

 PSoC® Creator™ Example Project

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600

Features

 Over The Air (OTA) firmware update

 Hidden BLE service to receive bootloadable images

 Storage of received images in external memory

 Device Information Service (DIS)

 LED status indication

General Description

This example project demonstrates the implementation of an OTA firmware update using the
BLE Bootloader Service that is hidden by default and can be activated by pressing button SW2
while the device is running. By default, this is a regular bootloadable project that contains the
BLE component with Device Information Service. Once bootloader mode is enabled, this
example project is ready for receiving a new image of the bootloadable project and storing it to
the external memory.

Development Kit Configuration
This example project is designed to run on CY8CKIT-042-BLE from Cypress Semiconductor. A
full description of the kit, along with more example programs and ordering information, can be
found at http://www.cypress.com/go/cy8ckit-042-ble.

Make sure that kit is powered by 3.3 V (J16 is set to 1 and 2). No connection on the kit board is
required to use this example project.

Please, refer to section Functional Description for instructions on this example project usage.

Bootloader Project Configuration

The Bootloader project consists of the Bootloader component and SCB (I2C master).

The purpose of this project is to replace a bootloadable image that is stored in the internal
memory with a bootloadable image that is stored in the external memory.

BLE External Memory Bootloader and Bootloadable
Example Projects

1.0

http://www.cypress.com/go/cy8ckit-042-ble

BLE External Memory Bootloader and Bootloadable PSoC® Creator™ Example Project

Page 2 of 12

After a bootloadable image in the internal memory is replaced, the bootloader project invalidates
the image in the external memory and resets the device with a scheduled bootloadable launch
after startup.

SCB

This project uses the SCB component in the I2C Master mode for communication with the
external memory that is located at the CY8CKIT-042-BLE kit board.

Bootloader

This project also uses the Bootloader component configured to work with the custom interface
that is based on the SCB component.

Bootloadable Project Configuration

This project consists of the following components:

 Bootloadable

 SCB (I2C in Master mode)

 BLE (central role, DIS and Bootloader services)

 Pins

BLE

The BLE component used to implement BLE Device Information Service (DIS) and a hidden
Bootloader Service. The purpose of the Bootloader Service is to receive other bootloadable
images for further storing in the external memory. The Bootloader service is enabled when SW2
is pressed.

PSoC® Creator™ Example Project BLE External Memory Bootloader and Bootloadable

 Page 3 of 12

Figure 1. BLE GATT Settings

Figure 2. BLE GATT Settings

BLE External Memory Bootloader and Bootloadable PSoC® Creator™ Example Project

Page 4 of 12

Figure 3. BLE GAP Settings

The BLE component has two services: Device Information Service that is always available, and a
Bootloader Service that is hidden by default. Operation of the DIS service is well described in a
separate dedicated example project.

The Bootloader Service can be enabled if button SW2 is pressed for longer than 0.1 second. The
purpose for this service is to emulate a bootloader component interface during communication
with Bootloader Host Tool. To implement this, the following configuration is used.

The Bootloader Service has one characteristic that supports the ‘Write’ procedure and
notifications and it also has a characteristic descriptor – Client Characteristic Configuration.

For communication Bootloader Host Tool writes a command to the Command Characteristic and
enables notifications in the characteristic descriptor.

The bootloader emulator reads the command from the characteristic, processes it, and if
notifications are enabled in the characteristic descriptor, writes a response to the notification that
is sent to Bootloader Host Tool.

Bootloader Host Tool receives the notification and depending on its content (a bootloader
emulator response) either sends the next command or reports an error if any.

If commands contain a valid flash row, the bootloader emulator writes it to the external memory.
After transfer of a bootloadable image is completed, the bootloader emulator writes metadata to
the external flash as well as a flag for the bootloader to replace the bootloadable image.

PSoC® Creator™ Example Project BLE External Memory Bootloader and Bootloadable

 Page 5 of 12

At the next device reset bootloader is expected to replace the bootloadable image with an image
from the external flash if a flag in the external flash is set and if the bootloadable image from the
external flash is valid.

The BLE component is configured to have MTU of 23 bytes and the Bootloader Service UUID
which is 00060000-F8CE-11E4-ABF4-0002A5D5C51B.

After pressing SW2 onboard the LED changes its indication from green to red, this can be
applied to both ‘advertising’ and ‘connected’ modes.

SCB

This project uses the SCB component in the I2C Master mode for communication with the
external memory that is located on the CY8CKIT-042-BLE kit board. More detail on the external
FRAM memory is available in the datasheet – http://www.cypress.com/?mpn=FM24V10-G.

