

 www.cypress.com Document No. 001-68272 Rev. *I 1

AN68272

PSoC® 3, PSoC 4, and PSoC 5LP UART Bootloader

Authors: Anu M D, Siddalinga Reddy

Associated Project: Yes

Associated Part Family: CY8C3xxx, CY8C42xx, CY8C5xxx

Software Version: PSoC® Creator™ 3.1 CP1 and higher

Related Application Notes: click here

To get the latest version of this application note, or the associated project file, please visit
http://www.cypress.com/go/AN68272.

AN68272 describes a UART-based bootloader for PSoC
®
 3, PSoC 4 and PSoC 5LP. In this application note, you will

learn how to use PSoC Creator™ to quickly and easily build a UART-based bootloader project, and bootloadable

projects. It also shows how to build a UART-based embedded bootloader host program and a C#-based bootloader

application.

Contents

Introduction ... 1
Terms and Definitions .. 2
Using a Bootloader ... 2
Bootloader Function Flow ... 2
Techniques to Enter Bootloader 3

Projects ... 4
UART Bootloader ... 4
PSoC 3 and PSoC 5LP Bootloadables 7
PSoC 4 Bootloadables ... 9
Bootloading Using a PC Host 11
Bootloading Using an Embedded Host 12

Testing the Projects... 15
Kit Configuration ... 15
Bootloading PSoC 3 ... 15
Bootloading PSoC 4 ... 15

Summary ... 16
Related Application Notes ... 16
Related Projects .. 16
Appendix A – Memory ... 17
Appendix B – Project Files .. 20
Appendix C – Host / Target Communications 21
Appendix D – Host Core APIs ... 24
Appendix E – Bootloader and Device Reset 25
Appendix F – Miscellaneous Topics 28
Appendix G – C# Bootloader Host Application 31
Worldwide Sales and Design Support 36

Introduction

Bootloaders are a common part of MCU system design. A
bootloader makes it possible for a product's firmware to be
updated in the field. At the factory, initial programming of
firmware into a product is typically done through the
MCU's Joint Test Action Group (JTAG) or the ARM

®
 Serial

Wire Debugger (SWD) interface. However, these
interfaces are usually not accessible in the field.

This is where bootloading comes in. Bootloading is a
process that allows you to upgrade your system firmware
over a standard communication interface such as USB,
I
2
C, UART, or SPI. A bootloader communicates with a host

to get new application code or data, and writes it into the
device's flash memory.

In this application note you will learn:

 How to create a UART bootloader using PSoC
Creator

 Bootloader host topics:

 How to use the Bootloader Host Tool

 The basic building blocks and functionality of a
bootloader host system

 How to create an embedded UART bootloader
host using PSoC 5LP

 How to create a PC bootloader application

http://www.cypress.com/
http://www.cypress.com/psoccreator/
http://www.cypress.com/?rID=50230&source=AN68272
http://www.cypress.com/?id=2494&source=an68272
http://www.cypress.com/?id=2494&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 2

This application note assumes that you are familiar with
PSoC and the PSoC Creator IDE. If you are new to
PSoC 3, PSoC 4, or PSoC 5LP, refer to AN54181 -
Getting Started with PSoC 3, AN79953 - Getting Started
with PSoC 4, or AN77759 - Getting Started with
PSoC 5LP respectively. If you are new to PSoC Creator,
see the PSoC Creator home page.

This application note also assumes that you are familiar
with bootloader concepts. If you are new to these
concepts, see AN73854 - PSoC 3 and PSoC 5LP
Introduction to Bootloaders. For a complete list of other
application notes on bootloading, see Related Application
Notes.

Finally, this application note assumes that you are familiar
with the UART protocol and the PSoC Creator UART
Component. If you are new to the UART Component, see
the PSoC Creator UART Component datasheet. You can
also get the datasheet by right-clicking on the UART
Component in PSoC Creator.

Terms and Definitions

Figure 1 illustrates the main elements in a bootloader
system. It shows that the product's embedded firmware
must be able to use the communication port for two
different purposes – normal operation and updating flash.
That portion of the embedded firmware that knows how to
update the flash is called the bootloader. The other terms

in Figure 1 are defined below.

Figure 1. Bootloading System Diagram

Target

PSoC

Flash

Memory

Bootloader

Application

Host
Communication

Channel

Application

File
UART

The system that provides the data to update the flash is
called the Host, and the system being updated is called
the Target. The host can be an external PC or another

MCU (such as PSoC 5LP) on the same PCB as the target.

The act of transferring data from the host to the target
flash is called bootloading, or a bootload operation, or
just a bootload for short. The firmware that is placed in
flash is called the application or the bootloadable.

Another common term for bootloading is In-System
Programming (ISP). Cypress has a product with a similar

name but different function called In-System Serial
Programmer (ISSP) and an operation called Host-Sourced
Serial Programming (HSSP). For more information, see
AN73054 - PSoC Programming Using an External
Microcontroller (HSSP).

Using a Bootloader

A bootloader communication port is typically shared
between the bootloader and the actual application. The
first step to use a bootloader is to manipulate the target so
that the bootloader, and not the application, is executing.

Once the bootloader is running, the host can send a "start
bootload" command over the communication channel. If
the bootloader sends an "OK" response, bootloading can
begin.

During bootloading, the host reads the file for the new
application, parses it into flash write commands, and
sends those commands to the bootloader. After the entire
file is sent, the bootloader can pass control to the new
application.

Bootloader Function Flow

Typically when the device resets, the bootloader is the first
function to execute. It then performs the following actions:

 Checks the application's validity before letting it run

 Manages the timing to start host communication

 Does the bootload / flash update operation

 And finally, passes control to the application

Figure 2 shows typical bootloader functions.

http://www.cypress.com/
http://www.cypress.com/?rID=39157&source=an68272
http://www.cypress.com/?rID=39157&source=an68272
http://www.cypress.com/?rID=78695&source=an68272
http://www.cypress.com/?rID=78695&source=an68272
http://www.cypress.com/?rID=60890&source=an68272
http://www.cypress.com/?rID=60890&source=an68272
http://www.cypress.com/?id=2494&source=an68272
http://www.cypress.com/?rID=56014&source=an68272
http://www.cypress.com/?rID=56014&source=an68272
http://www.cypress.com/index.cfm?rID=48892&source=an68272
http://www.cypress.com/index.cfm?rID=57435&source=an68272
http://www.cypress.com/index.cfm?rID=57435&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 3

Figure 2. Bootloader Function Flow

Reset

Bootloader

valid in flash?

Go to application

Application

valid in flash?

Wait for

new application

from host?

Wait forever ?

Host comm.

start?

Timeout?

Receive new

application from

host,

install in flash,

overwriting

existing

application

Host comm.

start ?

Halt execution
No

Yes

No

No

No

Yes

No

Yes

Yes

Yes

Yes

No

No

Yes

Techniques to Enter Bootloader

As mentioned previously, the bootloader is the first
function to run at reset. As Figure 2 shows, the bootloader
code waits for the host for a short period of time before
passing control to the application. This may cause the host
to miss an opportunity to start the bootload operation.
However, another way exists to start bootloading, and that
is to pass control from the application or bootloadable
back to the bootloader.

Bootloadable API

The Bootloadable Component in PSoC Creator has an
Application Programming Interface (API) function to start

the bootloader: Bootloadable_Load(). This allows the

host to start a bootload operation at any time.

The problem with this method is that you must depend on
the application code to perform an application upgrade.
What happens if the application has a defect that prevents
transfer of control to the bootloader?

Customize Bootloader

Instead, it may be better to have the bootloader wait an
infinite amount of time for the host. To do that, we can
customize the bootloader project to check for some user
input before calling Bootloader_Start() and running

through its normal routine.

For example, the bootloader may monitor the UART and
wait forever for a user command before calling
Bootloader_Start(). For more information, refer to

AN73854 - PSoC 3 and PSoC 5LP Introduction to
Bootloaders.

http://www.cypress.com/
http://www.cypress.com/?rID=56014&source=an68272
http://www.cypress.com/?rID=56014&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 4

Projects

Now, let us look at specific examples of how bootloaders
are implemented in PSoC and PSoC Creator.

This section shows you the steps to create PSoC Creator
bootloader, bootloadable and embedded bootloader host
projects. The projects are designed to be used with the
CY8CKIT-030, CY8CKIT-042, and CY8CKIT-050 kits; they
can be easily adapted for other kits such as the
CY8CKIT-001. The projects also require PSoC Creator
version 3.1 SP1 or higher.

UART Bootloader

In this section, we create and build a UART based
bootloader project. One feature of this project is that while
bootloading is taking place, one of the kit’s LED blinks.

1. Create a new PSoC Creator project, as Figure 3
shows.

a) Select the design template to be either 'PSoC 3
Design', or 'PSoC 5LP Design', or one of the
PSoC 4 designs.

b) Name the project as UART_Bootloader.

c) Click on the '+' button next to Advanced to
expand the configuration options. Create a new
workspace for the project.

d) Select 'Bootloader' as the application type.

Figure 3. Creating UART_Bootloader Project

2. Add a UART Component to the top design schematic
as Figure 4 shows.

Figure 4. UART Component

3. Add a Bootloader Component to the top design
schematic as Figure 5 shows.

Figure 5. Bootloader Component

4. To blink an LED, add a PWM (TCPWM in the case of
PSoC 4), a Clock, and a Digital Output Pin
Component to the schematic.

http://www.cypress.com/
http://www.cypress.com/?rID=49524&source=an68272
http://www.cypress.com/?rID=77780&source=an68272
http://www.cypress.com/?rID=51577&source=an68272
http://www.cypress.com/?rID=37464&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 5

5. Rename the Components and pins as Table 1 shows.

Table 1. Bootloader Project Component Names

Component Name

Bootloader_1 Bootloader

UART_1 UART

Rx_1 Rx

Tx_1 Tx

Clock_1 Clock

Pin_1 Pin_LED

PWM_1 / TCPWM_1 PWM

6. Now, with an LED and resistor added as annotation
Components, the top design of the project for PSoC 3
and PSoC 5LP looks similar to Figure 6 and the top
design for PSoC 4 looks similar to Figure 7.

