

 www.cypress.com Document No. 001-73854 Rev. *I 1

AN73854
PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

Author: Mark Ainsworth
Associated Part Family: All PSoC 3, PSoC 4, and PSoC 5LP

Related Application Notes: For a complete list, click here.
To get the latest version of this application note, please visit http://www.cypress.com/AN73854.

AN73854 gives a brief introduction to bootloader theory and technology. It then shows how bootloaders are quickly
and easily implemented in PSoC® 3, PSoC 4, and PSoC 5LP MCUs, using PSoC Creator™. Topics include
bootloader system description, features, and customization.

Contents
1 Introduction ... 2
2 PSoC Resources .. 3
3 PSoC Creator ... 3
4 What is a Bootloader? .. 4

4.1 Terms and Definitions 4
4.2 Using a Bootloader .. 5
4.3 Bootloader Function Flow 5

5 General Bootloader Design Considerations 6
5.1 Bootloader Alternatives 6
5.2 Memory Use and Modular Configuration 6
5.3 Bootloader - Host Timing 7
5.4 Communication Port .. 7
5.5 Recovering from Failures 7
5.6 Future-Proofing .. 8
5.7 Customization .. 8

6 PSoC Bootloader – How It Works 9
6.1 PSoC Creator Bootloader Projects 9
6.2 Bootloader Options .. 10
6.3 Communication Component 10
6.4 Recovering from Failures 10
6.5 Backward Compatibility 10
6.6 Bootloader Memory Usage 10
6.7 Flash Protection ... 11
6.8 Customization .. 11

7 Add a Bootloader to Your PSoC Creator Project 12

7.1 Building a Bootloader..................................... 12
7.2 Adding Bootloadable Applications 16
7.3 Debugging Bootloadable Projects 17
7.4 Customizing Your Bootloader 18
7.5 Calling the Bootloader 19

8 Loading Your Projects into PSoC 19
8.1 Project Files ... 19
8.2 Use Cases ... 20

9 Dual-Application Bootloader Considerations 21
9.1 Application Launch Process 23

10 Summary .. 24
11 Related Application Notes 24
A Appendix A – Bootloader and Device Reset........... 25

A.1 Why is Device Reset Needed? 25
A.2 Effect on Device I/O Pins 25
A.3 Effect on Other Functions 27
A.4 Example: Fan Control 27

Document History .. 28
Worldwide Sales and Design Support 29
Products .. 29
PSoC® Solutions ... 29
Cypress Developer Community....................................... 29
Technical Support ... 29

http://www.cypress.com/
http://www.cypress.com/AN73854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 2

1 Introduction
This application note gives an overview of bootloader fundamentals and design principles, and then shows how they
are implemented for PSoC 3, PSoC 4, and PSoC 5LP in PSoC Creator projects.

If you are new to bootloaders in general, see the basic concepts and design principles explained in the sections What
is a Bootloader? and General Bootloader Design Considerations.

If you are familiar with bootloaders and want to see how they are implemented for PSoC 3, PSoC 4, and PSoC 5LP
devices using PSoC Creator, see the section PSoC Bootloader – How It Works.

To get an overview of adding a bootloader to your PSoC Creator project, see the section Add a Bootloader to Your
PSoC Creator Project.

For a list of bootloader application notes related to I2C, UART, SPI, and USB, refer to the section Related Application
Notes. Each of the bootloader application notes listed in this section has associated code examples.

You can also access bootloader-related example projects from PSoC Creator using the menu option, File > Example
Project. Search for “bootloader” in the pop-up window to filter the projects related to bootloader.

Click here for a complete list of PSoC 3, PSoC 4, and PSoC 5LP code examples.

Note: Beginning with PSoC Creator 2.1, the bootloader system has been reorganized to provide more configuration
options. In previous releases, the bootloader system was part of the cy_boot Component (a required Component that
is automatically and invisibly instantiated in all designs). Now, bootloader functions are available as separate
Components. To migrate older versions of bootloader projects to PSoC Creator 2.1 SP1 or later, see Chapter 11 in
the System Reference Guide (Help > Documentation > System Reference).

http://www.cypress.com/
http://www.cypress.com/?rid=101641&source=an73854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 3

2 PSoC Resources
Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design
and quickly and effectively integrate the device into your design. For a comprehensive list of resources, see
KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. The following is an abbreviated list for PSoC x:

 Overview: PSoC Portfolio, PSoC Roadmap

 Product Selectors: PSoC 1, PSoC 3, PSoC 4,
or PSoC 5LP. In addition, PSoC Creator
includes a device selection tool.

 Datasheets describe and provide electrical
specifications for the PSoC 3, PSoC 4, and
PSoC 5LP device families.

 Application Notes and Code Examples cover
a broad range of topics, from basic to advanced
level. Many of the application notes include code
examples.

 Technical Reference Manuals (TRM) provide
detailed descriptions of the architecture and
registers in each of the PSoC 3, PSoC 4, and
PSoC 5LP device families.

 Development Kits:

 CY8CKIT-001 is a common development
platform for all PSoC family devices.

 CY8CKIT-030 and CY8CKIT-050 are designed
for analog performance. They enable you to
evaluate, develop, and prototype high-precision
analog, low-power, and low-voltage applications
powered by PSoC 3 and PSoC 5LP, respectively.

 CY8CKIT-046, CY8CKIT-044, CY8CKIT-042 and
CY8CKIT-040, PSoC 4 Pioneer kits, are easy-to-
use and inexpensive development platforms.
These kits include connectors for Arduino™
compatible shields and Digilent® Pmod™
daughter cards.

 The MiniProg3 device provides an interface for
flash programming and debug.