Bootloadable

The Bootloadable component is used to create an image with bootloadable firmware that can be
updated without affecting the bootloader.

External Memory

External Memory Interface

The SCB component in the I2C Master mode is used for communication with the external
memory. This project is designed to work with 1-Mbit ferroelectric random access memory (F-
RAM) that is present on the CY8CKIT-042-BLE kit board. More details on the used memory can
be found in the device datasheet http://www.cypress.com/?mpn=FM24V10-G.

The external memory interface API designed in a generic way, so used F-RAM device can be easily
adopted for other external memory devices (I2C EEPROM, SPI EEPROM, etc). The external
memory API is available in the ExternalMemoryInterface.c file.

Memory Map

The external memory contains metadata and application sections.

http://www.cypress.com/?mpn=FM24V10-G
http://www.cypress.com/?mpn=FM24V10-G

BLE External Memory Bootloader and Bootloadable PSoC® Creator™ Example Project

Page 6 of 12

Metadata

Bootloadable

Application

Address 0

Metadata Section

The metadata section is a 128 bytes block of memory that is used as a common area for both
bootloader and bootloadable applications. The metadata section is placed at the beginning of the
external memory.

Address
Size,
Bytes

Description

EMI_MD_APP_STATUS_ADDR 1 Status of the application image located in the
external memory. The following values are
recognized:

 EMI_MD_APP_STATUS_VALID – the
application is valid.

 EMI_MD_APP_STATUS_LOADED – the
application is valid and copied to the internal
flash.

 EMI_MD_APP_STATUS_INVALID – the
application is invalid (it was not copied there
or its checksum does not match checksum
value stored in the external memory
metadata section).

EMI_MD_ENCRYPTION_STATUS_ADDR 1 Stores encryption status.

EMI_MD_APP_EM_CHECKSUM_ADDR 2 Stores the application image checksum.

EMI_MD_APP_SIZE_IN_ROWS_ADDR 2 Stores application image size in flash rows.

EMI_MD_APP_FIRST_ROW_NUM_ADDR 2 Stores the number of the first flash row of the
application.

EMI_MD_EXTERNAL_MEMORY_PAGE_SIZE_ADDR 1 External memory page size.

PSoC® Creator™ Example Project BLE External Memory Bootloader and Bootloadable

 Page 7 of 12

Application Section

The application section starts immediately after the metadata section. The size of the application
section is stored in the metadata section (EMI_MD_APP_SIZE_IN_ROWS_ADDR).

BLE External Memory Bootloader and Bootloadable PSoC® Creator™ Example Project

Page 8 of 12

Functional Description
1. Build the BLE_External_Memory_Bootloader example project.

2. Add the BLE_External_Memory_Bootloadable example project to the workspace.

3. Open the top design schematic of the BLE_External_Memory_Bootloadable project. Specify
the path to the bootloader project HEX and ELF files by double-clicking on the Bootloadable
component and going to the Dependencies tab and link Bootloadable to the
BLE_External_Memory_Bootloader.hex file, as Figure 4 shows.

Figure 4. Bootloadable Component Configuration

4. Build and Program the BLE_External_Memory_Bootloadable project.

At this point CYC8CKIT-042-BLE contains firmware that can receive new updates over-the-
air. The LED3 flashes with the green color.

In the BLE_External_Memory_Bootloadable example project’s file main.h there is #define
LED_ADV_COLOR with value LED_GREEN. Change its value to LED_BLUE and build the
project without flashing it.

 Follow the steps mentioned below to update the kit firmware Over-The-Air (OTA):

PSoC® Creator™ Example Project BLE External Memory Bootloader and Bootloadable

 Page 9 of 12

1. Open the Bootloader Host tool (BHT) by navigating to Tools > Bootloader Host in PSoC
Creator.

2. Press the SW2 button on the kit board. The LED indication changes color to red and
prepares the device for receiving new application image.

3. In the Bootloader Host Tool select “Cypress BLE Dongle”.

4. Press the “Start” button next to the “Scanned Devices” field.

5. Wait until the list “Device Info Example” in “Scanned Devices” appears.

6. Now press the “Stop” button and select “Device Info Example” from the list.

7. Through File > Open menu point Bootloader Host Tool to the *.cyacd file from bootloadable
project folder. It is located in the project folder ([project folder]\CortexM0\[compiler name])

Figure 5. Bootloader Host Tool

8. Press the “Program” button in Bootloader Host Tool and wait while new application image
uploads.

BLE External Memory Bootloader and Bootloadable PSoC® Creator™ Example Project

Page 10 of 12

9. As soon as the new application is uploaded, the device will start updating its firmware. Once
it is finished the device will reset and newly programmed application will start.

