
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-79294 Rev. *A Revised December 4, 2012

Features
 8- or 16-bit interface to Graphic LCD Controller

 Compatible with many graphic controller devices

 Interfaces with SEGGER emWin graphics library

 Performs read and write transactions

 2 to 255 cycles for read low pulse width

 1 to 255 cycles for read high pulse width

 Implements typical i8080 interface

General Description
The Graphic LCD Interface (GraphicLCDIntf) component provides the interface to a graphic LCD
controller and driver device. These devices are commonly integrated into an LCD panel. The
interface to these devices is commonly referred to as an i8080 interface. This is a reference to
the historic parallel bus interface protocol of the Intel 8080 microprocessor.
This component is designed to work with the SEGGER emWin graphics library. This graphics
library is provided by Cypress to use with Cypress devices and is available on the Cypress
website at www.cypress.com/go/comp_emWin. This graphics library provides a full-featured set
of graphics functions for drawing and rendering text and images.

When to Use a GraphicLCDIntf
LCD controllers and driver devices are commonly integrated into an LCD panel. They either
include or provide the interface to the frame buffer for the display and manage that buffer. The
GraphicLCDIntf component performs read and write transactions to this controller. These
transactions have the following parameters:

 Read or write

 Address: A one-bit address driven on the d_c pin

 Data (8 or 16 bits): Sent on “do” for writes and read on “di” for reads

Graphic LCD Interface (GraphicLCDIntf)
1.70

http://www.cypress.com/go/comp_emWin

Graphic LCD Interface (GraphicLCDIntf)

Page 2 of 20 Document Number: 001-79294 Rev. *A

The GraphicLCDIntf component supports many controllers. Use these three parameters when
you configure this component.

 Clock frequency: The frequency for the clock driving this component is often limited by
minimum pulse width low for the write signal (this value can be found in the Graphic LCD
Controller datasheet). The write pulse is low for a single clock period, so set the clock
frequency to satisfy this requirement.

 Read pulse width high: This setting in the customizer is measured in clock cycles. The clock
period times the number of cycles set for the pulse width high must satisfy the requirement
for read pulse width high for the controller.

 Read pulse width low: This parameter is set in the same way as the read pulse width high
parameter. The timing for the read pulse width low must satisfy the controller’s requirement
for the read pulse width and the requirement for read access time. The data is sampled one
clock cycle before the end of the active low read pulse, so the pulse width must be long
enough that the access time is satisfied

The following lists the settings for the applicable LCD controller:

Solomon Systech SSD1289

 Clock frequency: 20 MHz (50 ns)

 Read pulse width high: 10 clock cycles (500 ns)

 Read pulse width low: 10 clock cycles (500 ns)

Solomon Systech SSD2119

 Clock frequency: 25 MHz (40 ns)

 Read pulse width high: 13 clock cycles (500 ns)

 Read pulse width low: 13 clock cycles (500 ns)

Himax HX8347A

 Clock frequency: 28.5 MHz (35 ns)

 Read pulse width high: 3 clock cycles (105 ns)

 Read pulse width low: 11 clock cycles (385 ns)

ILITEK ILI9325

 Clock frequency: 20 MHz (50 ns)

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 3 of 20

 Read pulse width high: 3 clock cycles (150 ns)

 Read pulse width low: 3 clock cycles (150 ns)

Epson S1D13743

 Clock frequency: 33 MHz (33.3 ns)

 Read pulse width high: 2 clock cycles (67 ns)

 Read pulse width low: 5 clock cycles (167 ns)

Input/Output Connections
This section describes the input and output connections for the GraphicLCDIntf component. An
asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol under the
conditions listed in the description of that I/O.

clock
The clock that operates this component. The GraphicLCDIntf operates entirely from a single
clock connected to the component.

di_lsb[7:0]
The lower eight bits of the input data bus. They are used for data during a read transaction.
Connect these to an input pin on the device and disable the “Input Synchronized” selection for
this pin. The signals themselves are inherently synchronized because they are driven based on
synchronous output signals.

di_msb[7:0] *
The upper eight bits of the input data bus. They are used for data during a read transaction.
They are only present for 16-bit interface mode.
Connect these signals to an input pin on the device and disable the “Input Synchronized”
selection for this pin. The signals themselves are inherently synchronized because they are
driven based on synchronous output signals.

do_lsb[7:0]
The lower eight bits of the output data bus. They are used for data during a write transaction.

