
Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 10 of 123

Procedure

We will start this lab from a template project which already has all the components placed in the top
design and corresponding pins selected in the design wide resources (.cydwr) file. The main.c file in this
template project has the necessary firmware code to scan the button sensor, communicate with the tuner
and control the LED state.
In this lab, we will configure the necessary components in the template project. Then, we will use the
CapSense Tuner to tune the Finger capacitance parameter by choosing the maximum value for the
Finger capacitance that ensures at-least 5:1 SNR and also ensures a finger touch on the button changes
the sensor status to 1 i.e. ON.

Open the Template Project

1. Open a new instance of PSoC Creator 3.3 SP2. It is located in the All Programs -> Cypress ->
PSoC Creator 3.3 folder in the Windows start menu.

2. Open the template project by going to File -> Open -> Project/Workspace and browsing to the
path where Lab1.cywrk file is stored in the template Labs folder.

3. As Figure 10 shows, in the Workspace Explorer, double click on the TopDesign.cysch file to
open the schematic editor. The components placed in the template project and the functionality of
each of these components is listed in Table 2.

Figure 10. Opening Schematic Editor in the Project

Table 2. Lab1 Template Project Components

Component Instance Name Purpose

CapSense CapSense To scan the button sensor and check the sensor status

EZI2C Slave (SCB
mode)

EZI2C
To communicate with the CapSense Tuner to observe sensor data graphically, for tuning
purpose

Digital Output Pin Pin_LED To control the state of LED connected to this pin

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 11 of 123

Configure CapSense and EZI2C Components

4. Double-click the CapSense Component to open its Component Configuration Tool. Note, you can
also right-click the Component and select Configure….
As Figure 11 shows, in the Configure ‘CapSense_P4’ window that appears, add a Button sensor
by clicking on the + sign in the Type column and selecting Button.

Figure 11. Adding a Button Sensor in CapSense Component Basics Tab

5. Select the sensor parameters as Figure 12 shows. Leave parameters in all other tabs at their
default values and click OK to apply the changes and close the Component Configuration Tool.
Note: The rationale behind specifying the parameter values shown in Figure 12 is listed in Table 3 on
page 25 in the Appendix section.

Figure 12. CapSense Basic Tab Parameters

1 2 3

4

5

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 12 of 123

6. Double-click the EZI2C Component to open its Component Configuration Tool. As Figure 13 shows,
change the Sub-address size (bits) to 16 and click OK to apply the changes and close window.

Figure 13. EZI2C Component configuration

Select Sensor Pin

7. As Figure 14 shows, in the Workspace Explorer, double-click on the Lab1.cydwr file to open the
Pins tab in Lab1.cydwr window and select P0[1] for Button0.

Figure 14. Pin Assignment in Design Wide Resources

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 13 of 123

Implement Firmware

8. Go to the Workspace Explorer, and double click the main.c file to view the code. The firmware
code has already been added in the template project. Review this code to understand the typical
code flow for CapSense designs.

Build and Program

9. Click the menu item Debug -> Program as shown in Figure 15. Clicking program builds the project
(if there are any changes from previous build or if the project has not been built before) and then
programs your kit.

Figure 15. Programming a Project

Note. You may also see a pop-up window asking you to confirm which device to program. Simply choose
the KitProg2 (the PSoC 5-based programmer and debugger on the baseboard) and click Port Acquire,
see

Figure 16 on page 14. Then select the device and click Connect and OK, as Figure 17 on page 14
shows.

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 14 of 123

Figure 16. PSoC Creator “Select Debug Target” Window – Port Acquire

Figure 17. PSoC Creator “Select Debug Target” Window – Connect

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 15 of 123

Use CapSense Tuner to view sensor data

10. In the TopDesign.cysch file, right-click the CapSense component and select Launch Tuner as
Figure 18 shows. This will open the CapSense Tuner as Figure 19 shows.

Figure 18. Launching CapSense Tuner

Figure 19. CapSense Tuner Window

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 16 of 123

11. In the CapSense Tuner window, go to Tools -> Tuner Communication Setup… to open the Tuner
Communication Setup window, and click on the I2C port to set the parameters as Figure 20
shows. Note that the I2C address, Sub-address, and I2C speed selected in this window match the
parameters Primary slave address (7-bits), Sub-address size (bits), and Data rate (kbps) in the
EZI2C Component configuration window. Click OK, this closes the Tuner Communication Setup.

 Figure 20. Tuner Communication Setup

12. As Figure 21 shows, click on Connect in the CapSense Tuner window.

Figure 21. CapSense Tuner Window

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 17 of 123

13. The Bridge Status now shows as Connected as Figure 22 shows. Now click on Start as Figure 22
shows.

Figure 22. Starting tuning with CapSense Tuner

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 18 of 123

14. Notice that the Widget/Sensor Parameters get updated, see Figure 23. The SmartSense tuning
method automatically calculates the required Widget Hardware parameters and also continuously
calculates and updates the Widget Threshold parameters based on the Finger capacitance to be
sensed and the noise on raw counts. Even if you plan on using manual tuning this is a quick method
of determining initial parameters.