Encryption

This example project contains encryption APIs. If the image that is stored on the external FRAM
memory has to be encrypted user can enable encryption algorithm. Encryption APIs use same
algorithms as BLE stack. In this case all information that is stored on the external FRAM will be
encrypted before it is written to it and then decrypted for writing to the internal memory. Metadata
part is not encrypted.

APIs are located in the OTAOptional.c files for both bootloader and bootloadable projects.

The encryption algorithm is enabled by setting define value ENCRYPT_ENABLED to YES in files
Options.h for bootloadable example projects. ENCRYPT_ENABLED value has to be always set
to YES for bootloader project. Enabling of encryption in bootloader project is controlled by
EMI_MD_ENCRYPTION_STATUS_ADDR in metadata.

Using UART for debugging

In these example projects UART component is used for printing various debug information
(disabled by default).

File Options.h contains define “DEBUG_UART_ENABLED” that is set to “NO”. If extra debugging
information have to be provided this define should be set to “YES” in each of bootloader or
bootloadable or for both of them. This will decrease the project’s performance, but it will provide
extra debugging output to the UART.

A HyperTerminal program is required in the PC to receive debugging information. If you don’t
have a HyperTerminal program installed, download and install any serial port communication
program. Freeware such as HyperTerminal, Bray’s Terminal, Putty etc. is available on the web.

1. Connect the PC and kit with a USB cable.

2. Open the device manager program in your PC, find the COM port in which the kit is
connected, and note the port number.

3. Open the HyperTerminal program and select the COM port in which the kit is connected.

4. Configure Baud rate, Parity, Stop bits and Flow control information in the HyperTerminal
configuration window. By default, settings are following: Baud rate – 115200, Parity –
None, Stop bits – 1 and Flow control – XON/XOFF. These settings have to match the
configuration of the PSoC Creator UART component in the project

5. Start communicating with the device as explained in the project description.

File debug.h contain macros that used for printing various types of data:

 DBG_PRINT_TEXT(a) - prints text string

 DBG_PRINT_DEC(a) – prints decimal number

 DBG_PRINT_HEX(a) – prints hexadecimal number

PSoC® Creator™ Example Project BLE External Memory Bootloader and Bootloadable

 Page 11 of 12

 DBG_PRINT_ARRAY(a,b) – prints ‘b’ first elements of array ‘a’

 DBG_PRINTF(...) – printf function macro

These macros are used for printing information to UART only if DEBUG_UART_ENABLED
define is set to YES.

Checksum type option

The bootloader component allows choosing the type of checksum. The type of checksum in the
bootloader project is chosen by the CI_PACKET_CHECKSUM_CRC value. If
CI_PACKET_CHECKSUM_CRC is set to YES, the CRC-16 CCITT checksum algorithm will be
used for the checksum calculation. If CI_PACKET_CHECKSUM_CRC is set to NO, the basic
summation checksum algorithm will be used for the checksum calculation. You have to choose
the same checksum type in the bootloader component customizer and in bootloadable project
options (Option.h) in order for projects to work.

Project options summary
Option Value Explanation

ENCRYPT_ENABLED

YES
Enable encryption of the external memory bootloader image.
Always set YES to bootloader project.

NO
Disable encryption of the external memory bootloader image
(Default)

DEBUG_UART_ENABLED
YES Enable output of debug messages to UART

NO Disable output of debug messages to UART (Default)

CI_PACKET_CHECKSUM_CRC

YES Set checksum type to CRC-16 CCITT checksum algorithm

NO
Set checksum type to basic summation checksum algorithm
(Default)

 Expected Results

After the firmware update the device should work as it did before, except the LED indication –
now the color used for advertisement indication is blue instead of green.

If there are more changes to the BLE_External_Memory_Bootloadable project, repeat all the
steps described for an OTA firmware update in the Project Description section.

BLE External Memory Bootloader and Bootloadable PSoC® Creator™ Example Project

Page 12 of 12

© Cypress Semiconductor Corporation, 2015. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	Development Kit Configuration
	Bootloader Project Configuration
	SCB
	Bootloader

	Bootloadable Project Configuration
	BLE
	SCB
	Bootloadable

	External Memory
	External Memory Interface
	Memory Map
	Metadata Section
	Application Section

	Functional Description
	Encryption
	Using UART for debugging
	Checksum type option
	Project options summary

	Expected Results