3 PSoC Creator
PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and
firmware design of systems based on PSoC 3, PSoC 4, and PSoC 5LP. See Figure 1 – with PSoC Creator, you can:
1. Drag and drop Components to build your

hardware system design in the main design
workspace

2. Codesign your application firmware with the
PSoC hardware

3. Configure Components using configuration tools
4. Explore the library of 100+ Components
5. Review Component datasheets

Figure 1. PSoC Creator Features

http://www.cypress.com/
http://www.cypress.com/
http://www.cypress.com/?id=4&rID=77024&source=an73854
http://www.cypress.com/?id=4&rID=77024&source=an73854
http://www.cypress.com/?id=4&rID=77024&source=an73854
http://www.cypress.com/psoc
http://www.cypress.com/?rid=95697&source=an73854
http://www.cypress.com/?id=1573&source=an73854
http://www.cypress.com/?id=5041&source=an73854
http://www.cypress.com/?id=4976&source=an73854
http://www.cypress.com/?id=5044&source=an73854
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=5301&id=2232&id=4749&id=5284&id=4562&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&rtID=113&id=5301&id=2232&id=4749&id=5284&id=2233&id=4562&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=5301&id=2232&id=4749&id=5284&id=4562&applicationID=0&l=0
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=110&id=5301&id=2232&id=4749&id=5284&id=2233&id=4562&applicationID=0&l=0
http://www.cypress.com/go/cy8ckit-001
http://www.cypress.com/?rID=49524&source=an73854
http://www.cypress.com/?rID=51577&source=an73854
http://www.cypress.com/CY8CKIT-046&source=an73854
http://www.cypress.com/?rID=108008&source=an73854
http://www.cypress.com/?rID=77780&source=an73854
http://www.cypress.com/?rID=94456&source=an73854
http://www.cypress.com/go/cy8ckit-002
http://www.cypress.com/psoccreator/?source=an73854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 4

4 What is a Bootloader?
Bootloaders are a common part of MCU system design. A bootloader makes it possible for a product's firmware to be
updated in the field. In a typical product, firmware is embedded in an MCU’s flash memory. The MCU is mounted on
a PCB and embedded in a product, as Figure 2 shows.

Figure 2. Bootloader Data Flow Block Diagram

Your Product

Circuit Board

MCU

Flash
Memory

CPU

I2C

Connection to
outside world

Bootloader
data flow

At the factory, initial programming of firmware into a product is typically done through the MCU’s Joint Test Action
Group (JTAG) or Serial Wire Debugger (SWD) interface. However, these interfaces are usually not available in the
field – it can be difficult and expensive to open up the product and directly access the PCB. A better method is to use
an existing connection between the product and the outside world. The connection may be a standard port such as
I2C, USB, or UART, or it may be a custom proprietary protocol.

4.1 Terms and Definitions
Figure 2 shows that the product’s embedded firmware must be able to use the communication port for two different
purposes – normal operation and updating flash. That portion of the embedded firmware that knows how to update
the flash is called a bootloader, as Figure 3 shows.

Figure 3. Bootloader System

Target
MCU

Flash
Memory

Bootloader

Application

HostCommunication
Channel

Application
File

Typically, the system that provides the data to update the flash is called the host, and the system being updated is
called the target. The host can be an external PC or another MCU on the same PCB as the target. The act of
transferring data from the host to the target flash is called bootloading, or a bootload operation, or just bootload
for short. The data that is placed in flash is called the application or bootloadable.

Another common term for bootloading is in-system programming (ISP). Cypress has a product with a similar name
called In-System Serial Programmer (ISSP) and an operation called Host-Sourced Serial Programming (HSSP). For
more information, see HSSP on page 6.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 5

4.2 Using a Bootloader
A communication port is typically shared between the bootloader and the application. The first step to use a
bootloader is to manipulate the product so that the bootloader, and not the application, is executing.

Once the bootloader is running, the host can send a “start bootload” command over the communication channel. If
the bootloader sends an “OK” response, bootloading can begin.

During bootloading, the host reads the file for the new application, parses it into flash write commands, and sends
those commands to the bootloader. After the entire file is sent, the bootloader can pass control to the new application.

4.3 Bootloader Function Flow
A bootloader typically executes first at reset (see
Memory Use and Modular Configuration on page 6).
It can then perform the following actions:

 Check the application’s validity before letting it
run

 Manage the timing to start host communication

 Do the bootload / flash update operation

 And finally, pass control to the application

Figure 4 is a flow diagram that shows how this
works.

Note: PSoC Creator supports a dual-application
option, where the “Go to application” function in
Figure 4 operates in a more complex fashion. For
more information, see Application Launch Process.

Figure 4. Bootloader Function Flow

Reset

Bootloader
valid in flash?

Go to application

Application
valid in flash?

Wait for
new application

from host?

Wait forever?

Host comm.
start?

Timeout?

Receive new
application from

host,
install in flash,

overwriting
existing

application

Host comm.
start?

Halt execution
No

Yes

No

No

No

Yes

No

Yes

Yes

Yes

Yes

No

No

Yes

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 6

5 General Bootloader Design Considerations
There are many considerations to keep in mind when designing a bootloader system. In this section, we will look at
some of them.

5.1 Bootloader Alternatives
As mentioned previously, a bootloader makes it possible for a product's firmware to be updated in the field.

There are other ways to solve this problem. For example, a flash update function can be coded within the application
itself. However, the application must then be able to overwrite part or all of itself, which adds complexity. It is a better
design practice to break the bootloader out as a separate module or program.

5.1.1 HSSP
Another alternative to having a bootloader is to use Host-Sourced Serial Programming (HSSP). In this method, the
MCU’s JTAG or SWD pins are directly manipulated by an external host to program a new application into flash. The
Cypress CY8CKIT-002 MiniProg3 and other programmers use this method.

Although HSSP is commonly used during development and for factory-based programming, it is not usually used in
the field. The most frequent use of HSSP in the field is on PCBs with multiple MCUs, where one MCU may directly
program another MCU.

For details on accessing the PSoC JTAG/SWD pins, see the following:

 AN61290, PSoC 3 and PSoC 5LP Hardware Design Considerations

 AN88619, PSoC 4 Hardware Design Considerations

 PSoC 3 Programming Specifications

 PSoC 4 Programming Specifications

 PSoC 5LP Programming Specifications

For more information on HSSP, see the following:

 AN73054, PSoC 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP)

 AN84858, PSoC 4 Programming Using an External Microcontroller (HSSP)

5.2 Memory Use and Modular Configuration
As noted previously, the bootloader code should be separate from application code – frequently they are designed as
completely separate modules. Given that both modules must reside in flash, where should the bootloader code
reside? Some MCUs contain a hard-coded bootload read-only memory (ROM) that is separate from flash, as Figure 5
shows. Other MCUs use a part of flash for the bootloader, as Figure 6 shows.