Figure 6. Top Design of UART_Bootloader Project for
PSoC 3 and PSoC 5LP

Figure 7. Top Design of UART Bootloader Project for
PSoC 4

R
D

Rx Tx

250 Hz

In this example there is no need to reset the UART so the
reset terminal is connected to a Logic Low '0' Component.

7. To configure the Bootloader, double-click on the
Component.

a) Select UART as the Communication component,
as Figure 8 shows. Leave the other parameters
at their default settings. For more information on
these configuration parameters, refer to the
Bootloader Component datasheet.

Figure 8. Bootloader Configuration

http://www.cypress.com/
http://www.cypress.com/?rID=71586&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 6

8. To configure the UART Component, double-click on it.
By default, it is in Full UART mode with a data rate of
57,600 bps. Leave all parameters at their default
settings. Figure 9 shows the basic configuration tab of
the UART Component.

Figure 9. Basic UART Configuration

9. Click on the Advanced tab of the UART configuration
window.

a) Set both the receive (Rx) and transmit (Tx) buffer
sizes to 64, to avoid communication overflow (the host
packet size is as much as 64 bytes). Leave the other
parameters at their default settings. See Figure 10.

Figure 10. Advanced UART Configuration

a

10. To configure the PWM Component, double-click on it.
Set the Period to 255, and the Compare to 127. Leave
the other parameters at their default settings.

11. To configure the Clock Component, double-click on it.
Set the Frequency to “ILO / 4”, or ~250 Hz. Leave the
other parameters at their default settings.

12. For the Pin_LED Component, leave the parameters at
their default settings.

13. Assign the Pin Components to physical pins. In the
Workspace Explorer window, double-click the
UART_Bootloader.cydwr file, and click on the Pins

tab. Assign the Pins as Figure 11 and Figure 12 show.

Figure 11. PSoC 3 and PSoC 5LP Pin Assignment for
UART_Bootloader Project

Figure 12. PSoC 4 Pin Assignment for UART Bootloader
Project

14. Review the main.c file – the CyBtldr_Start()

function is added automatically when you create a
bootloader project. This API function does the entire
bootloading operation. It does not return – it ends with
a software device reset. As such, any code that is
placed after this API call is never executed.

Add two API functions to initialize the PWM in main(),

as Code 1 shows. For more information on this
Component API, see the PWM Component datasheet.

Code 1. PWM Initialization in Bootloader

void main()

{

 /* Initialize PWM */

 PWM_Start();

 CyBtldr_Start();

 /* Uncomment this line to enable

 global interrupts. */

 /* CyGlobalIntEnable; */

 for(;;)

 {

 /* Place your code here. */

 }

}

http://www.cypress.com/
http://www.cypress.com/?rID=48869

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 7

15. Build the project and program it into a PSoC 3 device
on CY8CKIT-030. If your target device is a PSoC 4,
change the device before building the project, and
program it to a CY8CKIT-042. If your target device is
a PSoC 5LP, change the device before building the
project, and program it to a CY8CKIT-050.

For CY8CKIT-030 and CY8CKIT-050, Connect Tx and
Rx on the connector P5 to the port pins P0[1] and
P0[0] on the connector P4 using wires. For CY8CKIT-
042, connect J8_9 to P0[1] (Tx) and J8_10 to P0[0]
(Rx).

Note When building a UART-based project for PSoC 4,
depending on the UART Component used and the
selected baud rate, you may get a warning:

warning: Clock Warning: (UART_2_IntClock's

accuracy range '461.538 kHz ±2.000%,

(452.308 kHz - 470.769 kHz)' is not within

the specified tolerance range '460.800 kHz

±2.000%, (451.584 kHz - 470.016 kHz)'.).

This is due to the base accuracy of the PSoC 4 IMO,
which is ±2%. Your project may require a higher-accuracy
external clock. For more information, see the UART
Component datasheet or the PSoC Creator help article
“Working with Clocks”.

You have now created a simple UART-based bootloader.
It can communicate with a host and download and install
into flash a new application, or bootloadable project. The
bootloader can be expanded and customized in a number
of ways; see the Bootloader and UART Component
datasheets, and AN73854 - PSoC 3 and PSoC 5LP
Introduction to Bootloaders for details.

Note The bootloader occupies a portion of the PSoC flash,
reducing the amount of flash available for the application.
See Appendix E for details.

Let us now look at how to create bootloadable applications
that can be used with this bootloader.

PSoC 3 and PSoC 5LP Bootloadables

We shall now create two bootloadable projects. They are
very similar – one displays "Hello" on the kit’s character
LCD and the other displays "Bye". This section describes
the steps to create these bootloadable projects.

1. Create a new PSoC Creator project, as Figure 13
shows.

a) Name the project as Bootloadable1.

b) The devices for this project and the
UART_Bootloader project must be the same.

c) Click on the '+' button next to Advanced to
expand the configuration options.

d) Select 'Bootloadable' as the application type.

Figure 13. Creating Bootloadable1 Project

2. For this project, we need the Bootloadable, Digital
Input Pin, and LCD Components. Add these
Components to your top design schematic, as
Figure 14 shows.

Figure 14. Bootloadable1 Project Components

3. Rename the Components according to Table 2.

Table 2. Bootloadable Project Component Names

Component Name

Bootloadable_1 Bootloadable

Pin_1 Pin_StartBootloader

LCD_Char_1 LCD_Char

http://www.cypress.com/
http://www.cypress.com/?rID=49524&source=an68272
http://www.cypress.com/?rID=77780&source=an68272
http://www.cypress.com/?rID=51577&source=an68272
http://www.cypress.com/?rID=49524&source=an68272
http://www.cypress.com/?rID=51577&source=an68272
http://www.cypress.com/?rID=77780&source=an68272
http://www.cypress.com/?rID=77780&source=an68272
http://www.cypress.com/?rID=48892&source=an68272
http://www.cypress.com/?rID=48892&source=an68272
http://www.cypress.com/?rID=56014&source=an68272
http://www.cypress.com/?rID=56014&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 8

4. To configure the Bootloadable Component, double-
click on it.

a) A bootloadable project is always linked to the
.hex file of a bootloader project. To do this, go to
the dependencies tab of the Bootloadable
Component configuration window as Figure 15
shows.

b) Select the UART_Bootloader.hex file, as
Figure 15 shows. For more information on
Bootloader Component configuration, see the
Bootloader Component datasheet.

Figure 15. Bootloadable Component Configuration

You may find the UART_Bootloader.hex file in

Bootloader project's Debug or Release folder:

When PSoC 3 is the Bootloader,

..\UART_Bootloader\UART_Bootloader.cydsn\DP805
1\DP8051_Keil_951\Debug\UART_Bootloader.hex

When PSoC 5LP is the Bootloader,

..\UART_Bootloader\UART_Bootloader.cydsn\Cortex
M3\ARM_GCC_484\Debug\UART_Bootloader.hex

5. The digital input pin Pin_StartBootloader is used to
switch from the application back to the bootloader.
When the DVK button is pressed, it shorts to ground,
so configure the drive mode of the Pin to be Resistive
Pull Up, as Figure 16 shows.

Figure 16. Digital Input Pin Configuration

6. Now, with the addition of the annotation Components
for the button and the input pin, the top design is
complete; it should be similar to Figure 17.

Figure 17. Top Design of the Bootloadable1 Project for
PSoC 3 and PSoC 5LP

7. Assign the Pin Components to physical pins. In the
Workspace Explorer window, double-click the
Bootloadable1.cydwr file and assign the pins as
Figure 18 shows.

Figure 18. Pin Assignment of Bootloadable1 Project

On the CY8CKIT-030 and CY8CKIT-050 kit boards,
the LCD pins are hard wired to P2[6:0], and SW2 is
hard wired to P6[1].

8. A completed Bootloadable1 project is associated with
this application note. Insert the code listing from the
main.c file of this associated project to the main.c file
of your project.

The main() function continuously checks the status

of the Pin_StartBootloader. When this pin shorts to

http://www.cypress.com/
http://www.cypress.com/?rID=71586

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 9

ground, the API function Bootloadable_Load() is

called to invoke the Bootloader. The bootloader waits
indefinitely for the host to start the bootload operation.

9. Build the project. When a bootloadable project is built,
PSoC Creator generates a .cyacd file. This is the file
that is bootloaded onto the target. For more
information on this file and its contents, see
Appendix B.

10. To create the other bootloadable project that displays
"Bye", repeat the previous steps in this section. Name
the project Bootloadable2. The only difference
between the two projects is that the code in main.c
displays "Bye" instead of "Hello."

Note For PSoC Creator versions before 3.0, if the
bootloader is updated, you must also rebuild all
bootloadable projects that depend on that bootloader
project. Use the “Clean and Build” option.

To bootload this project using a PC Host, see Bootloading
using a PC Host.

PSoC 4 Bootloadables

We shall now create two bootloadable projects for PSoC 4
that can be used with the CY8CKIT-042. They are very
similar – one blinks the green LED and the other blinks the
blue LED on the CY8CKIT-042. This section describes the
steps for creating these bootloadable projects.

1. Create a new PSoC Creator project as Figure 19
shows.

a) Name the project as Bootloadable1.

b) The devices for this project and the
UART_Bootloader project must be the same.

c) Click on the ‘+’ button next to the Advanced tab
to expand the configuration options.

d) Select ‘Bootloadable’ as the application type.

Figure 19. Creating Bootloadable1 Project for PSoC 4

2. For this project, we need the Bootloadable, Digital
Input Pin and the Digital Output Pin Components. Add

these Components to your top design schematic, as
Figure 20 shows.

Figure 20. Bootloadable1 Project Components

3. Rename the Components according to Table 3.

Table 3. Bootloadable1 Component Names

Component Name

Bootloadable_1 Bootloadable

Pin_1 Green_LED

Pin_2 Pin_StartBootloader

The next step is to configure these Components.

