 
is built from ADC code, but does not use 
corresponding voltages. All of the table’s 
calculations can be implemented using any 
programming language. The table’s file for this 
project tc_data.h is generated automatically. The 
value of table’s element index was calculated 
according to the following equation: 
 

6.2
2024.93_

13
••= TCUcodeADC             (5) 

 
In this equation, voltage is expressed in volts. 
93.024 is the gain of the instrumentation 
amplifier. (Gain can be an additional source of 
calculation error, as it can float slightly.) 13 is the 
digit capacity of the ADC and 2.6 volts is the 
measurement range of the ADC. 
  
The ADC code is calculated and its 
corresponding temperature value in the table is 
found. The accordance between temperature and 
the table’s element index is calculated using the 
following equation: 
 

IndexZeroTNoElementT ___ −=             (6) 
 
Element_No is the table’s element index and 
T_Zero_Index is the table’s element index that 
corresponds to 0ºС. 
 
This parameter is assigned in the includes.h file. 
 
The elements in the RTD table are resistance 
values corresponding to temperatures. To 
increase the quality of interpolation, each element 
is multiplied by 10. The following equation is 
used: 
 

10)1001( 432
0 ••+••−•+•+= TCTCTBTARRT  (7) 

 
R0 is the sensor resistance at 0ºС. A, B, and C 
are the sensor characteristic coefficients and 10 
is the interpolation enhancing coefficient. 
 
Searching the Algorithm 
Beginning with the physical properties of the 
heating/cooling process, an object’s temperature 
cannot change in spurts. In other words, 
temperature change is a continuous function 
through time. Searching is carried out relative to 
last fixed temperature.  

The previous and next temperatures are found 
using interpolation. The direction along the table 
is determined to reach the current temperature. A 
flowchart for this algorithm is shown in Figure 7. 
This flowchart uses the following symbols: 

o ADC – current ADC code, for which the 
temperature is looking. 

o curr – determines the result of previous 
search at the start of search procedure. 

o prev – stores previous values to curr. 
o next – stores value following curr. 

 
The algorithm executes cyclically. The absolute 
difference between the desired quantity ADC and 
the current value from table curr is not minimal. 
 

START

prev = get_prev()
next = get_next()

dp = abs(ADC-prev)
dc = abs(ADC-curr)
dn = abs(ADC-next)

dp < dc

p = p - 1

curr = next

dn < dc

p = p + 1

curr = next

NO

YES

YES

return p

NO

 
Figure 7. Search Algorithm 

 
regulator.c 
After interpolating and searching the tables, the 
subroutine of the PID-controller is called in the 
manner by which the current temperature was 
determined. The subroutine’s parameter is the 
object’s temperature.  
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Upon the output of the regulator, the digital code 
is set based on the control signals.  
 
The regulation algorithm is implemented 
according to the following equation: 
 

(8) 

 
Differentiation amplifies noise. To reduce the 
influence of differentiation, derivatives are 
calculated using two data points. To calculate the 
derivative in this project, the numerical method of 
left fifth differences was utilized: 
 

)316364825(
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hdt
dy

tt
   (9) 

 
This method reduces the influence of noise on 
the final result. 
 
The flowchart of the PID-controller algorithm is 
presented in Figure 10. The software control 
implementation must limit each element to a fixed 
range. 
 
Following is a description of each regulator 
parameter and corresponding variable in the 
program: 
 

o Tref – reference temperature, which is 
kept up by the regulator. 

o Prop_Gain – proportional gain 
parameter (KP). 

o Intl_Gain – integral gain parameter 
(KI). 

o Deri_Gain – derivative gain parameter 
(KD). 

o PROP_REG_LIMIT – working range of 
proportional element. 

o INTL_REG_LIMIT – working range of 
integral element. 

o DERI_REG_LIMIT – working range of 
derivative element. 

o REG_RANGE – working range of 
regulator (set in degrees). 

o PWM_RESOLUTION – determines the 
number of regulation steps. For the 
phase method, this is the amount of 
segments on which a half-cycle is 
divided. For the numeral-impulse 
method, this is the regulation period in 
half-cycles. 

 
All of these parameters are based in the 255th 
block of Flash memory starting at address 
0x3FC0. Parameters can be changed in-system 
using the terminal program. 
 

o SCALE_FACTOR – this is a divider by 
which the calculated control value is 
limited in the range 
[0..PWM_Resolution]. This parameter 
is used in the following equation: 

 

FACTORSCALE
DenTermIntlTermopTermPrPWMcount

_
++

=   (10) 

 
The SCALE_FACTOR parameter is set in 
firmware and cannot be modified via the UART.  
This should be noted when tuning the PID-
controller. 
 
The output controller value is determined by the 
value of PWMcount and is limited in range by 
[0..PWM_Resolution]. 
 
sync_int.c 
The network synchronization subroutine is 
implemented as an ISR from the comparator bus. 
Figure 8 shows its flow. 
 

