S CYPRESS

- EMBEDDED IN TOMORROW™

Feasibility of Em_ EEPROM Shared
between Bootloader and Bootloadable

Ryan Zhao
FEB. 2020




Feasibility Analysis

Analysis of customer requirement:
If the end customer request is the case like this:
1. Shared Em_EEPROM between bootloader and bootloadable;
2. Em_EEPROM should
3. Agree to use last N rows only in the Flash as Em_EEPROM.
That means we don’t need to change the start address of checksum_excluded area, because checksum_excluded area will

always be last N rows by default.

Em_EEPROM(shared) area consideration (Page-3 Figure):
Based on the above case:
1. Metadata is started from address 0xffOO (last 2 rows) for the dual-app bootloader project.
2. There is 1024-Byte from address 0xfb0OO(8 rows) to metadata area(0xff00)
3. This 1024-Byte belongs to APP2, so set checksum_exclude area of APP2 as 1024 byte.

Test on CY8CKIT-041-41XX
- EEPROM Component v2.20
- Bootloader/Bootloadable v1.60
- PSoC Creator 4.2 Build641



metadata #1

metadata #2

0x0000ff00

<

Checksum exclude section
(user data)

»

\QXOOOObeO

1024-byte

e
»

The area under checksum
protection

a
-

app#2

dcCel

app#?2 flash

a

Checksum exclude section
(user data)

The area under checksum _
protection g

-
-

app#1

app#l flash space |

>

0x00000000

Bootloader

Classic Dual-app
Bootloader case

0x0000ff00

Name: | Bootloadable_2
~ General |* Dependendes |~ Built-in q P
Application version: Me1234
Application 1D: (0001
ation custom 1D (12345678

plication image placement

o ONNNANN
- =il

Apphy Cancel

Shared Em_EEPROM By Bootloader and Apps

Either Bootloader or Apps can access the Em_EEPROM:

In bootloader, initialize

109} f* Bootloader®/
113% Em EEPRCOM 1 Init (Oxfb00u):
111§ Em EEPRCM 1 Write(Ou, array bootloader, léu):;
In Appl
: Em EEPROM 2 Tnit (OxfbO0u):
E'El Em EEPROM 2 Write(léu, array app 1, leu):

Em EEPROM 3_Init (0xfb0O0u);

Em EEPRCM 3 Write(24u, array app 2, léu):




How to specify the start address of the shared Em_EEPROM?

In Em_EEPROM datasheet, it is documented as following.

For non-PSoC 6 devices, you must statically allocate the memory that will be used for
Em_EEPROM storage.

To do this, declare an array in flash aligned to the size of the device flash row. The
following is an example of such array declaration for GCC and MDK compilers:

const uintf emEeprom[Em EEPROM 1 PHYSICAL SIZE]
_ ALIGNED(CY_FLASH SIZECF_ROW) = {Ou};

Indeed, for non-P6 devices, the array “emEeprom[Em_EEPROM_PHYSICAL_SIZE]” is ONLY used for Em_EEPROM_Init(uint32 startAddress) to specify the
start address of Em_EEPROM, like below:

Em EEPROM Init((uint32 t) emEeprom);

Actually we can use the code following to specify the physical start address of Em_EERPOM

instead: Shared Em_EEPROM By Bootloader and Apps
Em_EE PROM_I nit((uint 3 2_t ) 0xfb00 )i 0x0000ff00 Either Bootloader or Apps can access the Em_EEPROM:
In bootloader, initialize
1395 /* Bootloader*®/
110} Em EEPROM 1 Init (0xfb00u);
1112 Em EEPROM 1 Write(Ou, array bootloader, léu):;
In Appl
57 /*Rpp 1%/
98| Em EEPROM 2 Init (0Oxfb00u);
99; Em EEPRCM 2 Write(léu, array app 1, leu):

. . In App2
In this case, we don’t need to define

“emEeprom[Em_EEPROM_PHYSICAL_SIZE]” any more. 100
0x0000fb00

[ *hRpp 2%/
Em EEPROM 3 Tnit (0Oxfb00u);
Em EEPROM 3 Write(24u, array_app 2, léu):

[ RN v Y
0




How to WRITE data in the shared Em_EEPROM in Firmware?