4. To configure the Bootloadable Component, double-
click on it.

a) A bootloadable project is always linked to the
.hex file of a bootloader project. To do this, go to

the dependencies tab of the Bootloadable
component configuration window as Figure 21
shows.

b) Select the UART_Bootloader.hex file as
 shows. For more information on the Bootloader
Component configuration, see the Bootloader
Component datasheet.

http://www.cypress.com/
http://www.cypress.com/?rID=71586&source=an68272
http://www.cypress.com/?rID=71586&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 10

Figure 21. Bootloadable Component Configuration

You may find the UART_Bootloader.hex file in the
Bootloader project’s Debug or Release folder:

..\UART_Bootloader\UART_Bootloader.cydsn\Cortex
M0\ARM_GCC_484\Debug\UART_Bootloader.hex

5. The digital input pin (Pin_StartBootloader) is used to
switch from the application back to the bootloader.
When the DVK button is pressed, it shorts to ground,
so configure the drive mode of the pin to be Resistive
Pull Up, as Figure 22 shows.

Figure 22. Digital Input Pin Configuration

6. 6. Now, with the addition of annotation Components
for the button and the input pin, the top design is
complete; it should be similar to Figure 23.

Figure 23. Top Design of the Bootloadable1 Project

Green_LED

560 ohm

7. Assign the Pin Components to physical pins. In the
Workspace Explorer window, double-click the
Bootloadable1.cydwr file and assign the pins as
Figure 24 shows.

Figure 24. Pin Assignments of Bootloadable1 Project

On the CY8CKIT-042 kit board, the Green LED is
hard-wired to P0[2] and SW2 is hard-wired to P0[7].

8. A completed Bootloadable project for PSoC 4 is
associated with this application note. Insert the code
listing from the main.c file of this associated project to
the main.c file of your project.

The main() function continuously checks the status

of the Pin_StartBootloader. When this pin shorts to
ground, the API function Bootloadable_Load() is

called to invoke the Bootloader. The bootloader waits
indefinitely for the host to start the bootload operation.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 11

9. Build the project. When a bootloadable project is built,
PSoC Creator generates a .cyacd file. This is the file
that is bootloaded onto the target. For more
information on this file and its contents, see
Appendix B.

Note When building a UART-based project for PSoC 4,
depending on the UART Component used and the
selected baud rate, you may get a warning:

warning: Clock Warning: (UART_2_IntClock's

accuracy range '461.538 kHz ±2.000%,

(452.308 kHz - 470.769 kHz)' is not within

the specified tolerance range '460.800 kHz

±2.000%, (451.584 kHz - 470.016 kHz)'.).

This is due to the base accuracy of the PSoC 4 IMO,
which is ±2%. Your project may require a higher-accuracy
external clock. For more information, see the UART
Component datasheet or the PSoC Creator help article
“Working with Clocks.”

10. To create the other bootloadable project that blinks
the Blue LED, repeat the previous steps in this
section. Name the project as Bootloadable2. The only
difference between the two projects is that the Digital
Output Pin Blue_LED is connected to P0[3]. On the
CY8CKIT-042 kit board the Blue LED is hard wired to
the pin P0[3].

Note For PSoC Creator versions before 3.0, if the
bootloader is updated, you must also rebuild all
bootloadable projects that depend on that bootloader
project. Use the “Clean and Build” option.

Now, let’s bootload this project into a target PSoC 4 using
the UART Bootloader Host application (PC Host).

Bootloading Using a PC Host

A bootloader host executable is provided with this
application note for bootloading an application from a PC
host, as Figure 25 shows. UARTBootloaderHost.exe can
be found in the Bootloader_Host_GUI_exe folder inside
the AN68272.zip file. Review and follow the instructions in
the Prerequisites.txt file to install the software required to

run this tool. The dll to be used with the executable for 64-
bit and 32-bit Windows platforms are given in respective
folders inside the Bootloader_Host_GUI_exe folder. Note
that this executable does not support multi-application
bootloading. Use the Bootloader Host provided with PSoC
Creator for that purpose. This tool can be accessed
through Tools > Bootloader Host.

Figure 25. Bootloading Using a PC Host

Follow the steps given below to bootload an application
using the bootloader host application. As noted previously,
you must program the bootloader project to the PSoC
device before starting a bootload operation.

1. To bootload PSoC 3 or PSoC 5LP, connect an RS-
232 serial cable to port (P7) of the CY8CKIT-030 /
CY8CKIT-050.

To bootload PSoC 4, an RS-232 serial cable is not
required, as the PSoC 5LP on the CY8CKIT-042 has
a USB–UART bridge. Therefore, you just need to
provide an external connection between the UART
port pins of PSoC 4 and the onboard PSoC 5LP on
the
CY8CKIT-042. Connect P0[0] to Pin 10 on the header
J8 and P0[1] to Pin 9 on the header J8.

2. Open the Bootloader Host Application
(UARTBootloaderHost.exe). Select the appropriate
COM port and baud rate, as Figure 26 shows. The
baud rate selected must be the same as configured in
the UART Component in the bootloader project
(Figure 9 on page 6).

The COM ports in your computer are listed under the
Ports (COM and LPT) category in the Device
Manager. If you are using a USB to UART Bridge, it
appears under this category after enumeration. The
COM port number is displayed in brackets after the
COM port name.

Figure 26. Bootloader Host Application

3. Choose the appropriate bootloadable file in the
bootloadable project’s Debug/Release folder:

When PSoC 3 is the Bootloader,

...\Bootloadable1.cydsn\DP8051\DP8051_Keil_951\D
ebug\Bootloadable1.cyacd

When PSoC 5LP is the Bootloader,

...\Bootloadable1.cydsn\CortexM3\ARM_GCC_484\De
bug\Bootloadable1.cyacd

When PSoC 4 is the Bootloader,

http://www.cypress.com/
http://www.cypress.com/?rID=48892&source=an68272
http://www.cypress.com/?rID=48892&source=an68272
http://www.cypress.com/?rID=49524&source=an68272
http://www.cypress.com/?rID=51577&source=an68272
http://www.cypress.com/?rID=77780&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 12

...\Bootloadable1.cydsn\CortexM0\ARM_GCC_484\D
ebug\Bootloadable1.cyacd

4. Browse the .cyacd file and click the “Bootload” button
to begin bootloading. The bootloading status will be
displayed in the Log section as Figure 27 shows.

Figure 27. Downloading Bootloadable Project

5. On a successful bootload operation, in the case of
PSoC 3 or PSoC 5LP the message "Hello" is
displayed on the CY8CKIT-030 / CY8CKIT-050 LCD.
In the case of PSoC 4, the Green LED on the
CY8CKIT-042 starts to blink.

6. To bootload again, press SW2 on the DVK. This
makes the PSoC device enter the Bootloader. Now,
repeat the steps 3 to 5 to bootload again.

Bootloading Using an Embedded Host

In addition to studying the example projects, it is useful to
understand the general structure of a bootloader host
program. This can help you to build your own bootloader
host system.

Bootloader Host Program

Figure 28 illustrates a protocol level diagram of a
bootloader system. The bootloader host and target each
have two blocks – a core and a communication layer.

Figure 28. Protocol Level Diagram of Bootloading

Bootloader Host

Bootloader Target

Bootloader Host Core

Communication Layer Communication Layer

Bootloader Target Core

UI Application

command.c / .h

UART

api.c / .h

api2.c / .h

parse.c / .h

The Bootloader Host Core performs all bootloading

operations – it sends command packets and flash data to
the target. Based on the response from the target, it
decides whether to continue bootloading.

The Bootloader Target Core decodes the commands

from the host, executes them by calling flash routines such
as erase row, program row, and verify row, and forms
response packets.

The Communication Layer on both the host and the

target provides physical layer support to the bootloading
protocol. They contain communication protocol (UART)-
specific APIs to perform this function. This layer is
responsible for sending and receiving protocol packets
between the host and the target.

Bootloader System APIs

All APIs for the Target Core and Communication Layer are
automatically generated by PSoC Creator, when you build
a bootloader project.

The APIs for the Host Core are also provided by PSoC
Creator, and can be found at:

<install folder> \ PSoC Creator \ 3.1 \ PSoC Creator \
cybootloaderutils

For more information on these API files, see Appendix D.

The only code that you need to write is the host side API
functions for the communication layer, which are in a file
pair communication_api.c / .h. There are four functions –
OpenConnection(), CloseConnection(), ReadData() and
WriteData(). They are pointed to by function pointers
within the 'CyBtldr_CommunicationsData' structure,
defined in cybtldr_api.h.

Appendix F shows you how to use these APIs to create
your own host using C#.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 13

Steps to Create a UART Boot loader Host
Project

This section shows you how to create an embedded
UART bootloader host project using PSoC 5LP, which can
bootload another PSoC device. With this project, the host
can bootload two different bootloadable files (.cyacd files)
on alternate switch presses.

1. Create a new PSoC Creator project, as Figure 29
shows.

a) Select the design template to be ‘PSoC 5LP
Design'.

b) Name the project as UART_Bootloader_Host.

c) Click on the '+' button next to Advanced to
expand the configuration options and create a
new workspace for the project.

d) Make sure that the Application Type is Normal.

Figure 29. Create a UART_Bootloader_Host Project

2. Add a UART Component to the top design schematic,
as Figure 30 shows. Also, add Digital Input Pin and
Character LCD Components to the top design.

Figure 30. UART Component

3. Rename the Components according to Table 4.

Table 4. Component List for UART Bootloader Host
Project

Component Name

UART_1 UART

Rx_1 Rx

Tx_1 Tx

Pin_1 Pin_Switch

LCD_Char_1 LCD_Char

The next step is to configure these Components.

4. To configure the UART Component, double-click on it.
By default, it is in Full UART mode with a data rate of
57,600 bps. Leave all parameters at their default
settings.