Graphic LCD Interface (GraphicLCDIntf)

Page 4 of 20 Document Number: 001-79294 Rev. *A

do_msb[7:0] *
The upper eight bits of the output data bus. They are used for data during a write transaction.
They are only present for 16-bit interface mode.

oe
The output enable for the data bus. It is normally connected to the output enable of the
Input/Output pin component for the data buses. Refer to the Schematic Macro Information to see
how this signal is used.

d_c
Data/Command signal. This signal indicates a data transaction when high and a command
transaction when low.

ncs
Active-low chip select.

nwr
Active-low write control signal.

nrd
Active-low read control signal.

Schematic Macro Information
PSoC Creator supplies two macros in addition to the standard symbol entry in the component
catalog. One macro is for an 8-bit implementation connected to pins and a clock. The other is for
a 16-bit implementation connected to pins and a clock.

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 5 of 20

Each macro has the clock set to 20 MHz and the pulse width settings left at the default. These
are the correct settings for the SSD1289 Controller.
The “Input Synchronized” option is unchecked on all of the data pins and API generation for all of
the pins is turned off.

Component Parameters
Drag a GraphicLCDIntf component onto your design and double-click it to open the Configure
dialog. The default GraphicLCDIntf settings are the proper settings for operation with the
Solomon Systech SSD1289 Controller.

Bus Width
Determines whether the component supports an 8- or 16-bit parallel interface to a graphic LCD
controller. The default setting is 16 bit.

Low Pulse Width Time
Determines the number of clock cycles required for the read pulse width low for the controller.
This value can be set between 2 and 255 clock cycles (the minimum is 2 because the read value
must be sampled one clock before the end of the pulse). The default setting is 10.

High Pulse Width Time
Determines the number of clock cycles required for read pulse width high for the controller. This
value can be set between 1 and 255 clock cycles. The default setting is 10.

Graphic LCD Interface (GraphicLCDIntf)

Page 6 of 20 Document Number: 001-79294 Rev. *A

Clock Selection
There is no internal clock in this component. You must attach a clock source. This component
operates from a single clock connected to the component.

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections discuss each function in more detail.
By default, PSoC Creator assigns the instance name “GraphicLCDIntf_1” to the first instance of
a component in a given design. You can rename the instance to any unique value that follows
the syntactic rules for identifiers. The instance name becomes the prefix of every global function
name, variable, and constant symbol generated for the component. For readability, the instance
name used in the following table is “GraphicLCDIntf.”

Function Description

GraphicLCDIntf_Start() Starts the GraphicLCDIntf interface.

GraphicLCDIntf_Stop() Disables the GraphicLCDIntf interface.

GraphicLCDIntf_Write8() Initiates a write transaction on the 8-bit parallel interface.

GraphicLCDIntf_Write16() Initiates a write transaction on the 16-bit parallel interface.

GraphicLCDIntf_WriteM8() Initiates multiple write transactions on the 8-bit parallel interface.

GraphicLCDIntf_WriteM16() Initiates multiple write transactions on the 16-bit parallel interface.

GraphicLCDIntf_Read8() Initiates a read transaction on the 8-bit parallel interface.

GraphicLCDIntf_Read16() Initiates a read transaction on the 16-bit parallel interface.

GraphicLCDIntf_Sleep() Saves the configuration and disables the GraphicLCDIntf.

GraphicLCDIntf_Wakeup() Restores the configuration and enables the GraphicLCDIntf.

GraphicLCDIntf_Init() Initializes or restores the default GraphicLCDIntf configuration.

GraphicLCDIntf_Enable() Enables the GraphicLCDIntf.

GraphicLCDIntf_SaveConfig() Saves the configuration of the GraphicLCDIntf.

GraphicLCDIntf_RestoreConfig() Restores the configuration of the GraphicLCDIntf.

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 7 of 20

Global Variables
Variable Description

GraphicLCDIntf_initVar Indicates whether the Graphic LCD Interface has been initialized. The variable is
initialized to 0 and set to 1 the first time GraphicLCDIntf_Start() is called. This allows the
component to restart without reinitialization after the first call to the
GraphicLCDIntf_Start() routine.
If reinitialization of the component is required then the GraphicLCDIntf_Init() function can
be called before the GraphicLCDIntf_Start() or GraphicLCDIntf_Enable() function.

void GraphicLCDIntf_Start(void)
Description: This function enables Active mode power template bits or clock gating as appropriate.

Configures the component for operation.