Writing API:
[Em_EEPROM _Instance_Name]_ Write( addr, void * eepromData, size)

T N\

Size(in byte) of
data to write

Logic address in

EEPROM Data array pointer

Writing Operation in each firmware:

In bootloader, write 16-byte(array_bootloader) from logic address 0 of em_eeprom(Em_EEPROM@):
555 uintf? t array bootleoader[le] = {0Oxe2, Oxec, Oxe4, Ox72, O0x31, Ox3l, Ox31, Ox3l, Ox3l, Ox31, Ox31, Ox3l, Ox3l, Ox31, Ox31l, Ox31l}:

59 /* b 1 d r 1 1 1 1 1 1 1 1 1 1 1 1
1395 /* Bootloadexr*/

113; Em EEPROM 1 Inirt (OxfbioOu):

1ll§ Em EEPROM 1 Write(Ou, array bootloader, 1léu):;

In App1, write 16-byte(array_app_1) from logic address 16 of em_eeprom(Em_EEPROM(2)):
55; uint® t array_app 1[16] = {0Ox6l, 0Ox70, 0Ox70, Ox31, 0Ox3Z, 0Ox3Z, 0Ox3Z, 0Ox3Z, 0Ox3Z, 0Ox3Z, 0Ox3Z, 0x3Z, 0x3Z, 0x3Z, 0x3Z, 0x3Z};

56; FE a o E 1 2 2 2 2 2 2 2 2 2 2 2 2
/*Bpp_1*/

QEE Em EEPROM 2 Tnit (OxfbOOu):

99; Em EEPRECHM 2 Write(léuw, array app 1, léu):

In App2, write 16-byte(array_app_2) from logic address 24 of em_eeprom (Em_EEPROM(3)):
55§ uintf t array app 2[le] = {0Oxel, Ox70, Ox70, Ox32, Ox33, Ox33, 0x33, 0x33, Ox33, Ox33, O=x33, Ox33, Ox33, Ox33, 0x33, 0Ox33};

6 a = ju 2 3 3 3 3 3 3 3 3 3 3 3 3
98 f*Rpp 2%/

oo Em EEPROM 3 Init (0xfb00u):

100 Em EEPROM 3 Write (24u, array app 2, léu):



How to READ data in the shared Em_EEPROM in Firmware?

Reading API:
[Em_EEPROM _Instance_Name] Read( addr, void * eepromData, size)

T N\

Size(in byte) of
data to write

Logic address in

EEPROM Data array pointer

. Test Results: Physical address storage:
In App2, read 16*3 byte from address 0 of em_eeprom:
. COMAS - \ fblOo: 31 31 31 31 31 31 31 31 31 31 31 31 00 00 00 00
1CIE.§ Em EEPRCM 3 Read(Ou, bldr_ read, 1léu): QLO'M BTN £020: 00 00 00 00 00 00 00 00 00 00 00 00
104! Em EEFPECHM 3 Eead(léu, appl read, léu): fB30:. 00
H - - - fb40: &2
1:15§ Em EEPRCM 3 Read(24u, appl_read, leu): N800 61
In App2, print(UART) first 4-byte of the array written by bootloader, app1 and app2 sk
114 for(::) :-\ 3
115 { fbb0: 00 00 00 00 00 00 00 O
11e UART Puthrray (kbldr read, 4u): ' SR Sy S e s O
117 UART PutString("\n\z"): S o 5000, D G0 T 5060000 08
118 UART Puthrray (appl read, 4u); ShEDH 99
119 UART_PutString ("\n\r"); fc10r 313131 31 3131 31 31 %
120 UART PuthArray (appZ_read, 4u); £c20 00
121 UART Put3tring("‘n'z"); J 00
;;"' 33 3; 3 3
e



Note:
In bootloader of the test project, need to tie PO[0] to VDDA to enter the device into “waiting for boot load command” mode.
Other wise Bootloader Host won’t work.