Note The project can run at any supported data rate,
but the data rate must be the same as that of the
bootloader project.

a) In the advanced tab of the Component
configuration window, set the transmit (Tx) and
receive (Rx) buffer sizes to 64, to avoid any
communication overflow (the host packet is as
much as 64 bytes). This is illustrated in
Figure 31 on page 13.

Figure 31. UART Advanced Configuration

a

5. The Digital Input Pin Pin_Switch is used to initiate the
bootloading operation in the host. When the kit button

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 14

is pressed, it shorts to ground, so we need to
configure this pin to have a resistive pull-up.

6. Now, with the addition of annotation Components to
the button, the top design of this project should be
similar to Figure 32.

Figure 32. Top Design of UART_Bootloader_Host project

Pin_Switch 6[1]

Rx Tx

7. Assign the input and output pins. In the Workspace
Explorer window, double-click the file
UART_Bootloader_Host.cydwr and assign the pins as

Figure 33 shows.

Figure 33. UART_Bootloader_Host Project Pin
Assignments

On the CY8CKIT-030 and CY8CKIT -050 kit boards,
the LCD pins are hard wired to P2[6:0], and SW2 is
hard wired to P6[1]. Wire the kit board to connect the
designated port pins (P4) to TX and RX (P5).

8. Add firmware to this project. The
UART_Bootloader_Host project is attached to this
application note. Insert the code listing from the
main.c file of this associated project to the main.c file
of your project.

The main() function in main.c continuously checks

the status of Pin_Switch. When it is grounded,
bootloading is initiated. The file main.c has a function

called BootloadStringImage(), which is defined

in device.h. This function bootloads the .cyacd file
using the Bootloader Host API files (host core; see
 on page 12).

The main() function has a variable called 'toggle'. It

alternates between '0' and '1' on every button press.

This makes the host select alternate bootloadable
files.

9. As explained previously, a bootloader host core is
built upon four API files. These files do all of the host
bootloading operations. We must include these files in
our project. Find these API files at the following
location:

<install folder> \ PSoC Creator \ 3.1 \ PSoC Creator \
cybootloaderutils

To include these files, go to the Workspace Explorer
window, right-click on the project name, and select
Add > Existing Item, as Figure 34 shows. Add the
following files provided by PSoC Creator:
cybtldr_api.c / .h, cybtldr_command.c / .h,
cybtldr_parse.c / .h, and cybtldr_utils.h.

Figure 34. Adding API files

10. In addition to the bootloading API files, the host also
requires communication layer support. This support is
provided by adding the communication_api.c / .h files.
You may include the contents of these files from the
UART_Bootloader_Host project associated with this
application note (follow the previous step to add these
files to the project). Update these files by copying from
the project attached to this application note.

11. Now, include the bootloadable files in the host system.
When a bootloadable file is built, a .cyacd file is
generated; the file is similar to a .hex output file. For
more information on the .cyacd file, see Appendix B.

Copy the contents of this file in the form of an array of
strings such that each line is an element of the array.
Since we have two bootloadable files, we must define
two such arrays, named 'StringImage1' and
'StringImage2'. For each array, define a macro to
store the number of lines in that array. Define these
arrays in a separate file named StringImage.h (this file

must be added to the project before defining the
strings).

Refer to the StringImage.h file in the
UART_Bootloader_Host project associated with this
application note.

Alternatively, you can use the Windows C# application
provided along with this application note to generate
the StringImage.h file.

12. Build the project and program it into the PSoC 5LP on
the CY8CKIT-050 kit.

http://www.cypress.com/
http://www.cypress.com/?rID=51577&source=an68272

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 15

Testing the Projects

Note The main.c file of the UART_Bootloader_Host
project has a macro called TARGET_DEVICE. This macro
is used to choose the target device among PSoC 3,
PSoC 4 and PSoC 5LP. By default, it is defined as
'PSoC_3' (another macro in the same file). If you are using
PSoC 4 or PSoC 5LP as your target device, change the
definition of this macro to ‘PSoC_4’ or 'PSoC_5LP'
respectively.

Kit Configuration

To test the projects, configure the kits as follows:

For CY8CKIT-030:

1. Program the PSoC 3 with the UART_Bootloader
project.

2. Set jumpers J10 and J11 to 5 V.

3. Connect the character LCD to Port 2 [6:0].

For CY8CKIT-042:

1. Program the PSoC 4 with the UART_Bootloader
project (PSoC 4 project).

2. Set the jumper J9 to 5 V.

For CY8CKIT-050:

1. Program the PSoC 5LP with the
UART_Bootloader_Host project.

2. Set jumpers J10 and J11 to 5 V.

3. Connect the character LCD to Port 2 [6:0].

Make the following connections between the two DVKs:

1. P0 [0] of CY8CKIT-030 (CY8CKIT-042) to P0 [1] of
CY8CKIT-050

2. P0 [1] of CY8CKIT-030 (CY8CKIT-042) to P0[0] of
CY8CKIT-050

3. Short together the ground pins of the kits.

The connections are illustrated in Figure 35.

Note In Figure 35, the target can also be a PSoC 5LP
(CY8CKIT-050), in which case, the Pin connections are
same as that for CY8CKIT-030.

Figure 35. Host / Target Connections

Bootloader Host

PSoC 5LP

Target

PSoC 3

(PSoC 4)

P0[1]

P0[0]

P0[0]

P0[1]Tx

Rx

CY8CKIT-050 with mounted character LCD
CY8CKIT-030 with mounted character LCD

(CY8CKIT-042)

GND GND

Rx

Tx

SW1 SW1

P6 [1] P6 [1]

(P0 [7])

Bootloading PSoC 3

After the DVKs are configured, you can test the example
projects as follows:

 On the first button press (P6 [1]) on the CY8CKIT-050,
the Bootloadable1.cyacd file is bootloaded to the

target PSoC 3. On successful completion, the
message "Bootloaded - Hello" is displayed on the
CY8CKIT-050 LCD and the message "Hello" is
displayed on the CY8CKIT-030 LCD.

 For subsequent bootloading operations, press the
button (P6 [1]) on the CY8CKIT-030. This makes the
PSoC 3 enter the bootloader and be ready to bootload
a new application. The LED starts blinking.

 On next button press on CY8CKIT-050, the
Bootloadable_2.cyacd file is bootloaded to the target

PSoC 3. On successful bootloading the message
"Bootloaded - Bye" is displayed on the CY8CKIT-050
LCD and the message "Bye" is displayed on the
CY8CKIT-030 LCD.

Bootloading PSoC 4

 In the main.c file of the UART_Bootloader_Host

project, change the TARGET_DEVICE macro to
PSoC_4. Rebuild the project and program it into the
PSoC 5LP on the CY8CKIT-050.

 On the first button press (P6 [1]) on the CY8CKIT-050,
the Bootloadable1.cyacd file is bootloaded to the
target PSoC 4. On successful completion, the Green
LED on the CY8CKIT-042 starts to blink.

http://www.cypress.com/
http://www.cypress.com/?rID=49524
http://www.cypress.com/?rID=77780
http://www.cypress.com/?rID=51577

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 16

 For subsequent bootloading operations, press the
button (P0 [7]) on the target CY8CKIT-042. This
makes the PSoC 4 enter the bootloader and be ready
to bootload a new application. The Red LED on the
CY8CKIT-042 starts to blink.

 On next button press on CY8CKIT-050, the
Bootloadable2.cyacd file is bootloaded to the target

PSoC 4. On successful completion, the Blue LED on
the CY8CKIT-042 starts to blink.

Summary

This application note has explained how to bootload
PSoC 3, PSoC 4 and PSoC 5LP using UART as the
communication interface. It also introduced the basic
building blocks of a bootloader host, and showed how to
build an embedded UART bootloader host.

Bootloaders are a standard method for doing field
upgrades. With PSoC Creator doing the entire
configuration for you, it is easy to make a bootloader for
PSoC.

For more advanced information, see the Appendix
sections and the PSoC 3, PSoC 4 and PSoC 5LP
Technical Reference Manuals.

Related Application Notes

You can refer to the following application notes for better
understanding of the bootloaders and flash programming.

 AN73854 – PSoC 3 and PSoC 5LP Introduction to
Bootloaders

 AN60317 – PSoC 3 and PSoC 5LP I2C Bootloader

 AN73503 – USB HID Bootloader for PSoC 3 and
PSoC 5LP

 AN84401 – PSoC 3 and PSoC 5LP SPI Bootloader

 AN86526 - PSoC 4 I2C Bootloader

 AN73054 – PSoC 3 and PSoC 5LP Programming
Using an External Microcontroller (HSSP)

 AN61290 – PSoC 3 and PSoC 5LP Hardware Design
Considerations

 AN54181 – Getting Started with PSoC 3

 AN79953 - Getting Started with PSoC 4

 AN77759 – Getting Started with PSoC 5LP

To learn more about the many other features and
capabilities of PSoC, click here for a complete list of
application notes.

Related Projects

The projects attached to this application note are
organized as shown in Table 5.

Table 5. Projects Associated with This Application Note

Design project name Description

UART_Bootloader_Host This is an embedded bootloader
host project demonstrating a
PSoC 5LP bootloading another
PSoC 3 or PSoC 4 or PSoC 5LP
with UART as the communication
channel.

UART_Bootloader Bootloader project that has UART
as the communication channel.
This bootloader blinks an LED.

Bootloadable1 For PSoC 3 / PSoC 5LP, this
project displays “Hello” on the
Character LCD of the target
device.

For PSoC 4, this project blinks the
Green LED on the target
CY8CKIT-042.

Bootloadable2 For PSoC 3 / PSoC 5LP, this
project displays “Bye” on the
Character LCD of the target
device.

For PSoC 4, this project blinks the
Blue LED on the target CY8CKIT-
042.

About the Authors

Name: Anu M D

Title: Sr. Applications Engineer

Background: Anu M D is an applications engineer in
Cypress Semiconductor
Programmable Systems Division
focused on PSoC Applications.