Figure 5. Bootloader in Separate ROM Memory

Address 0

Application
code

Bootloader

 Flash memory

ROM memory

Figure 6. Bootloader in Flash Memory

Address 0

Application
code

Bootloader

 Flash memory

http://www.cypress.com/
http://www.cypress.com/?rID=38154&source=an73854
http://www.cypress.com/?rID=43337&source=an73854
http://www.cypress.com/?rID=43337&source=an73854
http://www.cypress.com/?rID=44327&source=an73854
http://www.cypress.com/?app=search&searchType=advanced&keyword=Programming+Specifications&rtID=117&id=5301&id=4749&id=5284&applicationID=0&l=0
http://www.cypress.com/?rid=72883&source=an73854
http://www.cypress.com/?rID=57435&source=an73854
http://www.cypress.com/?rID=81013

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 7

The ROM method lets the application use all of flash, while the flash method allows a flexible bootloader design. The
flash method is generally preferred. The bootloader is usually placed in flash starting at address 0. Because most
CPUs start executing code at address 0, the bootloader runs first at device reset.

One potential problem with the flash method is that the bootloader uses memory that could otherwise be used by the
application. This may impact application design, or cost if an MCU with more memory must be used. Thus, for the
flash method, bootloaders should be designed to be as small as possible. To reduce size, keep the requirements and
design simple; see Bootloader Memory Usage on page 10. Keeping the bootloader small may become difficult if
additional features must be included; see Customization on page 8.

5.3 Bootloader - Host Timing
An important consideration in bootloader design is the timing to begin communication with the host. As Figure 4
shows, after determining that the application is valid, the bootloader can wait for a certain amount of time for the host
to start a new bootload operation.

The wait time typically ranges from 50 to 500 msec. If the wait time is too short, the host may not be able to reliably
start the communication. If it is too long, your product’s overall startup time may be too long.

Another solution to the timing problem is to let the application call the bootloader. Then, the application can respond
to some external event, such as a button press or a message from the host, and start the bootload operation.

5.4 Communication Port
In most cases, the specifications of the communication port shown in Figure 3 are set with regard to the overall
product requirements. In addition to those requirements, for robust support of a bootloader system, the port should be
able to do the following:

 Packet-based data transfers. The port should not parse the packets; the bootloader and host should do that.

 Packet error detection. The port should be able to detect and report packets with invalid data. The rest of the
system should be able to handle invalid packet reports.

 Command-response protocol. Usually, the host sends a command packet to the bootloader and then waits for a
success / fail / status response packet.

 Medium-speed transfers. Because it can take several milliseconds to write a single row of flash, having a high-
speed port may not significantly improve overall bootload time.

 Transfers that can take place while flash is being written. This enables a row of data to be downloaded while the
previous row is being written to flash.

Of all the commonly available protocols in embedded systems, USB supports these features best, although USB
code can use a large amount of flash. UART, I2C, and SPI are simpler but may require extra code for packet
management. Note that I2C is controlled solely by the master side (usually the host), which makes a command-
response protocol more difficult to implement.

5.5 Recovering from Failures
A bootloader should be able to detect, report, and gracefully handle errors that occur during the bootload operation,
such as power failure, loss of communication, and flash write error.

This is frequently done by storing in flash some check bits (checksum or CRC) for the application. When the bootload
operation is started, the bits are cleared. If the application is downloaded and installed successfully, the bits are
updated. If, for example, a power failure occurs during bootloading, at reset the bootloader detects invalid check bits
and does not pass control to a partially loaded application. Instead, it waits for the host to start another bootload
operation.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 8

5.6 Future-Proofing
Another design consideration is that, after installation, a bootloader should never need to be updated in the field. It is
possible to make a bootloader that can overwrite or update itself in the field, but it is complex and best avoided. The
key to making a bootloader robust and future-proof is to keep the requirements and design simple. To avoid defects,
use coding best practices and thorough code reviews.

Because the bootloader and application are separate modules, you can use different compilers or even different
development systems to build them. Because tools such as compilers may change between versions, make sure that
the mechanism to transfer control between the two modules remains constant. Also, as you upgrade your
development tools over time, make sure that an old bootloader can still load new applications.

5.6.1 Appl icat ion Management
Because the bootloader and the application are separate modules, and the application can change, you must
consider how best to transfer control from the bootloader to the application. Some of the methods to do this are as
follows:

 Jump to a fixed location where the application will always start. This method is simple but may be less flexible for
future changes to the bootloader or application.

 Maintain the application start address in a common area of flash. The bootloader then uses that location as a
pointer to the application start address.

 Link the application to a bootloader in a common development system, so that the bootloader has a symbolic
address to jump to.

The second method has the best combination of simplicity and flexibility, and is usually the preferred solution.

5.6.2 Flash Protect ion
A bootloader should be able to check its own image in flash memory to see if it is valid. If it is not valid, it must stop
executing. Unfortunately, this makes the product unusable.

The best way to keep the bootloader valid in flash is to use the hardware to make sure that the bootloader is never
overwritten by firmware. One way to do this is to use flash write protection circuits that prevent accidental overwrites
of bootloader flash. See Flash Protection on page 8 for PSoC implementation details.

5.7 Customization
Bootloaders should be designed such that they are easy to modify for different product applications. For example, a
bootloader system should be able to easily use different communication ports, even multiple communication ports.

Also, a bootloader system may need to operate in a high-reliability product, which has three main aspects:

 There may be a need to preserve important pin states during the transition from the bootloader to the application.
This can be a problem if the transition is done through a device reset. See Appendix A for details.

 Important tasks may need to be done at the same time as bootloading. Extra code may need to be added to the
bootloader to enable a multitasking system. See Customization on page 11.

 Multiple (typically, two) application images are stored in flash. If one becomes corrupted in flash, the bootloader
can pass control to the other image, reducing your product’s mean time between failure (MTBF). PSoC Creator
supports dual-image bootloaders.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 9

6 PSoC Bootloader – How It Works
In the previous sections, we looked at general bootloader functions and design considerations. Now let us see how
these principles are put into practice in PSoC 3, PSoC 4, and PSoC 5LP, using the PSoC Creator integrated design
environment (IDE).

PSoC devices have memory and configurable peripheral hardware that make it possible to create highly capable and
flexible bootloader systems. Development is done using PSoC Creator, a free IDE provided by Cypress that is used
to build PSoC-based solutions. For information on PSoC devices, see:

 AN54181, Getting Started with PSoC 3

 AN79953, Getting Started with PSoC 4

 AN77759, Getting Started with PSoC 5LP

For information on PSoC Creator, see the PSoC Creator home page.

Note: The PSoC 3, PSoC 4, and PSoC 5LP implementation of a bootloader system is different from that for PSoC 1.
For more information on PSoC 1 bootloaders, see AN2100, Bootloader: PSoC 1.