START

Mode = 1 PWM_Start
Mode=2

Mode = 2 PWM_Stop
Mode=0

Mode = 3

PWM_Stop
PWM_WritePeriod (Current_Network_Period)
PWM_WritePulseWidth (duty_cycle)
PWM_Start

Mode = 4 Execute Bresenheim algorithm to determine
contol signal

Send control signal to port

FINISH

YES

YES

YES

YES

NO

NO

NO

NO

 
Figure 8. Synchronization ISR 

 
This ISR is implemented in the form of a finite 
state machine. That is, it remembers its previous 
state. This feature is used by Bresenham’s 
algorithm to generate control signals during 
periodic AC main half-cycles. 
 
As can be seen in Figure 8, the subroutine works 
in four modes, each determined by the global 
variable mode. Modes 1 and 2 are used to 
determine the AC main half-cycle. In Mode 1 
(after zero crossing detection), the PWM starts 
and Mode 2 switches on automatically. In Mode 
2, the PSoC device waits for the next zero 
crossing condition.  
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When this condition becomes true, the PWM is 
stopped and the variable mode is set to 0 (this is 
the signal for the subroutine 
Calculate_Circuit_Frequency() to finish half-cycle 
measuring). Then, in the main program, the 
current PWM counter is read and treated as half-
cycle. 
 
Mode 3 is used by the phase method to form 
control signals. This subroutine branch starts the 
PWM with a given duty cycle. In Mode 4, the 
Bresenham’s algorithm, which is utilized by the 
numeral-impulse power control method, is 
implemented. 
  
terminal.c 
To make in-system regulator tuning and 
configuration easier, a UART is included in its 
structure. The command language that enables 
communication with the PSoC device by means 
of standard terminal programs (e.g., 
HyperTerminal) is based on the UART.  The 
СOM-port is configured as follows:  
 

o Baud Rate (bit/sec): 115200 
o Data Bits: 8 
o Parity: None 
o Stop Bits: 1 

 
Using the implemented commands, regulator 
parameters can be edited and saved to Flash. 
Also, there are commands for receiving current 
status information. The full list of supported 
commands is presented in Table 1. 
 
The carriage return symbol is used (ASCII code 
0x0D) as a command terminator. Therefore, after 
typing a command, it is necessary to press the 
[Enter] key. The UART uses [Space Bar] (ASCII 
code 0x20) as a parameter delimiter in the 
command. All commands are to be typed using 
capital letters. 
 
Note that after the setting command is entered, 
and in the case of its successful completion, the 
UART sends the answer “OK!” If an inadmissible 
command is entered, the answer is “Unknown!” 
 

Terminal Program 
To send commands automatically to the PSoC 
and to create a user-friendly interface, a program 
was developed using Win32 Application and 
C++Builder. The program allows the user to 
visually parameterize, and also enables real-time 
graph building. Graphs are constructed 
simultaneously. The first graph shows the 
dependence of temperature on time. In the 
second graph, the values of proportional integral 
and derivative constituents are traced. These 
tools make it easier for the user to tune the 
regulator. Figure 11 shows the appearance of the 
main application. 
 
Interface Elements  
Once the program is started, communication with 
the thermoregulator must be established. Select 
the COM-port to which the PSoC device is 
connected. Communication is then set by 
pressing the CONNECT with PSoC button. After 
connection is established, the user can tune the 
regulator.  
 
Controller parameters are entered in the text 
fields. To save the typed parameters to Flash, 
press the SAVE REGULATOR PARAMETERS IN 
PSoC’S FLASH button. The terminal program 
does not correct entered data. It merely sends 
the data to the PSoC, which translates data 
strings into a digital representation. If invalid 
symbols are detected, this parameter is assigned 
a zero. The data is returned to the terminal 
program and shown in the corresponding text 
fields. Note that writing to Flash works correctly if 
the device is not in debug mode. Using the PSoC 
ICE, it takes about 150 ms to write one Flash 
block, but on an actual chip, this time is about 10 
ms. 
 
Use the following buttons to construct the graph: 
 

o START construction of graph – start 
graph constriction. 

o CLEAR graphs – clear graph forms. 
o STOP construction of graph – stop 

graph construction. 
 
To show the graphs on the screen, check Show 
Temperature Graph and Show PID Constituents 
Graph. 
 
As graphs are constructed in real-time, note that 
the regulator status is received with the frequency 
of 5 Hz. Figure 12 shows examples of graph 
forms.
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Table 1. List of Terminal Commands 

Command Format Description 

GET T To get object’s temperature (integer and fraction).  
For example:  
GET T 

70 3 

Current temperature equals 70 + ¾ = 70.75ºC (if interpolation step is ¼). 

GET P Get current proportional element (PropTerm).  

GET I Get current integral element (IntlTerm).  

GET D Get current derivative element (IntlTerm).  