Name:

Title:

Background:

Siddalinga Reddy

Applications Engineer

Siddalinga Reddy is an applications
engineer in Cypress Semiconductor
Programmable Systems Division
focused on PSoC Applications.

http://www.cypress.com/
http://www.cypress.com/?id=2232&rtID=117&source=an68272
http://www.cypress.com/?id=4749&rtID=117&source=an68272
http://www.cypress.com/?id=4562&rtID=117&source=an68272
http://www.cypress.com/?rID=56014&source=an68272
http://www.cypress.com/?rID=56014&source=an68272
http://www.cypress.com/?rID=41002&source=an68272
http://www.cypress.com/?rID=57561&source=an68272
http://www.cypress.com/?rID=57561&source=an68272
http://www.cypress.com/?rID=78703&source=an68272
http://www.cypress.com/?rID=83293&source=an68272
http://www.cypress.com/?rID=57435&source=an68272
http://www.cypress.com/?rID=57435&source=an68272
http://www.cypress.com/?rID=43337&source=an68272
http://www.cypress.com/?rID=43337&source=an68272
http://www.cypress.com/?rID=39157&source=an68272
http://www.cypress.com/?rID=78695&source=an68272
http://www.cypress.com/?rID=60890&source=an68272
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=76&id=1353&applicationID=0&l=0

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 17

Appendix A – Memory

Flash Memory Deta i ls

Flash memory provides storage for firmware, bulk data,
ECC data, device configuration data, factory configuration
data, and user-defined flash protection data. Figure 36
shows the physical organization of the flash memory in
PSoC 3, PSoC 4, and PSoC 5LP.

PSoC flash is divided into blocks called arrays. Arrays are
uniquely identified by array IDs. In PSoC 3 and PSoC 5LP,
each array has 256 rows of flash memory. Each row has
256 data bytes, plus, if enabled, 32 ECC (error correction
code) bytes. You can use the 32 ECC bytes to store
configuration data instead of error correction data. So, an
array can have 64 KB or 72 KB for instruction and data
storage.

In PSoC 4, each array has 128 or 256 rows of flash
memory. Each row has 128 data bytes. So, an array can
have 16 KB or 32 KB for instruction and data storage.

The number of flash arrays depends on the device and the
part. PSoC 3 has a maximum flash of 64 KB, so it has only
one array and the only valid array ID is 0. The PSoC 4100
and 4200 devices have a maximum flash of 32 KB, so
they have only one array and the only valid array ID is 0.
PSoC 5LP has a maximum of 256 KB of flash, or 4 flash
arrays, with valid array IDs 0 to 3.

Flash memory is programmed one row at a time. It can be
erased in 64 row sectors or the entire flash can be erased
at once. Rows are identified by a unique combination of
the array ID and the row number.

Figure 36 also shows that the first X rows of flash are
occupied by the bootloader. X is set such that there is
enough space for:

 The vector table for the bootloader, starting at
address 0 (PSoC 4 and PSoC 5LP only)

 The bootloader project configuration bytes

 The bootloader project code and data

 The checksum for the bootloader portion of the flash

For PSoC 4 and PSoC 5LP, the vector table contains the
initial stack pointer (SP) value for the bootloader project,
and the address of the start of the bootloader project code.
It also contains vectors for the exceptions and interrupts to
be used by the bootloader. In PSoC 3, the interrupt
vectors are not in flash – they are supplied by the interrupt
controller.

The bootloadable project occupies the flash starting at the
first 256-byte boundary after the bootloader (for PSoC 4,
it’s the first 128-byte boundary). This region of the flash
includes:

 Vector table for the bootloadable project (PSoC 4 and
PSoC 5LP only)

 The bootloadable project code and data

The highest 64-byte block of flash is used as a common
area for both projects. Parameters saved in this block
include:

 The entry in flash of the bootloadable project (4-byte
address)

 The amount of flash occupied by the bootloadable
project (number of flash rows)

 The checksum for the bootloadable portion of flash
(one byte)

 The size in bytes of the bootloadable portion of flash
(4 bytes).

For more information on the location of metadata in the
flash memory, see Metadata Layout in Flash.

Figure 36. Physical Organization of Flash Memory in PSoC

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

Row 4

Row 5

Row 6

Row 7

Row 8

•

•

•

•

•

Row N

Array 0

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•

•

•

•

•

•

•

•

•

•

•

•

Array 1

• • • • • • •

Byte 0 Byte 1 Byte L• • • • • • •

Row 1

Row 2

Row 3

•

•

•

•

•

•

•

•

•

•

•

•

Array M

=

= 32, 64, 128, or 256 depending on part

=

= Bootloader Portion

= Bootloadable Portion

= Reserved for Metadata

L

N

M 0, 1, 2 or 3 depending on part

127 for PSoC 4; 255 or 287 (if ECC is disabled) for PSoC 3 and PSoC 5LP

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 18

Memory Usage in PSoC

There are two types of bootloader project types: standard
bootloader and multi-application bootloader. The multi-
application bootloader is useful for designs that require a
guarantee that there is always a valid application that can
be run. But this guarantee comes with a limitation that
each application has only one half of the flash available.

Figure 37 shows the flash memory usage for each type of
PSoC Creator project.

Figure 37. Flash Memory Usage

Normal

Application Bootloader

Application

Bootloadable

Application

Metadata

Multi- Application

Bootloader

Bootloadable

Application

1

Metadata # 1

Metadata # 2

Bootloadable

Application

2

Address 0

Metadata Layout in Flash

The metadata section is the highest 64-byte block of flash,
and is used as a common area for both bootloader and
bootloadable projects, as Figure 37 shows. Various
parameters, depending upon the device used, are stored
in this block, as Table 6 shows. For the multi-application
bootloader, there are two sets of metadata.

Table 6. Metadata Layout

Address PSoC 3 PSoC 4 / PSoC 5LP

0x00 App Checksum App Checksum

0x01
Reserved

Application Address
0x02

0x03 Application
Address 0x04

0x05 NA

Last Bootloader Row
0x06 NA

0x07

Last Bootloader
Row

0x08

0x09

Application Length
0x0A

0x0B

Application Length
0x0C

0x0D NA

0x0E NA

Address PSoC 3 PSoC 4 / PSoC 5LP

0x0F NA NA

0x10 Application Active Application Active

0x11 Application Verified Application Verified

0x12
Bootloader
Application Version

Bootloader Application
Version

0x13 Bootloadable
Application ID

Bootloadable
Application ID 0x14

0x15 Bootloadable
Application Version

Bootloadable
Application Version 0x16

0x17 Bootloadable
Application
Custom ID

Bootloadable
Application
Custom ID 0x18

0x19-0x3F NA NA

Note For the multi-application bootloader, Last Bootloader
Row for metadata (image 2) signifies the last row of
bootloadable 1 in the flash section and not the bootloader
row.

Flash Protection

If the bootloader code is invalid, it makes the product
unusable. So it is important to protect the bootloader
portion of the flash from accidental overwrites.

PSoC devices include a flexible flash protection system.
This feature is designed to prevent duplication and reverse
engineering of proprietary code. But it can also be used to
protect against inadvertent writes to the bootloader portion
of flash.

Four protection levels are provided for flash memory, as
Table 7 shows. Each row of flash can be configured to
have a different protection level, which can be set using
PSoC Creator (the Flash Security tab of the .cydwr file).

Table 7. Levels of Flash Protection

Protection level Allowed Not allowed

Unprotected External read and
write;

Internal read and
write

-

Factory upgrade External write;

Internal read and
write

External read

Field upgrade Internal read and
write

External read
and write

Full protection Internal read External read
and write;

Internal write

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 19

Note PSoC 4 has only two levels of flash protection:
‘Unprotected’ and ‘Full protection’.

After the bootloader portion of the flash is configured to
have a protection level of Full protection, it cannot be
changed in the field. The only way to alter the protection
level or to change the bootloader code is to completely
erase the flash and reprogram it using the JTAG / SWD
interface.

An example for protecting bootloader flash follows:

Example for F lash Protection

When the bootloader project is built, the PSoC Creator
Output window shows the amount of flash used. For

example, if the flash occupied by the UART_Bootloader
project is 9250 bytes, then the output is (for PSoC 3 with
64 KB flash):

Flash used: 9250 of 65536 bytes (14.11 %).

The bootloader thus occupies 37 rows of flash (9250 /
256), i.e., flash locations 0x0000 to 0x2300. Set the flash
protection level as Full protection for these rows (under
the Flash Security tab of the .cydwr file in PSoC Creator).
The protection level for the remaining rows can be
Unprotected (the default) or Field upgrade, as Figure 38
shows. For more information on how to use the Flash
Protection dialog, see the PSoC Creator help article “Flash
Security Editor.”

Figure 38. Flash Protection in PSoC Creator

Nonvolat i le Latch (NVL) Set t ings

NVLs can be configured in a bootloader project or any other normal PSoC Creator project, but not in the bootloadable projects.
This is because the NVL settings are always loaded on device bootup. Upon device bootup, the bootloader project executes
first followed by the bootloadable code. Therefore, a bootloadable project's NVL settings are those of the bootloader project
with which it is associated.

Some of the PSoC Creator Design wide resource (.cydwr) settings are programmed using user NVLs. You will get a warning
or error message if some of the .cydwr settings for bootloadable project are different from bootloader project's settings.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 20

Appendix B – Project Files

Bootloadable Output Fi les

When any PSoC Creator project is built, an output file of type .hex is generated. This is the file that is downloaded to the PSoC
while programming using the JTAG / SWD interface.

For a bootloadable project, the .hex file is a combined .hex file of both the bootloadable and the related bootloader project.

This file is typically used to download both projects via JTAG / SWD in a production environment.

* .c yacd F i le Format

When a bootloadable project is built, an additional file of type .cyacd (application code and data) is also generated. This file
contains a header followed by lines of flash data. Excluding the header, each line in the file represents an entire row of flash
data. The data is stored as ASCII data in big endian format. Therefore, while bootloading, the contents of this file must be
parsed (converted from ASCII to hex). Parsing is not required for programming a file of type .hex.