As with all Cypress PSoC products and support IDEs, PSoC Creator attempts to reduce your design time by
automating implementation of basic system functions. The bootloader is no exception – it can literally take just
minutes to add a simple I2C bootloader to your project. For information on how to do this, see Add a Bootloader to
Your PSoC Creator Project.

6.1 PSoC Creator Bootloader Projects
PSoC Creator uses the term “project” to define a complete, self-contained application. In addition to the CPU code, a
project has data bytes that are used to configure the PSoC device’s analog and digital peripherals for your
application.

It is important to remember that with PSoC Creator, bootloaders and applications are implemented in completely
separate projects. Available project types are: Standard (or “normal,” no bootloader), Bootloader, and
Bootloadable. A fourth project type, Dual-App Bootloader, supports dual application images for high-reliability
applications as described in Customization. You can easily change a project type, for example, from standard to
bootloadable.

You must associate a bootloadable project with a bootloader project. A bootloader project can be associated with
multiple bootloadable projects.

Because PSoC has no bootload ROM, the bootloader is placed in flash, as Figure 7 shows. A bootloader project is
placed in flash starting at address zero, and is executed first at device reset. It then implements the program flow
shown in Figure 4.

Figure 7. PSoC Creator Projects and Flash Memory Usage

Flash
memory

Address 0

Standard
project

Dual-app
bootloader

project

Bootloadable
project #1

Bootloadable
project #2

Flash
memory

Bootloader
project

Bootloadable
project

http://www.cypress.com/
http://www.cypress.com/?rID=39157&source=an83854
http://www.cypress.com/?rID=78695&source=an83854
http://www.cypress.com/?rID=60890&source=an83854
http://www.cypress.com/psoccreator
http://www.cypress.com/?rID=2652&source=an83854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 10

6.2 Bootloader Options
PSoC Creator provides a Bootloader Component, which has configuration options to set the run-time behavior of the
bootloader. Some of the options are:

 Wait for Command: Yes or no to wait for a command from the host before passing control to the bootloadable.

 Wait for Command Time: Timeout from 1 to 2550 msec, or wait forever. Valid only if Wait for Command is Yes.

 Communication Component: The communication Component that the bootloader uses. The PSoC Creator
bootloader supports many types of communication ports, including a custom option.

 Checksum Type: Type of check bits to use with packets to and from the host: checksum or CRC.

For more information, see Figure 11 on page 14 as well as the Bootloader Component datasheet.

6.3 Communication Component
A PSoC Creator bootloader project must include at least one bootloader-compatible communication Component.
Currently, the I2C Slave, UART, SPI, and USBFS Components are supported for the bootloader as standard .

If you want to use a nonstandard communication channel for bootloading, you can easily create a custom
Component. You must write an API for the Component that supports just five functions: Start, Stop, Reset, Read, and
Write. For more information on how to create a bootloader custom communication Component, see the PSoC Creator
Component Author Guide.

6.4 Recovering from Failures
The PSoC Creator Bootloader Component uses the top (64-, 128-, or 256-byte) row of flash to store data on the
application (or both applications for the dual-app option). This data includes checksums and other validity bits for
each application. When a bootload starts, these bits are cleared. They are recalculated and updated when the
bootload successfully completes.

If power fails or communication is lost during the bootload operation, the checksum of the bootloadable project will be
incorrect at the next device reset. The bootloader then waits for another command from the host to start another
bootload operation.

6.5 Backward Compatibility
PSoC Creator is designed such that bootloadable projects built with new versions can be linked to and are
compatible with bootloaders built with older versions.

6.6 Bootloader Memory Usage
As noted previously, a PSoC Creator bootloader uses memory that could otherwise be used by an application. This
may impact application design, or cost, and thus bootloader memory usage is an important specification. The PSoC
Creator Bootloader Component memory usage varies significantly, depending on the following:

 Communication Component used

 Bootloader Component configuration options selected (see Figure 11 on page 14)

 Target device – PSoC 3, PSoC 4, and PSoC 5LP have 8051, Cortex-M0, and Cortex-M3 CPUs, respectively

 Compiler and its optimization settings

For details, see the specifications listed in the Bootloader Component datasheet. For a specific bootloader project,
after building the project, check the .map file generated by the compiler to determine the exact memory usage.

http://www.cypress.com/
http://www.cypress.com/?rID=71586&source=an73854
http://www.cypress.com/?rID=49025&source=an73854
http://www.cypress.com/?rID=49025&source=an73854
http://www.cypress.com/?rID=71586&source=an73854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 11

6.7 Flash Protection
All PSoC 3, PSoC 4, and PSoC 5LP devices include a flexible flash-protection system that controls access to the
flash memory. This feature is designed to secure the proprietary code, but it can also be used to protect against
inadvertent writes to the bootloader portion of the flash memory.

The flash memory is organized in rows of 64 to 256 bytes, depending on the device family. You can assign one of the
four protection levels (two levels for PSoC 4) to each row; see Table 1. Flash protection levels can only be changed
by performing a complete flash erase. For more information on PSoC flash and security features, see a device data
sheet or Technical Reference Manual (TRM).

Table 1. Flash Protection Levels

 PSoC 3 and PSoC 5LP PSoC 4

Protection Setting Allowed Not Allowed Allowed Not allowed

Unprotected External read and write,
Internal read and write

– External read and
write,
Internal read and
write

–

Factory Upgrade External write,
Internal read and write

External read NA NA

Field Upgrade Internal read and write External read and write NA NA

Full Protection Internal read External read and write,
Internal write

Internal read External write,
Internal write (see
Note below)

Note: To protect the PSoC 4 device from external read operations, you must change the device protection settings to
“Protected” in PSoC Creator .cydwr system settings and use the PSoC Programmer software to program the device.
You must also enable “Chip Lock” from Options > Programmer Options before programming the device for these
settings to take effect.

To protect the bootloader portion of flash, set the corresponding rows to “full protection”. PSoC Creator lets you easily
select the protection setting for each row. For more information, see the PSoC Creator help or one of the advanced
bootloader application notes listed in Related Application Notes.

6.8 Customization
A bootloader is a PSoC Creator project and, similar to any other PSoC Creator project, enables PSoC to be
configured for any application. This, in turn, makes it easy to customize a bootloader, especially for high-reliability
applications:

 Other tasks during bootloading: Components can be added to the bootloader project schematic; in many cases,
these Components can perform complex tasks without the use of the CPU.
If you do need to use the CPU to perform another task while bootloading, the easiest way to do so is to structure
the task as a state machine, embedded in a periodic interrupt handler. This way, the bootloader and the
secondary task can operate as independent processes.

