
Feasibility of Em_EEPROM Shared
between Bootloader and Bootloadable

Ryan Zhao
FEB. 2020

Analysis of customer requirement:
If the end customer request is the case like this:
1. Shared Em_EEPROM between bootloader and bootloadable;
2. Em_EEPROM should
3. Agree to use last N rows only in the Flash as Em_EEPROM.
That means we don’t need to change the start address of checksum_excluded area, because checksum_excluded area will
always be last N rows by default.

Em_EEPROM(shared) area consideration (Page-3 Figure):
Based on the above case:
1. Metadata is started from address 0xff00 (last 2 rows) for the dual-app bootloader project.
2. There is 1024-Byte from address 0xfb00(8 rows) to metadata area(0xff00)
3. This 1024-Byte belongs to APP2, so set checksum_exclude area of APP2 as 1024 byte.

Feasibility Analysis

Test on CY8CKIT-041-41XX
- EEPROM Component v2.20
- Bootloader/Bootloadable v1.60
- PSoC Creator 4.2 Build641

0x0000ff00

0x0000fb00 1024-byte

Either Bootloader or Apps can access the Em_EEPROM:

In bootloader, initialize

In App1

In App2

Shared Em_EEPROM By Bootloader and Apps
0x0000ff00

0x0000fb00

In Em_EEPROM datasheet, it is documented as following.

Indeed, for non-P6 devices, the array “emEeprom[Em_EEPROM_PHYSICAL_SIZE]” is ONLY used for Em_EEPROM_Init(uint32 startAddress) to specify the
start address of Em_EEPROM, like below:

Em_EEPROM_Init((uint32_t) emEeprom);

Actually we can use the code following to specify the physical start address of Em_EERPOM
instead:

Em_EEPROM_Init((uint32_t) 0xfb00);
Either Bootloader or Apps can access the Em_EEPROM:

In bootloader, initialize

In App1

In App2

Shared Em_EEPROM By Bootloader and Apps
0x0000ff00

0x0000fb00

How to specify the start address of the shared Em_EEPROM?

In this case, we don’t need to define
“emEeprom[Em_EEPROM_PHYSICAL_SIZE]” any more.

How to WRITE data in the shared Em_EEPROM in Firmware?

In bootloader, write 16-byte(array_bootloader) from logic address 0 of em_eeprom(Em_EEPROM①):

In App1, write 16-byte(array_app_1) from logic address 16 of em_eeprom(Em_EEPROM②):

In App2, write 16-byte(array_app_2) from logic address 24 of em_eeprom (Em_EEPROM③):

Writing API:
[Em_EEPROM_Instance_Name]_Write(uint32 addr, void * eepromData, uint32 size)

Writing Operation in each firmware:

Test Results:
In App2, read 16*3 byte from address 0 of em_eeprom:

In App2, print(UART) first 4-byte of the array written by bootloader, app1 and app2

Physical address storage:

How to READ data in the shared Em_EEPROM in Firmware?

Reading API:
[Em_EEPROM_Instance_Name]_Read(uint32 addr, void * eepromData, uint32 size)

Note：
In bootloader of the test project, need to tie P0[0] to VDDA to enter the device into “waiting for boot load command” mode.
Other wise Bootloader Host won’t work.