Figure 23. Widget Parameters Update in CapSense Tuner

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 19 of 123

15. As Figure 24 shows, select the Sync’d read option (a) and the Button0_Sns0 (b) and then go to the
Graph View (c). You will now be able to see the Raw counts and Baseline (d) for Button0_Sns0 in
the Sensor Data (e) window in graph view.

Note that enabling the Sync’d read enables synchronized data read from/to device, this ensures that
there is no noise seen in Tuner graphs due to asynchronous I2C data reads.

Also, enabling Sync’d read option is a must to be able to change the tunable CapSense parameters
from the tuner itself. Enable the Sync’d read so that the Finger Capacitance parameter is not greyed
out in the tuner.

Figure 24. Sensor Data in Graph View of CapSense Tuner

a

b

c

d

e

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 20 of 123

Coarsely tune the Finger Capacitance Parameter

16. As Figure 25 shows, touch the button on the kit. Check if the Status in CapSense Tuner changes
from ‘0’ to ‘1’ (see Figure 26). If status does not change to ‘1’, go to step 17 on page 21, else if the
status changes to ‘1’ on touch, skip to step 20 on page 22.

Figure 25. Touching the Button on the Kit

Figure 26: Sensor Data When Button is Touched

Status

changes to 1

Button

Touched

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 21 of 123

17. If the status does not change to ‘1’ on touch, click on widget, Button0(CSD) (a) and then Finger
capacitance (b), and chose the next lower value of Finger capacitance (c) from the available options
in the drop-down list as Figure 27 shows.

Figure 27: Choose Next Lower Value of Finger Capacitance from Drop-Down List

Current value

Next lower value

a

cb

18. Click on To Device as Figure 28 shows. This applies the updated Finger capacitance to the
device in the kit.

Figure 28: Apply Updated Parameters to Device

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 22 of 123

19. Touch the button again and check if the Status in CapSense Tuner changes from ‘0’ to ‘1’. If the
sensor status does not change to ‘1’ on button touch, keep repeating steps 17 to 19 (on page 21 to
22) i.e. keep decreasing the Finger capacitance to the next lower value and applying to the device
until the sensor status changes to ‘1’ on touch.

20. If the Status changes to ‘1’ on touch, switch to the SNR Measurement tab, select Button0_Sns0
sensor and then click on Acquire Noise as Figure 29 shows. Do not touch the sensor during noise
acquire period.

Figure 29. Noise Measurement Using CapSense Tuner

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 23 of 123

21. Once the noise is acquired, touch the button on the kit and then click on Acquire Signal. Ensure
that the button is touched for as long as the signal acquisition is in progress. You will now be able to
see the calculated Signal and SNR for this button as Figure 30 shows.

Figure 30. SNR Calculated by CapSense Tuner

22. If SNR > 5, click on To Project as Figure 31 shows. However, if SNR is less than 5, keep repeating
steps 17 to 21 (on page 21 to 23) i.e. keep decreasing the Finger capacitance to the next lower
value and applying to the device until both the following conditions become true:

a. Sensor status changes from ‘0’ to ‘1’ on touch, and
b. SNR > 5.

Figure 31. Apply Updated Settings to Project

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 24 of 123

23. Close the tuner by clicking on the x sign on the top right corner of the window, or click File -> Exit.
24. Notice the * sign on the TopDesign file, indicating that the file has been updated (see Figure 32).

Figure 32. TopDesign Gets Updated When To Project is Clicked on Tuner

25. Double-click the CapSense component to open the Configuration window. If a change has been made
to the finger capacitance parameter by the tuner, a merge tuner Configuration window will open
as Figure 33 shows. Click Yes to accept the changes and click OK to close the component
configuration window.
Note that if Finger capacitance parameter has not been updated in tuner, merge tuner
Configuration window will not open, just click OK and close the component configuration window
in this case.

Figure 33. Accepting Tuner Modified Parameters in CapSense Component

Lab#1: My First Self-Capacitance Based Touch
Button Design

Document No. 002-XXXXX Rev. ** Page 25 of 123

Build and program the project again and test

26. Build and Program the Lab1 template project onto the kit by clicking on the menu item Debug ->
Program.

27. Touch the button and observe that the LED glows when the button is touched.

Appendix

Table 3. Rationale Behind Recommended Settings for CapSense Basic Tab Parameters

Parameter Value Rationale

Name Button0 We can give this sensor any relevant name. For this lab, we have retained the default name.

Sensing mode CSD (Self-cap)
CSD (Self-Cap) is chosen for self-capacitance based touch sensing. Mutual-capacitance
based sensing is explored in a later lab.

Sensing element(s) 1

Here, we specify the number of sensors in this widget. Since we want to sense touch on only
one sensor, we have specified this value as 1.

Note that his option is useful in applications where there are multiple sensors that are
identical, that is, have the same CP and sensor area. The SmartSense method will tune all
the sensors under a single widget for same finger Capacitance. Having multiple sensors
under a single widget saves processing time and reduces memory footprint.

CSD tuning mode
SmartSense (Full
Auto-Tune)

We use SmartSense (Full Auto-Tune) to allow the component to automatically tune all of
the CapSense hardware and software parameters, based on the specified Finger
Capacitance value.

Finger capacitance
Highest value from
drop-down

Use the highest value for the initial setting. We will tune this number to the correct value later
in section Coarsely tune the Finger Capacitance Parameter, based on the button’s response
to finger touch.