Parameters: None

Return Value: None

Side Effects: None

void GraphicLCDIntf_Stop(void)
Description: This function disables Active mode power template bits or gates clocks as appropriate.

Parameters: None

Return Value: None

Side Effects: None

void GraphicLCDIntf_Write8(uint8 d_c, uint8 data)
Description: This function initiates a write transaction on the 8-bit parallel interface. The write is a posted

write, so this function returns before the write has actually completed on the interface. If the
command queue is full, this function does not return until space is available to queue this
write request.

Parameters: d_c: Data (1) or Command (0) indication. Passed to the d_c pin

data: Data sent on the do_lsb[7:0] pins

Return Value: None

Side Effects: None

Graphic LCD Interface (GraphicLCDIntf)

Page 8 of 20 Document Number: 001-79294 Rev. *A

void GraphicLCDIntf_Write16(uint8 d_c, uint16 data)
Description: This function initiates a write transaction on the 16-bit parallel interface. The write is a

posted write, so this function returns before the write has actually completed on the
interface. If the command queue is full, this function does not return until space is available
to queue this write request.

Parameters: d_c: Data (1) or Command (0) indication. Passed to the d_c pin

data: Data sent on the do_msb[7:0] (most significant byte) and do_lsb[7:0] (least significant
byte) pins

Return Value: None

Side Effects: None

void GraphicLCDIntf_WriteM8(uint8 d_c, uint8 * data, uint16 num)
Description: This function initiates multiple write transactions on the 8-bit parallel interface. Writing of

multiple bytes with one execution of GraphicLCDIntf_WriteM8, instead of multiple
executions of GraphicLCDIntf_Write8 increases the write performance on the interface.

Parameters: d_c: Data (1) or Command (0) indication. Passed to the d_c pin

data: Pointer to a write buffer. Data from the buffer are sent on the do_lsb[7:0] pins

num: Number of bytes to write

Return Value: None

Side Effects: None

void GraphicLCDIntf_WriteM16(uint8 d_c, uint16 * data, uint16 num)
Description: This function initiates multiple write transactions on the 16-bit parallel interface. Writing of

multiple words with one execution of GraphicLCDIntf_WriteM16, instead of multiple
executions of GraphicLCDIntf_Write16 increases the write performance on the interface.

Parameters: d_c: Data (1) or Command (0) indication. Passed to the d_c pin

data: Pointer to a write buffer. Data from the buffer are sent on the do_msb[7:0] (most
significant byte) and do_lsb[7:0] (least significant byte) pins

num: Number of words to write

Return Value: None

Side Effects: None

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 9 of 20

uint8 GraphicLCDIntf_Read8(uint8 d_c)
Description: This function initiates a read transaction on the 8-bit parallel interface. The read executes

after all currently posted writes have completed. This function waits until the read
completes and then returns the read value.

Parameters: d_c: Data (1) or Command (0) indication. Passed to the d_c pin.

Return Value: 8-bit read value from the di_lsb[7:0] pins

Side Effects: None

uint16 GraphicLCDIntf_Read16(uint8 d_c)
Description: This function initiates a read transaction on the 16-bit parallel interface. The read executes

after all currently posted writes have completed. This function waits until the read
completes and then returns the read value.

Parameters: d_c: Data (1) or Command (0) indication. Passed to the d_c pin.

Return Value: 16-bit read value from the di_msb[7:0] (most significant byte) and di_lsb[7:0] (least
significant byte) pins

Side Effects: None

void GraphicLCDIntf_Sleep(void)
Description: This is the preferred routine to prepare the component for sleep. The

GraphicLCDIntf_Sleep() routine saves the current component state. Then it calls the
GraphicLCDIntf_Stop() function and calls GraphicLCDIntf_SaveConfig() to save the
hardware configuration. Disables Active mode power template bits or clock gating as
appropriate.
Call the GraphicLCDIntf_Sleep() function before calling the CyPmSleep() or the
CyPmHibernate() function. See the PSoC Creator System Reference Guide for more
information about power-management functions.

Parameters: None

Return Value: None

Side Effects: None

Graphic LCD Interface (GraphicLCDIntf)

Page 10 of 20 Document Number: 001-79294 Rev. *A

void GraphicLCDIntf_Wakeup(void)
Description: This is the preferred routine to restore the component to the state when

GraphicLCDIntf_Sleep() was called. The GraphicLCDIntf_Wakeup() function calls the
GraphicLCDIntf_RestoreConfig() function to restore the configuration. If the component was
enabled before the GraphicLCDIntf_Sleep() function was called, the
GraphicLCDIntf_Wakeup() function also re-enables the component. Enables Active mode
power template bits or clock gating as appropriate.