The header of this file has the following format:

[4 bytes Silicon ID] [1 byte Silicon rev] [1 byte checksum type]

The flash lines have the following format:

[1 byte array ID] [2 bytes row number] [2 bytes data length] [N bytes of data] [1 byte

checksum]

The checksum type in the header indicates the type of checksum used in the packets sent between the bootloader and the
bootloader host during the bootloading operation. If this byte is 0, the checksum is a basic summation. If it is 1, the checksum
is CRC-16.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 21

Appendix C – Host / Target Communications

Communication F low

In Bootloader Function Flow, we looked at the operation of a bootloader in PSoC, and UART Bootloader Host introduced the
building blocks of a bootloader host. With this background, Figure 39 explains the flow of communication between the host and
the target during a bootloading operation. This gives the order in which commands are issued to the target and responses are
received. See Command and Status / Error Codes for a complete list of bootload commands, their codes and their expected
responses.

Figure 39. Communication Flow During Bootloading

Host Bootloader

Saves the data in the receive Buffer

.

.

.

.

Calculates Row checksum and

places it in the return packet buffer

Send ‘Enter Bootload’ command to start

the bootload operation

.

.

.

.

Verifies the entire application code

checksum against the checksum stored

in the flash

Give a software reset to jump to the

newly downloaded Application

project

Issue program row command along with

last chunk of row data

Send verify checksum

command to verify the

entire application code

checksum

Issue ‘End Bootload

operation’ command

Enter Bootload Command Gets the Silicon ID, Silicon Rev

and bootloader version. Put this in

the response packet
Check whether the Silicon ID and Silicon

Rev received are same as those contained

in the bootloadable file.

Send the ‘Get Flash Size’ command.
Send the start and end row

numbers of the bootloadable flash

area.
With these start and end row numbers, make

sure whether the rows to be programmed are

within the bootloadable area of the flash.

Then, split the row data into small chunks and

send them with the ‘Send Data’ command

Erase the specified flash row and

program it with the new row data.

Send ‘Verify Row’ command to

verify the programmed row data.

Verify whether the received

checksum matches with the

expected row checksum.

Silicon ID, Silicon Rev, Bootloader ver

Get Flash Size Command

Start and End row numbers

Send Data Command

Success / Failure

Program Row Command

Success / Failure

Verify Row Command

Row Checksum

Verify Application Checksum

Checksum Good / Bad

End Bootload Command

NACK

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 22

Protocol Packet Format

The bootloading operation involves exchange of command and response packets between the host and the target. These
packets have specific formats, as Figure 40 shows.

Figure 40. Bootloading Packet Format

 N bytes of data
Start

 0x01

Data length (N)
Command

code

1 byte 1 byte 2 bytes N bytes 2 bytes 1 byte

Command packets from the host

End

0x17

Checksum

 N bytes of data
Start

 0x01

Status /

Error code

1 byte 1 byte 2 bytes N bytes 2 bytes 1 byte

Response packets from the target

End

0x17

LSB MSB LSB MSB

Data length (N)

LSB MSB

Checksum

LSB MSB

Compute checksum for these bytes

Compute checksum for these bytes

Each packet includes checksum bytes. The checksum can be a basic summation (2's complement) or CRC-16 depending on
the bootloader project setting. When sending multi byte data such as DataLength and Checksum, the least significant byte is
sent first.

The bootloader responds to each command from the host with a response packet. The format of the response packet is similar
to the command packet except that there will be a status/error code instead of the command code. The important commands
and data bytes and the bootloader response packet data are given in Table 8.

Command and Status / Error Codes

As the previous section explains, the command and response packet structures are similar. The only difference is that the
second byte contains a command code or a status / error code.

Table 8 provides a list of commands and their expected responses. Table 9 provides a list of status and error codes.

Table 8. Bootloading Commands

Command
Byte

Command
Data Byte in the Command

Packet
Expected Response Data Bytes

0x31 Verify checksum N/A 1 byte: Non zero or '0'.

If it is a non-zero byte, then the application checksum matches and it is
a valid application.

If it is a zero byte, then the checksum is bad and the application is
invalid.

0x32 Get flash size Flash array ID, 1 byte First row number of the bootloadable flash, 2 bytes;

Last row number of the bootloadable flash, 2 bytes.

These numbers are for the requested array ID.

0x33 Get application
status (valid only
for multi
application
bootloader)

Application number, 1 byte Valid application number, 1 byte;

Active application number, 1 byte.

Checks whether the specified application is valid and it is active.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 23

Command
Byte

Command
Data Byte in the Command

Packet
Expected Response Data Bytes

0x34 Erase row Flash array ID, 1 byte;

Flash row number, 2 bytes

N/A.

Erases the contents of the specified flash row.

0x35 Sync bootloader N/A N/A.

Resets the bootloader to a clean state. Any data which was buffered in
will be thrown out. This command is needed only if the bootloader and
the host go out of sync with each other.

0x36 Set active
application (valid
only for multi-
application
bootloader)

Application number, 1 byte N/A.

Sets the specified application as active.

0x37 Send data N bytes of data to be sent N/A.

The received data bytes will be buffered by the bootloader in
anticipation of the Program row command.

0x38 Enter bootloader N/A Silicon ID, 4 bytes;

Silicon Rev, 1 byte;

Bootloader version, 3 bytes;

All the commands are ignored until this command is received.

0x39 Program row Flash array ID, 1 byte;

Flash row number, 2 bytes;

N bytes of data to be sent

N/A.

After sending multiple bytes of data to the bootloader using the Send
data command, the last chunk of data is sent along with this
command.

0x3A Verify row Flash array ID, 1 byte;

Flash row number, 2 bytes

Row checksum, 1 byte.

Returns the checksum of the specified row.

0x3B Exit bootloader N/A N/A.

This command is not acknowledged.

Table 9. Bootloading Status / Error Codes – Possible Responses to Commands

Status/
Error Code

Label Description

0x00 CYRET_SUCCESS The command was successfully received and executed.

0x02 BOOTLOADER_ERR_VERIFY The verification of flash failed.

0x03 BOOTLOADER_ERR_LENGTH The amount of data available is outside the expected range.

0x04 BOOTLOADER_ERR_DATA The data is not of the proper form.

0x05 BOOTLOADER_ERR_CMD The command is not recognized.

0x06 BOOTLOADER_ERR_DEVICE The expected device does not match the detected device.

0x07 BOOTLOADER_ERR_VERSION The bootloader version detected is not supported.

0x08 BOOTLOADER_ERR_CHECKSUM The checksum does not match the expected value.

0x09 BOOTLOADER_ERR_ARRAY The flash array ID is not valid.

0x0A BOOTLOADER_ERR_ROW The flash row number is not valid.

0x0C BOOTLOADER_ERR_APP The application is not valid and cannot be set as active

0x0D BOOTLOADER_ERR_ACTIVE The application is currently marked as active.

0x0F BOOTLOADER_ERR_UNK An unknown error occurred.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 24

Appendix D – Host Core APIs

cybtldr_api2.c / .h

This is a higher-level API that handles the entire bootload operation. It has functions to open and close files. It invokes the
functions of the cybtldr_api.c / .h API for the bootload operations. This API can be used when building a GUI based bootloader
host.

cybtldr_parse.c / .h

This module handles the parsing of the .cyacd file that contains the bootloadable image to send to the device. It also has
functions for setting up access to the file, reading the header, reading the row data, and closing the file.

cybtldr_api .c / .h

This is a row-level API file for sending a single row of data at a time to the bootloader target. It has functions for setting up the
bootload operation, erasing a row, programming a row, verifying a row and ending the bootload operation. Table 10 describes
in detail the functions of this API file.

Table 10. Functions of cybtldr_api.c /.h

Function Description

CyBtldr_StartBootloadOperation  Enables the communication interface and sends an Enter Bootloader command to the target.

 From the response packet received, verifies the silicon ID, silicon revision of the target
device, and bootloader version.

CyBtldr_ProgramRow  First validates a row, i.e., sends a Get Flash Size command to the target for a particular array
ID of the target flash. In response to this, the target returns the start and end row numbers of
the bootloadable flash portion in that array. The host reads this response and checks
whether the specified row is in the bootloadable area of the flash.

 If row validation is a success, the host breaks the row data into smaller pieces and sends
them to the target using Send data commands.

 Along with the last portion of row data, sends a Program Row command to the target.

CyBtldr_VerifyRow  This function also first validates a row for a particular array ID and row number.

 If row validation is successful, sends a Verify Row command for the validated flash row. In
response to this command, the target returns the checksum of the row.

 The returned checksum is verified against the expected checksum value.

CyBtldr_EraseRow  This function also first validates a row for a particular array ID and row number.

 If row validation is successful, sends an Erase Row command for the validated flash row.

CyBtldr_EndBootloadOperation Sends an Exit Bootload command and disables the communication interface.

cybtldr_command.c / .h

This API handles the construction of command packets to the target and parsing the response packets received from the
target. The cybtldr_api.c / .h invokes the functions of this API. For example, to send an Enter Bootload command,
CyBtldr_StartBootloadOperation() calls the CyBtldr_CreateEnterBootloadCmd() function of this API. It also has a function for
calculating the checksum of the command packets before sending to the target.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 25

Appendix E – Bootloader and Device Reset

As noted elsewhere in this application note, transferring control from the bootloader to the bootloadable, or vice versa, is
always done through a device reset. This may be a consideration if your system must continue to perform mission-critical
functions while changing from one program to the other. This section details why reset must be used, as well as its
implications for device performance in your application.

Why is Device Reset Needed?
To understand why a device reset is needed, it is important to note that the bootloader and bootloadable projects in your
system are each completely self-contained PSoC Creator projects. Each project has its own device configuration settings.
Thus, when you change from one project to the other, you can completely redefine the hardware functions of the PSoC device.