GET Get current temperature, proportional, integral and derivative elements. 
For example: 
GET 

70 3 1000 -500 300 

       70 3 – temperature 
       1000 – proportional element 
       -500 – integral element 
        300 – derivative element 

PG <NUMBER> Set proportional gain (PropGain). 
For example:  
PG 4000 

   OK!  

IG <NUMBER> Set integral gain (IntlGain).  

DG <NUMBER> Set derivative gain (DeriGain).  

PL <NUMBER> Set limitation of proportional element (PROP_REG_LIMIT).  

IL <NUMBER> Set limitation of integral element (INTL_REG_LIMIT).  

DL <NUMBER> Set limitation of derivative element (DERI_REG_LIMIT).  

RR <NUMBER> Set regulation range in degrees (REG_RANGE).  

PWM_RES <NUMBER> Set regulation step quantity (PWM_RESOLUTION). 

CONNECT Set connection with PSoC. For example: 
CONNECT 

OK! 

SET_T <NUMBER> Set reference temperature (Tref).  

GET_ALL_PARAMS Get all parameters. For example: 
GET_ALL_PARAMS 

70 250 3 0 7000 20000 8000 15 10 2 

            70     – reference temperature (Tref) 
            250   – proportional gain (PropGain) 
             3      – integral gain (IntlGain) 
             0      – derivative gain (DeriGain) 
          7000   – limitation of proportional element (PROP_REG_LIMIT) 
          20000 – limitation of integral element (INTL_REG_LIMIT) 
          8000   – limitation of derivative element (DERI_REG_LIMIT) 
          15       – regulation range (REG_RANGE) 
          10       – regulation step quantity (PWM_RESOLUTION) 
          2         – interpolation coefficient (N). Interpolation step = 1/2NºC 
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START

Questioning jumpers, then sets sensor 
kind and power control method

Initialize hardware

Is sensor connected? Light on Sensor Error LED

Shutdown Error LED

Shutdown Heater

NO

YES

Zero_Data = get_zero_offset()

Sensor_Kind = RTD_Sensor?

Sensor_Data=get_sensor_data(RTD_Sensor)

Vrtd=Sensor_Data – Zero_Data

Sensor_Data=get_sensor_data(Rref_Sensor)

Vref=Sensor_Data – Zero_Data

Rrtd = (Vrtd * Rref / Vref) * 10

Sensor_Temperature = get_temp(Rrtd)

YES

Sensor_Data=get_sensor_data(TC_Sensor)

Vtc = Sensor_Data – Zero_Data

Get TMP37 data in tmpData

Tcj = tmpData*2600/(20*8192)

T = get_temp(Vtc)

NO

Sensor_Temperature = Tcj + T

regulator(Sensor_Temperature)

Has UART got command?

NO

Process command 
YES

 
 

Figure 9. Main Loop 
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START

CurrError = Tref – Tcurr

PropTerm = CurrError * PropGain

Limit PropTerm in range
[-Prop_Reg_Limit..+Prop_Reg_Limit]

Calculate derivative constituent DeriTerm
using formula of left fifth differences and 

multiply it by DeriGain

Limit DeriTerm in range
[-Deri_Reg_Limit..+Deri_Reg_Limit]

LastError = CurrError

AccuError = AccuError + CurrError

Limit AccuError in range
[-Intl_Reg_Limit..+Intl_Reg_Limit]

IntlTerm = AccuError * IntlGain

Limit IntlTerm in range
[-Intl_Reg_Limit..+Intl_Reg_Limit]

CurrError > reg_range

PWMcount = PWM_Resolution
AccuError = 0

YES

CurrError > reg_range

NO

PWMcount = 0
AccuError = 0

YES

PWMcount = (PropTerm + IntlTerm + DeriTerm) / 
SCALE_FACTOR

NO

Limit PWMcount in range
[0..PWM_Resolution]

set_control_value (PWMcount)

FINISH
 

Figure 10. PID-Controller Flowchart 
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Figure 11. Terminal Program’s Main Window 

 
Conclusion 
The PID-thermoregulator described in this 
Application Note involves different variations of 
temperature control systems. The following 
options are available: load type, temperature 
sensor type (thermocouple or RTD), and power 
control method (phase or numeral-impulse). 
These options simplify thermoregulator design for 
specific applications. Among the advantages of 
the presented thermoregulator is the UART’s 
precise tuning capability. The associated terminal 
program allows users to visually observe the 
regulation process and easily adjust as needed. 
 
To adapt this thermoregulator to specific 
technology conditions, only minimal changes to 
software are necessary. Most of the changes are 
due to the type of sensor used (thermocouple or 
RTD). In this case, the sensor’s characteristic 
table must be generated and inserted in the 
regulator project along with minute modifications 
to the macro definitions in the includes.h file. 
Then the PID-parameter’s tuning can be 
performed by means of the terminal program. 
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Figure 12. Graph Construction using Terminal Program 
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