Parameters: None

Return Value: None

Side Effects: Calling the GraphicLCDIntf_Wakeup() function without first calling the
GraphicLCDIntf_Sleep() or GraphicLCDIntf_SaveConfig() function can produce unexpected
behavior.

void GraphicLCDIntf_Init(void)
Description: This function initializes or restores the component according to the customizer Configure

dialog settings. It is not necessary to call GraphicLCDIntf_Init() because the
GraphicLCDIntf_Start() routine calls this function and is the preferred method to begin
component operation. Only the static component configuration that defines Read Low and
High Pulse Widths will be restored to its initial values.

Parameters: None

Return Value: None

Side Effects: This reinitializes the component but it does not clear data from the FIFOs, and it does not
reset the component hardware state machine. The current transaction is performed on the
bus.

void GraphicLCDIntf_Enable(void)
Description: This function activates the hardware and begins component operation. It is not necessary

to call GraphicLCDIntf_Enable() because the GraphicLCDIntf_Start() routine calls this
function, which is the preferred method to begin component operation.

Parameters: None

Return Value: None

Side Effects: None

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 11 of 20

void GraphicLCDIntf_SaveConfig(void)
Description: This function saves the component configuration and nonretention registers. It also saves

the current component parameter values, as defined in the Configure dialog or as modified
by appropriate APIs. This function is called by the GraphicLCDIntf_Sleep() function. The
compile-time component configuration that defines read low and high pulse widths is
stored.

Parameters: None

Return Value: None

Side Effects: None

void GraphicLCDIntf_RestoreConfig(void)
Description: This function restores the configuration of GraphicLCDIntf nonretention registers. The API

is called by GraphicLCDIntf_Wakeup to restore component nonretention registers.

Parameters: None

Return Value: None

Side Effects: If this API is called before GraphicLCDIntf_SaveConfig(), the component configuration for
read low and high pulse widths is restored to the values provided with the customizer.

MISRA Compliance
This section describes the MISRA-C:2004 compliance and deviations for the component. There
are two types of deviations defined:
 project deviations – deviations that are applicable for all PSoC Creator components

 specific deviations – deviations that are applicable only for this component
This section provides information on component-specific deviations. Project deviations are
described in the MISRA Compliance section of the System Reference Guide along with
information on the MISRA compliance verification environment.
The GraphicLCDIntf component has not been verified for MISRA-C:2004 coding guidelines
compliance.

Sample Firmware Source Code
PSoC Creator provides many example projects that include schematics and example code in the
Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.

Graphic LCD Interface (GraphicLCDIntf)

Page 12 of 20 Document Number: 001-79294 Rev. *A

Refer to the “Find Example Project” topic in the PSoC Creator Help for more information..

Functional Description

Bus Transactions
This interface can perform either a read or a write transaction. These transactions have the
following parameters:

 Read or write

 Address: In this case it is a one bit address driven on the d_c pin

 Data (8 or 16 bits): Sent on “do” for writes and read on “di” for reads.
The implementation assumes that the CPU sends a command byte to the component using a
command FIFO. That command byte indicates read or write and provides the d_c bit.

Idle Condition
When neither a read nor a write is occurring on the interface, the interface is in the idle state.
The values for the output pins in that condition are:

 d_c: Don’t care (may be left at its last state)

 ncs: 1

 nwr: 1

 nrd: 1

 do: Don’t care (may be left at its last state)

 oe: 0
In the description of the read and write transactions, any signal not listed is idle.

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 13 of 20

Write Transaction
Figure 1 shows the timing diagram for a write transaction on the parallel interface.

Figure 1. Write Transaction Timing Diagram

d_c

ncs

nwr

do

oe

This diagram shows that the write transaction requires three clock cycles. The timing diagram is
the same regardless of the bit width. This transaction can be immediately preceded or followed
by another read or write transaction or may be in the idle state before or after a write transaction.
The interface to the CPU allows the CPU to make posted write requests (request a write
providing the address and data and then proceed before the transaction is actually completed on
parallel bus). The implementation allows the CPU to have four write requests outstanding without
stalling.

Read Transaction
Figure 2 shows the timing diagram for a read transaction on the parallel interface.