 Preserve pin states: Pin Components can be placed on the schematic and their states set for both device reset
and bootloader startup. For more information on controlling pin states, see AN61290, PSoC 3 and PSoC 5LP
Hardware Design Considerations, or AN88619, PSoC 4 Hardware Design Considerations. See also Appendix A.

http://www.cypress.com/
http://www.cypress.com/?rID=43337&source=an73854
http://www.cypress.com/?rID=43337&source=an73854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 12

7 Add a Bootloader to Your PSoC Creator Project
Now that we have seen how bootloaders are implemented in PSoC Creator, let us look at some practical steps for
doing so. For more details, see one of the advanced bootloader application notes listed in Related Application Notes.

7.1 Building a Bootloader
With other MCUs, you usually add a bootloader to an application. However, with PSoC Creator, the best practice is to
design in the opposite direction – first, create a bootloader project and then create one or more bootloadable projects.

To create a bootloader project, simply create a project of type Bootloader or Multi-App Bootloader, as Figure 8
shows. Note that in the example, the project name “BootLdr” is different from the workspace name “MyWork” – a
PSoC Creator workspace can contain multiple projects of different types.

Note: Beginning with PSoC Creator 3.2, the “Application Type” option is removed from the New Project dialog box.
PSoC Creator automatically recognizes the application type from the TopDesign schematic. This update does not
affect existing bootloader projects.

Note: Beginning with PSoC Creator 3.3, the New Project dialog box has changed, and you are not required to select
the Application Type option.

Figure 8. Creating a Bootloader Project in PSoC Creator 3.1 or earlier

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 13

After a project is created, drag onto the project schematic a Bootloader Component and the communication
Component to be used for bootloading. As Figure 9 shows, the Bootloader and Bootloadable Components are
available under the System tab in the Component Catalog window. Figure 10 shows a bootloader project schematic
with a Bootloader Component and an I2C communication Component for bootloading.

Figure 9. Component Catalog Window

Figure 10. Bootloader Project Schematic

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 14

Then, configure the Bootloader Component, as Figure 11 shows. Note the menu to select the communication
Component in Figure 11 – this is the Component that is used to communicate with the host. A bootloader project
must have this Component defined and selected. You can select from all of the bootloader-compatible
communication Components that you have on your schematic or you can select Custom_Interface and define your
own.

Figure 11. Bootloader Component Configuration

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 15

Finally, in the design-wide resources (DWR) window, finish the project by connecting schematic pins to physical pins,
as Figure 12 shows.

Figure 12. Bootloader Project Pin Assignments

Build the project. Everything else is done for you, and the result is a basic bootloader project. The auto-generated
main.c file has just one line of code, to call the bootloader start function, as Figure 13 shows.

Figure 13. Bootloader Default main.c

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 16

7.2 Adding Bootloadable Applications
After the bootloader is created, you can define as many bootloadable applications, that is, projects, as you want,
using the Bootloadable option shown in Figure 8 on page 12. You can also change an existing Normal project to
type Bootloadable; see page 17 for details.

A bootloadable project must have on its schematic a Bootloadable Component (see Figure 9 on page 13). The
project must also be associated with a bootloader project, as Figure 14 shows. To do so, select the location of the
bootloader’s .hex and .elf file in the Bootloadable Component configuration dialog; see Project Files on page 19 for
details.

Figure 14. Bootloadable / Bootloader Projects Link

A PSoC Creator workspace can have multiple projects. In many cases, a bootloader project exists in the same
workspace as its associated bootloadables. However, bootloaders and bootloadables can exist in separate
workspaces and separate locations on your PC. Before getting started with PSoC, it is a good idea to work out a
workspaces / projects plan for your overall system development needs.

Note: Flash protection settings for a bootloadable project are ignored; the associated bootloader project’s flash
protection settings take precedence.

Note: For PSoC Creator versions before 3.0, if the bootloader is updated, you must also rebuild all bootloadable
projects that depend on that bootloader project. Use the “Clean and Build” option.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 17

7.3 Debugging Bootloadable Projects
In the PSoC Creator bootloader system, the bootloader project executes first and then the bootloadable project. The
jump from the bootloader to the bootloadable project is done through a software-controlled device reset; see
Appendix A for details. This resets the debugger interface, which means that the bootloadable project cannot be run
in debugger mode.

To debug a bootloadable project, convert it to Application Type Normal (Figure 15), debug it, and then convert it back
to Bootloadable after debugging is done.

Another option is to program the Bootloadable project .hex file onto the device and then use the Attach to running
target option for debugging while the bootloadable project is running. In this case, you can debug the bootloadable
project only from the point where debugger is attached to the device.

7.3.1 Convert ing a Normal Appl icat ion Project to a Bootloadable Project
If you have already created a standard (Normal) project and want to convert it to a bootloadable project, you can
change the Application Type of the project to Bootloadable, as Figure 15 shows.

Figure 15. Changing Application Type to Bootloadable

After changing the application type, you must add a Bootloadable Component to the project schematic, and add a
bootloader project's .hex file as a dependency, as Figure 14 shows.

Note: Beginning with PSoC Creator 3.2, the “Application Type” option is removed from the Build Settings dialog box.
PSoC Creator automatically recognizes the application type from the components in the TopDesign schematic. If a
bootloadable Component is present in the TopDesign schematic, the PSoC Creator considers the project as a
bootloadable project.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 18

7.4 Customizing Your Bootloader
As mentioned in Customization on
page 8, you can customize your
bootloader by dragging additional
Components onto your schematic and
adding code to main.c. As a simple
example, you can add a PWM, a
Clock, and a Pin Component to blink
an LED as a “bootloading” indicator, as
Figure 16 and Figure 17 show. You
can easily configure the Components
to make the LED blink at any desired
frequency and duty cycle.

Note that the PSoC configuration for
the bootloader project exists only until
the bootloader transfers control to the
bootloadable. The PSoC device is then
reconfigured for the bootloadable
project. If you want the same
functionality in both projects, you can
place the same Components and code
in both projects.

Figure 16. Bootloader Project Customization

Figure 17. Bootloader Customization in main.c

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 19

7.5 Calling the Bootloader
As mentioned in Bootloader - Host Timing, you can avoid bootloader initial timing issues by having the application call
the bootloader. Then, the application can respond to some external event, such as a button press or a message from
the host, and start a bootload operation.