To implement complex custom functions, the device configuration can involve the setting of thousands of PSoC registers. This
is especially true for PSoC’s digital and analog routing features. When you configure the registers and routing, you must make
sure that in addition to setting the bits for the new configuration, you reset the bits for the old configuration. Otherwise, the new
configuration may not work, and may even damage the device.

So when changing between bootloader and bootloadable projects, we do a device software reset (SRES). This causes all
PSoC registers to be reset to their default states. Configuration for the new project can then begin. Note that by assuming that
all PSoC registers are initialized to their device reset default states, we can reduce both configuration time and flash memory
usage.

Effect on Device I/O Pins
As described in application notes AN61290 - PSoC® 3, PSoC 5LP Hardware Design Considerations, and AN60616 - PSoC
Startup Process, during the reset and startup process the PSoC I/O pins are in three distinct drive modes, as Table 11 shows.

Table 11. PSoC I/O Pin Drive Modes During Device Reset

Startup Event I/O Pin Drive Mode

Duration (Typical)

Comment
Slow IMO
(12 MHz)

Fast IMO
(48 MHz)

Device reset (SRES) active HI-Z Analog 40 µs While reset is active, the I/Os are held
in the HI-Z Analog mode.

Device reset removed

Nonvolatile Latches (NVLs)
copied to I/O ports

NVL setting:
HI-Z Analog,
Pull-up, or Pull-down

~12 ms ~4 ms Duration depends on code execution
speed and configuration complexity.

Code starts executing

I/O ports and pins are configured PSoC Creator
project configuration

n/a 8 possible drive modes. See device
datasheet for details.

Code reaches main() Code may change
I/O pin function

n/a

For details on NVL usage in PSoC, see a device datasheet. In your PSoC Creator project, the NVL settings are established in
two places:

 The Reset tab for I/O ports, the individual Pin Component configurations

 The System tab for all other NVLs, the design-wide resources (DWR) window

The NVLs are updated when the device is programmed with your project. Note that a bootloadable project cannot set NVLs; its
DWR settings must match those in the associated bootloader project.

Final I/O drive modes are set by individual Pin Component configurations.

Figure 41 shows the timing diagrams for device startup and configuration. The example in the middle diagram is for PSoC 3;
similar processes exist for PSoC 4 and PSoC 5LP. For more information, see AN60616 - PSoC Startup Process.

http://www.cypress.com/
http://www.cypress.com/go/an61290
http://www.cypress.com/go/an60616
http://www.cypress.com/go/an60616
http://www.cypress.com/go/an60616

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 26

Figure 41. Device Startup Process Diagrams

Reset Released

Reset Boot

Hardware Startup Firmware Startup

CPU halted
CPU Specific

Source File
Main.c ...

CyFitter_cfg.c

No CPU

execution

Hardware Startup Firmware Startup

KeilStart.A51 Main.c ...

CyFitter_cfg.c

Configure

Debug,

Bootloader
Clear SRAM

Clear

IDATA
DMAC

configuration

...

...

CyFitter_cfg.c

Register

initialization

DSI config,

Digital routing

Digital array,

ClockSetup()

Analog set

default

Effect on Other Functions
At device reset, universal digital block (UDB) registers are reset, so all UDB-based Components cease to exist and their
functions are stopped. The same is also true for analog Components based on the configurable SC/CT blocks in PSoC 3 and
PSoC 5LP.

All fixed peripherals – digital and analog – are reset to their idle states. This includes the DMA, DFB, timers (TCPWM), I
2
C,

USB, CAN, ADCs, DACs, comparators, and opamps. All clocks are stopped except the IMO.

All digital and analog routing control registers are reset. This causes all digital and analog switches to be opened, breaking all
connections within the device. This includes all connections to the I/Os except the NVLs.

All hardware-based functions are restored after configuration (see Figure 41). All firmware functions are restored when the
project’s main() function starts executing.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 27

Example: Fan Control
Let us examine how a bootloader and its associated device reset can be integrated into a typical application such as fan
control. PSoC Creator provides a Fan Controller Component, which encapsulates all necessary hardware blocks including
PWMs, tachometer input capture timer, control registers, status registers, and a DMA channel or interrupt. For more
information, see the Fan Controller Application page.

The fan control application is in a bootloadable project. Optionally, the bootloader may be customized to keep the fan running
while bootloading.

The fan can also be kept running while the device is reset, during the transfer between the bootloader to the bootloadable, as
Table 12 shows.

Table 12. PSoC I/O Pin Drive Modes During Device Reset for Fan Controller

I/O Pin Drive Mode Comment

HI-Z Analog Optionally add external pull-up or pull-down resistor to the PWM pin, for a 100% duty
cycle. This may not be needed because the fan may keep spinning due to inertia.

NVL setting: HI-Z Analog,
Pull-up, or Pull-down

Optionally set the PWM Pin Component reset value to Pull-up or Pull-down, for a 100%
duty cycle. This may not be needed because the fan may keep spinning due to inertia.

PSoC Creator
project configuration

Set the PWM Pin Component drive mode and initial state, for a 100% duty cycle.
The PWM Component becomes active but does not run.

Main() starts executing When PWM_Start() is called, the PWM starts driving the PWM pin at the Component’s
default duty cycle.
Firmware can read the tachometer data and start actively controlling the duty cycle.

http://www.cypress.com/
http://www.cypress.com/?rid=63172

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 28

Appendix F – Miscellaneous Topics

Bootloader Versus HSSP

The bootloader allows your system firmware to be
upgraded over a communication interface. But for a
complete flash upgrade, including the bootloader flash
area, you must use the JTAG / SWD programmer (Host
Sourced Serial Programming). The in-system serial
programming (ISSP) specifications to create HSSP are
given in AN62391 (PSoC 3) and AN64359 (PSoC 5LP).

What Happens I f Power Fai ls During the
Bootload Operat ion?

If power fails during the bootload operation, then at the
next reset the checksum of the bootloadable project does
not match the expected value (the bootloadable project's
checksum stored in the last row of flash) and the
bootloadable project is considered to be invalid. Program
execution remains in the bootloader until a successful
bootload happens. The bootloader host must send a start
bootload command to re-start the bootload operations.

Why Do We Need a Reset to Jump Between
the Bootloader and the Bootloadable
Projects?

PSoC is an enormously configurable device. The
bootloader allows you to change on-chip hardware
resources as well as firmware. Due to its highly
configurable architecture, hardware reconfiguration
(placement, routing, functional) is possible only from a
reset state. Therefore the bootloader requires a reset to
jump between the bootloader and bootloadable projects.
See Appendix E – Bootloader and Device Reset.

Convert ing a Normal Appl icat ion Project to
a Boot loadable Project

If you have already created a standard (Normal) project
and want to convert it to a bootloadable project, change
the application type of the project to Bootloadable. To do
this right-click on the project > Build setting > Code
Generation > General tab and change Application Type as
Figure 42 shows.

After changing the application type, you must add a
Bootloadable Component onto the top design and add the
bootloader project's .hex file as a dependency as
Figure 15 on page 8 shows.

If a project is created as a normal project, and then later
changed to a bootloader project by changing the
application type as in Figure 42, you should insert the
CyBtldr_Start() function call in main.c for the bootloader
project to work as expected.

Figure 42. Changing Application Type to Bootloadable

Debugging Bootloadable Project s

In the PSoC Creator bootloader system, the bootloader
project executes first (at device reset) and then the
bootloadable project. The jump from the bootloader to the
bootloadable project is done through a software controlled
device reset. This resets the debugger interface, which
means that the bootloadable project cannot be run in
debugger mode.

To debug a bootloadable project, convert the Application
Type to Normal, debug it, and then convert it back to
Bootloadable after debugging is done.

Another option is to program the Bootloadable project .hex

file onto the device and then use the ‘Attach to running
target’ option for debugging, while the bootloadable project
is running. In this case, you can debug the bootloadable
project only from the point where debugger is attached to
the device.

Mult i -Appl icat ion Bootloader

Multi-Application Bootloader (MABL) is used to put two
bootloadable applications in flash simultaneously. The two
applications can be the same to ensure that there is
always a valid application in the device's flash. Or, the two
applications can be different so that they can be switched
using bootloader commands. This functionality comes with
the obvious limitation that each application has one half of
the available flash memory. Figure 37 on page 18 shows
the placement of two applications in flash memory.

MABL can be implemented by following these steps that
are different from that of a standard bootloader
application:

1. Create a new MABL bootloader project. Set the
application type as Multi-App Bootloader – check the
Multi-App bootloader checkbox in the Bootloader
configuration window.

http://www.cypress.com/
http://www.cypress.com/?rID=44327
http://www.cypress.com/?rID=46790

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 29

2. Add two bootloadable projects to the workspace, say,
Project_A and Project_B. For each project, add a
dependency to the MABL project. Two .cyacd files are
generated for each project – one for the lower part of
flash and one for the upper part of flash:

 Project_A_1.cyacd and Project_A_2.cyacd

 Project_B_1.cyacd and Project_B_2.cyacd

3. The .cyacd file with suffix 1 always occupies the first
half of flash and .cyacd file with suffix 2 occupies the
second half. Thus, only certain combinations of .cyacd
files can be used. These combinations are:

 Project_A_1.cyacd and Project_A_2.cyacd

 Project_B_1.cyacd and Project_B_2.cyacd

 Project_A_1.cyacd and Project_B_2.cyacd

 Project_B_1.cyacd and Project_A_2.cyacd

4. Program the device with the multi-application
bootloader project and bootload the applications
(.cyacd files) sequentially, in one of the above

combinations.

5. To switch between applications, send the 'Set Active
Application' command to the bootloader. You can
create this command using the API function

CyBtldr_CreateSetActiveAppCmd(). Before

sending the Set Active App command, send the 'Enter
Bootloader' command and after sending all the
commands, send the 'Exit Bootloader command'. For
more information on these APIs, refer the
CyBtldr_Command.c / .h files.