The Bootloader Component has an application program interface (API) with a public function Bootloader_Start(). Call
this function to start a bootload operation from bootloadable project code.

Bootloader_Start() does a software reset of the device, and the bootloader takes over the CPU. Resources and
peripherals are reconfigured for the bootloader; the bootloadable configuration is disabled. Bootloadable project code,
including interrupt handlers, is no longer executed. When the bootload operation is complete, the CPU is reset again.
See Appendix A for details.

8 Loading Your Projects into PSoC
Similar to standard projects, a bootloader project can be installed in a target PSoC device only through JTAG or
SWD, using PSoC Creator or PSoC Programmer. After a bootloader is installed and active, bootloadable projects can
be installed by a bootload operation instead of through JTAG or SWD.

PSoC Creator includes a PC program called Bootloader Host, which does the PC side of a bootload operation. It
communicates with the bootloader in a target PSoC, either directly through a USB port or through an I2C port, by use
of a programmer such as the CY8CKIT-002 MiniProg3 kit. To use Bootloader Host, you need to know about the
output files generated for bootloader and bootloadable projects.

8.1 Project Files
Once built, all PSoC Creator projects produce .hex files as outputs. These files can be used with any HSSP
programmer device, including MiniProg3. Hex files contain bytes for both CPU code and project configuration.

For normal and bootloader projects, the .hex file contains code and data bytes for just that project. Bootloadable .hex
files are different in that they contain code and data bytes for the bootloadable and the associated bootloader
project – both projects are programmed in at the same time.

Bootloadable projects are also different from normal projects in that they produce a second file, of type .cyacd, as an
output, as Figure 18 shows. The .cyacd file contains code and data for just the bootloadable project, without the
associated bootloader. It is intended to be used by a bootloader host program, and downloaded to a target PSoC that
has the associated bootloader project already installed.

Figure 18. Bootloadable Project Files

http://www.cypress.com/
http://www.cypress.com/?rID=38154&source=an73854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 20

8.2 Use Cases
After the projects are built and the output files created, you typically use one of the following scenarios (see also
Figure 4 on page 5):
1. Create and build a bootloader project. Program its .hex file into the target PSoC using an HSSP programmer

such as MiniProg3.
2. Reset the target PSoC to start the bootloader. Because the bootloader is the only project in flash, it waits forever

for bootload commands from the host.
3. Create a bootloadable project, associate it with the bootloader project, and build it. Download its .cyacd file to the

target using a host program and the previously installed bootloader.

For subsequent bootload operations, note that because a valid bootloadable exists in flash, the bootloader waits for
the host for only a short period of time before passing control to the bootloader.

In a factory production scenario, you can do the following instead:
1. Create and build a bootloader project.
2. Create a bootloadable project, associate it with the bootloader project, and build it. Program its .hex file (which

contains both bootloader and bootloadable) into the target PSoC device using an HSSP programmer such as
MiniProg3.

3. Reset the target PSoC device to start the bootloader. The bootloader sees a valid bootloadable in flash and, after
a possible timeout wait for bootload commands from the host, passes control to the bootloadable.

If in future you update the bootloadable, you can download its .cyacd file to the target using a host program. This
overwrites the previous version of the bootloadable.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 21

9 Dual-Application Bootloader Considerations
The PSoC Creator Bootloader and Bootloadable Components support dual application images for high-reliability
applications, as described in Customization. The PSoC Creator build process for a dual-application bootloader is
similar to that for single applications, but there are a few differences:
1. Select Multiple-application bootloader (see Figure 8) to create a dual-application bootloader project. This step

is not required for PSoC Creator 3.2 and later.
2. In the Bootloader Component configuration dialog, check the box Dual-application bootloader, as Figure 19

shows. In PSoC Creator 3.2 and earlier, this option is named Multi-Application bootloader.

Figure 19. Bootloader Component Configuration

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 22

3. Project Files: A dual-application bootloadable project has five output files, instead of the two files shown in Figure
18. These files allow placement of the bootloadable project as either application 1 or application 2, as Figure 20
shows. For a high-reliability application, you can place two copies of the same bootloadable project into flash.
You can also create two different bootloadable projects. You can then install one of them as the first application
and the other as the second application.

Figure 20. Dual-Application Bootloadable Project Files

Address 0

Dual-app
bootloader

project

Bootloadable
project #1

Bootloadable
project #2

As noted previously, .hex files are installed through the JTAG/SWD port, typically when a product is
manufactured. The .hex files contain the bootloader project as well as one or both of the bootloadable projects.
The .cyacd files are installed in the field, for example with a bootloader host program.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 23

9.1 Application Launch Process
One of the decisions that a dual-application bootloader must make is which (if any) application to “launch”, or transfer
control to. Each application has two characteristics that drive this decision:

 Active: As noted previously, the PSoC Creator Bootloader Component uses the top rows of flash to store data
on the applications (also known as “metadata”). This data includes an “active” bit. Only one of the applications
has its active bit set, and that is the application that is preferred for launching.

 Valid: Before launching, the bootloader tests each application against the check bytes in the metadata to
determine which, if any, of the applications are valid. The test may fail, for example, due to corrupted flash
memory or having no application installed in that flash. In this case, the application is “not valid”.

Table 2 shows the decision matrix that the bootloader uses to decide which application to launch. Note that some of
the cases, such as both applications being active, are illegal and should not happen under normal conditions.

Table 2. Application Launch Decision Matrix

 Application #1 Application #2

Case Active Valid Active Valid Bootloader Action

0 0 0 0 0 Stay in bootloader, wait forever for host

1 0 0 0 1 same as case #0

2 0 0 1 0 same as case #0

3 0 0 1 1 Go to Application #2

4 0 1 0 0 same as case #0

5 0 1 0 1 same as case #0

6 0 1 1 0 same as case #0

7 0 1 1 1 Go to Application #2

8 1 0 0 0 same as case #0

9 1 0 0 1 same as case #0

10 1 0 1 0 same as case #0

11 1 0 1 1 Go to Application #2

12 1 1 0 0 Go to Application #1

13 1 1 0 1 Go to Application #1

14 1 1 1 0 Go to Application #1

15 1 1 1 1 Go to Application #1

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 24

10 Summary
This application note has provided a basic overview of bootloaders – how they are used and important design
considerations. It has also shown how the PSoC Creator design environment addresses these considerations for
PSoC 3, PSoC 4, and PSoC 5LP devices.

You have also seen a basic overview of how to use PSoC Creator to quickly and easily add a bootloader to your
design. For application notes that cover these topics in more detail, see Related Application Notes.

11 Related Application Notes
Bootloader Appl icat ion Notes
All the bootloader application notes listed below have associated code examples on the Cypress webpage.

 AN60317, PSoC 3 and PSoC 5LP I2C Bootloader

 AN86526, PSoC 4 I2C Bootloader

 AN73503, USB HID Bootloader for PSoC 3 and PSoC 5LP

 AN68272, PSoC 3, PSoC 4, and PSoC 5LP UART Bootloader

 AN84401, PSoC 3 and PSoC 5LP SPI Bootloader

Other Related Appl icat ion Notes

 AN73054, PSoC 3 and PSoC 5LP Programming Using an External Microcontroller (HSSP)

 AN84858, PSoC 4 Programming Using an External Microcontroller (HSSP)

 AN61290, PSoC 3 and PSoC 5LP Hardware Design Considerations

 AN54181, Getting Started with PSoC 3

 AN79953, Getting Started with PSoC 4

 AN77759, Getting Started with PSoC 5LP

 AN2100, Bootloader: PSoC 1

About the Author
Name: Mark Ainsworth

Title: Applications Engineer Principal

Background: Mark has a BS in Computer Engineering from Syracuse University and an MSEE from University of
Washington, as well as many years experience designing and building embedded systems.

http://www.cypress.com/
http://www.cypress.com/?rID=41002&source=an73854
http://www.cypress.com/?rID=83293&source=an73854
http://www.cypress.com/?rID=57561&source=an73854
http://www.cypress.com/?rID=50230&source=an73854
http://www.cypress.com/?rID=78703
http://www.cypress.com/?rID=57435
http://www.cypress.com/?rID=81013
http://www.cypress.com/?rID=43337&source=an73854
http://www.cypress.com/?rID=39157&source=an73854
http://www.cypress.com/?rID=78695&source=an83854
http://www.cypress.com/?rID=60890&source=an73854
http://www.cypress.com/?rID=2652&source=an73854

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 25

A Appendix A – Bootloader and Device Reset
As noted elsewhere in this application note, transferring control from the bootloader to the bootloadable, or vice
versa, is always done through a device reset. This may be a consideration if your system must continue to perform
mission-critical functions while changing from one program to the other. This section details why reset must be used,
as well as its implications for device performance in your application.

A.1 Why is Device Reset Needed?
To understand why device reset is needed, it is important to note that the bootloader and bootloadable projects in
your system are each completely self-contained PSoC Creator projects. Each project has its own device configuration
settings. Thus, when you change from one project to the other, you can completely redefine the hardware functions of
the PSoC device.

To implement complex custom functions, device configuration can involve the setting of thousands of PSoC registers.
This is especially true for PSoC’s digital and analog routing features. When you configure the registers and routing,
you must make sure that, in addition to setting the bits for the new configuration, you reset the bits for the old
configuration. Otherwise, the new configuration may not work, and may even damage the device.

So when changing between bootloader and bootloadable projects, a device software reset (SRES) is done. This
causes all PSoC registers to be reset to their default states. Configuration for the new project can then begin. Note
that by assuming that all PSoC registers are initialized to their device reset default states, configuration time and flash
memory usage are both reduced.

A.2 Effect on Device I/O Pins
As described in application notes AN61290, PSoC 3 and PSoC 5LP Hardware Design Considerations, and AN60616,
PSoC 3 and PSoC 5LP Startup Procedure, during the reset and startup process the PSoC I/O pins are in three
distinct drive modes, as Table 3 shows.

Table 3. PSoC I/O Pin Drive Modes During Device Reset

Startup Event I/O Pin Drive Mode

Duration (Typical)

Comment
Slow IMO
(12 MHz)

Fast IMO
(48 MHz)

Device reset (SRES) active HI-Z Analog 40 µs While reset is active, the I/Os are
held in the HI-Z Analog mode.

Device reset removed

Nonvolatile latches (NVLs)
copied to I/O ports

NVL setting:
HI-Z Analog,
Pull-up, or Pull-down

~12 ms ~4 ms Duration depends on code
execution speed and configuration
complexity.

Code starts executing

I/O ports and pins are configured PSoC Creator
project configuration

N/A 8 possible drive modes. See the
device datasheet for details.

Code reaches main() Code may change
I/O pin function

N/A

For details on NVL usage in PSoC, see a device datasheet. In your PSoC Creator project, the NVL settings are
established in two places:

 I/O ports: the Reset tab in the individual Pin Component configurations

 All other NVLs: The System tab in the design-wide resources (DWR) window

The NVLs are updated when the device is programmed with your project. Note that a bootloadable project cannot set
NVLs; its DWR settings must match those in the associated bootloader project.

Final I/O drive modes are set by individual Pin Component configurations.

http://www.cypress.com/
http://www.cypress.com/go/an61290
http://www.cypress.com/go/an60616
http://www.cypress.com/go/an60616
http://www.cypress.com/go/an60616

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 26

Figure 21 shows the timing diagrams for device startup and configuration. The example in the middle diagram is for
PSoC 3; similar processes exist for PSoC 4 and PSoC 5LP. For more information, see AN60616, PSoC 3 and PSoC
5LP Startup Procedure.

Figure 21. Device Startup Process Diagrams

Reset Released

Reset Boot
Hardware Startup Firmware Startup

CPU halted CPU Specific
Source File Main.c ...

CyFitter_cfg.c

No CPU
execution

Hardware Startup Firmware Startup

KeilStart.A51 Main.c ...

CyFitter_cfg.c
Configure

Debug,
Bootloader

Clear SRAM
Clear
IDATA

DMAC
configuration

...

...

CyFitter_cfg.c

Register
initialization

DSI config,
Digital routing

Digital array,
ClockSetup()

Analog set
default

http://www.cypress.com/
http://www.cypress.com/go/an60616
http://www.cypress.com/go/an60616

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 27

A.3 Effect on Other Functions
At device reset, UDB registers are reset, so all UDB-based Components cease to exist and their functions are
stopped. The same is also true for analog Components based on the configurable SC/CT blocks in PSoC 3 and
PSoC 5LP.

All fixed peripherals – digital and analog – are reset to their idle states. This includes the DMA, DFB, timers
(TCPWM), I2C, USB, CAN, ADCs, DACs, comparators, and opamps. All clocks are stopped except the IMO.