Memory Requirement for Bootloader

A typical UART bootloader project with all the optional
commands included occupies approximately 7 KB of
PSoC 3 flash with Keil 8051 compiler optimization level 5.

It occupies approximately 4.6 KB of PSoC 4 flash with
GCC compiler optimization set to “size”. And, it occupies
approximately 5.4 KB of PSoC 5LP flash with GCC
compiler optimization set to "size". You can find the
memory used by the bootloader project in the output
window, when you build the project. RAM memory used by
the bootloader project can be reused by the bootloadable
project.

The memory usage of a bootloader project can be
reduced a small amount by removing the optional
commands supported by the Bootloader Component, as
Figure 43 shows.

Set the Device Configuration Mode to 'Compressed' in
.cydwr > System tab, as Figure 44 shows, to minimize

flash memory usage. Set Device Configuration Mode to
DMA if startup time is more important than code size.

Figure 43. Unchecking Optional Commands in Bootloader
Component

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 30

Figure 44. Device Configuration Mode

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 31

Appendix G – C# Bootloader Host Application

Note The following software must be installed to develop a GUI for a Bootloader Host Application:

 Visual C# 2010 Express Edition and Visual C++ 2010 Express Edition. The trial versions can be found here, or

 Visual Studio 2010 Complete

Professional editions of the software can be purchased from Microsoft.

Read this MSDN page if you are targeting the DLL for a 64-bit Windows platform.

You should have some experience with Visual C# or Visual C++ in order to implement the GUI explained in this section.

The architecture of a PSoC 3 or PSoC 5LP Bootloader Host is as shown in Figure 45.

Figure 45. Bootloader Host Architecture

R
e

a
d

I2C

USB

UART

SPI

User Defined Code

Read cyacd file contents

Frame Command Packets and

send to PSoC

Cybootloaderutils

Read response Packet

and decode it

W
ri
te

Bootloader Host

User Interface

Erase, Program & Verify

The steps to create a C# Bootloader Host Application are as follows:

1. Create a dynamic link library (dll) for the C functions (cybootloader Utils) provided with PSoC Creator.

2. Create a C# GUI (User Interface).

3. Import essential bootloader functions from the dll created in step 1.

4. Provide definition for the communication functions using a serial Port (UART) communication interface.

5. Complete the Windows Form Application.

Each step is explained in detail as follows:

Step 1: Create bootloaderuti ls .dl l

Create a dynamic link library (dll) for the C functions provided with PSoC Creator. A copy of the dll (BootLoad_Utils.dll) created
using Visual C++ 2010 Express Edition for various windows platforms is attached with this application note
(BootLoad_Utils_dll).

http://www.cypress.com/
http://www.visualstudio.com/en-us/downloads#d-2010-express
https://msdn.microsoft.com/en-us/library/9yb4317s(v=vs.100).aspx

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 32

Step 2: Create a C# Windows Form Appl icat ion

Create a C# Windows Form Application. Include necessary Windows forms from the toolbox including serialPort. A snapshot
of the GUI that was created for the UART Bootloader provided with this application note is shown in Figure 46.

Figure 46. UART Bootloader Host GUI

Step 3: Import Essential Bootloader Functions from the dl l Created in Step 1

The methods and objects provided by the BootLoad_Utils.dll are accessed from the C# application using the Platform
Invoke (pInvoke) utility provided by Windows. Platform invoke is a service that enables managed code

1
 to call unmanaged

2

functions implemented in dynamic link libraries (DLLs). It locates and invokes an exported function and marshals its arguments
(integers, strings, arrays, structures, and so on). To use exported DLL functions:

a. Identify functions in the DLL that are directly invoked by the C# host application. This includes CyBtldr_Program(),
CyBtldr_Erase(), CyBtldr_Verify(), and CyBtldr_Abort().

b. Create a class to hold DLL functions. Specify the names of the functions and name of the DLL that contains them in the
class.

You can use an existing class, create an individual class for each unmanaged function, or create one class that contains a
set of unmanaged functions.

c. Create prototypes in managed code.

In C#, we use the DllImport attribute to identify the DLL and function. Mark the method with the static and extern

modifiers. Note that these prototypes are simple and do not define the required DllImport attributes. Refer to the source
code for details.

[[DllImport("BootLoad_Utils.dll")]

int CyBtldr_Program(string file, ref CyBtldr_CommunicationsData comm,

CyBtldr_ProgressUpdate update);

[DllImport("BootLoad_Utils.dll")]

int CyBtldr_Erase(string file, ref CyBtldr_CommunicationsData comm,

CyBtldr_ProgressUpdate update);

[DllImport("BootLoad_Utils.dll")]

int CyBtldr_Verify(string file, ref CyBtldr_CommunicationsData comm,

CyBtldr_ProgressUpdate update);

1
 Managed Code: Code that executes under the control of the .NET runtime is called managed code.

2
 Unmanaged Code: Code that runs outside the runtime is called unmanaged code.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 33

[DllImport("BootLoad_Utils.dll")]

int CyBtldr_Abort();

d. Call the DLL function. You can invoke the method in your C# code as you invoke any other method.

Step 4: Provide Defin i t ions for Communication Functions in Visual C#

A bootloader normally requires a particular communication protocol to send bootloader commands. The C files provided by
PSoC Creator provide C code that has functions to read the cyacd file and frame bootloader packets. You only need to define

the communication functions. Therefore, the following four unmanaged functions that correspond to the UART communication
must be managed in C# using the desired communications Component – UART in this example.

 OpenConnection()

 CloseConnection()

 ReadData()

 WriteData()

To achieve this, first define in C# the functions that perform OpenConnection, CloseConnection, ReadData, and WriteData.
Then use these functions as delegates to the functions OpenConnection(), CloseConnection(), ReadData(), and WriteData() in
BootLoad_Utils.dll.

For Example, to implement the CloseConnection function, do the following:

a. Indicate that a delegate will be used to implement the function:

[UnmanagedFunctionPointer(CallingConvention.Cdecl)]

public delegate int OpenConnection_UART();

b. Define the function in C#:

public int OpenConnection()

{

 /*Open communication channel*/

 serialPort.Open();

}

The above steps are required for all the delegated functions.

c. The structure “CyBtldr_CommunicationsData” present in cybtldr.h must be declared in the C# program as well. This is
done inside a class. See the “Bootload_Utils” class in the C# code attached.

[StructLayout(LayoutKind.Sequential)]

public struct CyBtldr_CommunicationsData

{

public OpenConnection_UART OpenConnection;

public CloseConnection_UART CloseConnection;

public ReadData_UART ReadData;

public WriteData_UART WriteData;

public uint MaxTransferSize;

};

d. Create an instance (comm_data) of the structure that we defined above:

Bootload_Utils.CyBtldr_CommunicationsData comm = new

Bootload_Utils.CyBtldr_CommunicationsData();

e. Delegate the members of the structure:

comm.OpenConnection = OpenConnection;

comm.CloseConnection = CloseConnection;

comm_data.ReadData = ReadData;

comm_data.WriteData = WriteData;

comm_data.MaxTransferSize = 64;

A brief explanation of what each function does for the UART Bootloader is given below.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 34

public delegate int OpenConnection_UART();

For the UART Bootloader, this function makes a connection to the selected com port.

public delegate int CloseConnection_ UART ();

This function closes the com port connection.

public delegate int ReadData_ UART (IntPtr buffer, int size);

This function waits for a timeout period for the data to be available in the input buffer. The data length is specified as size in
the above API and the pointer to the buffer is provided as IntPtr.

public delegate int WriteData_ UART(IntPtr buffer, int size);

This function writes data to the selected serial port. The data to be sent is preloaded in a buffer. The data length is specified as
size in the above API and the pointer to buffer is provided as IntPtr.

public delegate void CyBtldr_ProgressUpdate(byte arrayID, ushort rowNum);

This function provides a way to visualize the progress of the bootload operation. This function can be as simple as updating a
text box showing the percentage of progress or it can be something that updates a progress bar.

The definitions for the communication functions is given in delegated_functions.cs and BootLoad_Utils_NativeCode.cs in the

attached C# project.

Step 5: Complete the Windows Form Applicat ion

After the necessary APIs are imported and definitions are provided to the communications APIs described above, these are
used to implement various control operations. For example, pressing the Bootload button will initiate a bootload operation.

Therefore, on a button-click event, the function “Bootload_Utils.CyBtldr_Program” must be invoked.

Check the UART Bootloader Host C# project to see the detailed implementation of the host.

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 35

Document History

Document Title: PSoC

®
 3, PSoC 4, and PSoC 5LP UART Bootloader – AN68272

Document Number: 001-68272

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3208805 ANMD 03/27/2011 New application note.

*A 3471679 ANMD 12/22/2011 Revised AN with UART Bootloader Example

Updated template

*B 3623001 ANMD 05/22/2012 Updated figures 9 and 10, and tables 2 and 3. Minor text edits.

Added Appendix C.

Updated template and project files.

*C 3671377 ANMD 07/11/2012 Updated the Application Note project and document to PSoC Creator 2.1.

*D 3811899 PHAL 11/26/2012 Updated for PSoC 5LP

*E 3895950 PHAL 03/19/2013 Updated project files

Sunset review

*F 4078736 SRYP 07/31/2013 Updated to align with SPI and I2C bootloader application notes. Added a UART
bootloader host project. Added support for PSoC 4.

*G 4339454 RNJT 04/10/2014 Updated for PSoC Creator 3.0 SP1

*H 4435010 MKEA 07/17/2014 Added Appendix E – Bootloader and Device Reset

*I 4678368 VAIR 03/17/2015 Updated for PSoC Creator 3.1 CP1

Updated the screenshots of PC bootloader application

Sunset update

http://www.cypress.com/

PSoC
®
 3, PSoC 4, and PSoC 5LP UART Bootloader

 www.cypress.com Document No. 001-68272 Rev. *I 36

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2011-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=4749&source=home_products
http://www.cypress.com/?id=4749&source=home_products
http://www.cypress.com/go/psoc5lp
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