All digital and analog routing control registers are reset. This causes all digital and analog switches to be opened,
breaking all connections within the device. This includes all connections to the I/Os except the NVLs.

All hardware-based functions are restored after configuration (see Figure 21). All firmware functions are restored
when the project’s main() function starts executing.

A.4 Example: Fan Control
Let us examine how a bootloader and its associated device reset can be integrated into a typical application such as
fan control. PSoC Creator provides a Fan Controller Component, which encapsulates all necessary hardware blocks
including PWMs, tachometer input capture timer, control registers, status registers, and a DMA channel or interrupt.
For more information, see the Fan Controller Application page.

The fan control application is in a bootloadable project. Optionally, the bootloader may be customized to keep the fan
running while bootloading.

The fan can also be kept running while the device is reset, during the transfer between the bootloader to the
bootloadable, as Table 4 shows.

Table 4. PSoC I/O Pin Drive Modes During Device Reset for Fan Controller

I/O Pin Drive Mode Comment

HI-Z Analog Optionally, add external pull-up or pull-down resistor to the PWM pin for 100% duty cycle. This
may not be needed because the fan may keep spinning due to inertia.

NVL setting: HI-Z Analog,
Pull-up, or Pull-down

Optionally, set the PWM Pin Component reset value to Pull-up or Pull-down for 100% duty cycle.
This may not be needed because the fan may keep spinning due to inertia.

PSoC Creator
project configuration

Set the PWM Pin Component drive mode and initial state for 100% duty cycle.
The PWM Component becomes active but does not run.

Main() starts executing When PWM_Start() is called, the PWM starts driving the PWM pin at the Component’s default
duty cycle.
Firmware can read the tachometer data and start actively controlling the duty cycle.

http://www.cypress.com/
http://www.cypress.com/?rid=63172

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 28

Document History
Document Title: AN73854 - PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

Document Number: 001-73854

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3434408 MKEA 11/09/2011 New application note.

*A 3672780 MKEA 07/11/2012 Updated for PSoC Creator 2.1

*B 3720294 MKEA 08/22/2012 Updated Figure 13.

*C 3817214 MKEA 11/20/2012 Updated for PSoC 5LP and PSoC Creator 2.1 SP1.

*D 4192464 MKEA 11/14/2013
Updated for PSoC 4. Changed System Reference Guide reference to Component
Author Guide. Added a note to clean and build bootloadable projects when a
bootloader project is changed. Updated to latest application note template spec.

*E 4435010 MKEA 07/17/2014 Added Appendix A – Bootloader and Device Reset

*F 4507132 MKEA 09/18/2014

Expanded and clarified Table 1 on flash protection. Added a note that bootloader
flash protection settings take precedence and bootloadable settings are ignored.
Added sections on bootloader memory usage and debugging bootloadable
application projects. Other minor edits and formatting changes.

*G 4675937 RNJT 03/18/2015

Updates for PSoC 4200M: Updated Table 1, Figure 7, and Figure 13. Updated the
Related Application Notes section. Added notes to indicate changes in PSoC
Creator 3.2 for selecting the application type. Added a note to explain the method
to restrict external reads for a PSoC 4 device. Updated the Introduction section.

*H 4827135 MKEA 07/08/2015

Added sections PSoC Resources, PSoC Creator, and Dual-Application Bootloader
Considerations.
Updated flash row size statements in various sections.
Updated format to latest template. Miscellaneous minor edits.

*I 4883371 RNJT 09/22/2015

Updated the following for PSoC 4200L:
Updated the PSoC Resources section to include CY8CKIT-046.
Updated the Building a Bootloader section.
Updated the Converting a Normal Application Project to a Bootloadable Project sub
section.
Updated Steps 1 and 2 in the Dual-Application Bootloader Considerations section.
Updated Figure 11, Figure 12 and Figure 19.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP Introduction to Bootloaders

 www.cypress.com Document No. 001-73854 Rev. *I 29

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support
cypress.com/go/support

PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2011-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/?id=1062&source=AN73854
http://www.cypress.com/?id=1936&source=AN73854
http://www.cypress.com/?id=24&source=AN73854
http://www.cypress.com/?id=1933&source=AN73854
http://www.cypress.com/?id=2308&source=AN73854
http://www.cypress.com/?id=64
http://www.cypress.com/psoc/&source=AN73854
http://www.cypress.com/?id=1932&source=AN73854
http://www.cypress.com/?id=167&source=AN73854
http://www.cypress.com/?id=10&source=AN73854
http://www.cypress.com/psoc/&source=AN73854
http://www.cypress.com/?id=1573&source=AN73854
http://www.cypress.com/?id=2232&source=AN73854
http://www.cypress.com/?id=4749&source=AN73854
http://www.cypress.com/?id=4562&source=AN73854
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203&source=AN73854
http://www.cypress.com/?app=forum&source=AN73854
http://www.cypress.com/?id=2200&source=AN73854
http://video.cypress.com/video-library/video/PSoC
http://www.cypress.com/?id=1162&source=AN73854
http://www.cypress.com/?id=4&source=AN73854
http://www.cypress.com/

	Introduction
	PSoC Resources
	PSoC Creator
	What is a Bootloader?
	Terms and Definitions
	Using a Bootloader
	Bootloader Function Flow

	General Bootloader Design Considerations
	Bootloader Alternatives
	HSSP

	Memory Use and Modular Configuration
	Bootloader - Host Timing
	Communication Port
	Recovering from Failures
	Future-Proofing
	Application Management
	Flash Protection

	Customization

	PSoC Bootloader – How It Works
	PSoC Creator Bootloader Projects
	Bootloader Options
	Communication Component
	Recovering from Failures
	Backward Compatibility
	Bootloader Memory Usage
	Flash Protection
	Customization

	Add a Bootloader to Your PSoC Creator Project
	Building a Bootloader
	Adding Bootloadable Applications
	Debugging Bootloadable Projects
	Converting a Normal Application Project to a Bootloadable Project

	Customizing Your Bootloader
	Calling the Bootloader

	Loading Your Projects into PSoC
	Project Files
	Use Cases

	Dual-Application Bootloader Considerations
	Application Launch Process

	Summary
	Related Application Notes
	Bootloader Application Notes
	Other Related Application Notes
	Why is Device Reset Needed?
	Effect on Device I/O Pins
	Effect on Other Functions
	Example: Fan Control

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions
	Cypress Developer Community
	Technical Support