Figure 2. Read Transaction Timing Diagram

This diagram shows that the read transaction requires a variable number of clock cycles
depending on the setting for the high and low read pulse widths. The timing diagram is the same

Graphic LCD Interface (GraphicLCDIntf)

Page 14 of 20 Document Number: 001-79294 Rev. *A

regardless of the bit width. Note that the data input is sampled one clock cycle before the end of
the ncs and nrd low pulses. This transaction can be immediately preceded or followed by
another read or write transaction or may be in the idle state before or after a read transaction.
The ordering of reads and writes is maintained (reads occur before posted writes have
completed). Reads require the CPU to wait for the completion of the read transaction before
proceeding.

Block Diagram and Configuration
The GraphicLCDIntf component is implemented as a set of configured UDBs. Figure 3 shows
this implementation.

Figure 3. Block Diagram

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 15 of 20

Registers

GraphicLCDIntf_STATUS_REG
Bits 7 6 5 4 3 2 1 0

Value reserved data_valid F0_half_ empty

 F0_half_empty: If set, there is at least two bytes of room in the command/data FIFO.

 data_valid: Set if read data is valid for the CPU. This bit is cleared when the CPU reads the
register.

GraphicLCDIntf_DIN_LSB_DATA_REG
Bits 7 6 5 4 3 2 1 0

Value di_lsb[7:0]

 The lower eight bits of the input data bus for read transaction
You can read the register value with the GraphicLCDIntf_Read8() API function for an 8-bit
interface. The value is the least significant byte of returned value from the
GraphicLCDIntf_Read16() API function for a 16-bit interface.

GraphicLCDIntf_DIN_MSB_DATA_REG
Bits 7 6 5 4 3 2 1 0

Value di_msb[7:0]

 The upper eight bits of the input data bus for read transaction
The register value is the most significant byte of returned value from the
GraphicLCDIntf_Read16() API function for a 16-bit interface.
Note The DIN_LSB_DATA_REG and DIN_MSB_DATA_REG bits are cleared when CPU
firmware reads these registers.

Resources
The Graphic LCD Interface component is placed throughout the UDB array. The component
utilizes the following resources.

Configuration
Resource Type

Datapath
Cells Macrocells Status

Cells
Control

Cells
DMA

Channels Interrupts

8-bit interface 1 11 2 – – –

16-bit interface 2 11 3 – – –

Graphic LCD Interface (GraphicLCDIntf)

Page 16 of 20 Document Number: 001-79294 Rev. *A

API Memory Usage
The component memory usage varies significantly, depending on the compiler, device, number
of APIs used and component configuration. The following table provides the memory usage for
all APIs available in the given component configuration.
The measurements have been done with the associated compiler configured in Release mode
with optimization set for Size. For a specific design the map file generated by the compiler can
be analyzed to determine the memory usage.

Configuration
PSoC 3 (Keil_PK51) PSoC 5 (GCC) PSoC 5LP (GCC)

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

Flash
Bytes

SRAM
Bytes

8-bit interface 158 1 256 5 184 1

16-bit interface 196 1 264 5 192 1

DC and AC Electrical Characteristics
Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, except where noted.
Specifications are valid for 1.71 V to 5.5 V, except where noted.

DC Characteristics
Parameter Description Min Typ[1] Max Units

IDD(8-bit) Component current consumption

Idle current[2] – 5 – µA/MHz

Write current[3] – 10 – µA

IDD(16-bit) Component current consumption

Idle current[2] – 8 – µA/MHz

Write current[3] – 20 – µA

1. Device IO and clock distribution current not included. The values are at 25 °C.

2. Current consumed by component while no transactions are performed on the interface.

3. Additional current consumed when component is performing write transactions on the interface. This value represents the
current consumption for each 100K writes per second. This value should be added to the Idle current.

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 17 of 20

AC Characteristics
Parameter Description Min Typ Max Unit

fCLOCK Component clock frequency − − 33 MHz

tAS Address setup time 1 − − tCY_clock
[4]

tPWLW Pulse width low write − 1 − tCY_clock

tPWHW Pulse width high write 3 − − tCY_clock

tPWLR Pulse width low read 2 − 255 tCY_clock

tPWHR Pulse width high read 1 − 255 tCY_clock

tAH Address hold time

Write 2 − − tCY_clock

Read tPWHR − − tCY_clock

tCYCLE Clock cycle time

Write cycle 4 − − tCY_clock

Read cycle tPWLR +
tPWRH + 1

− − tCY_clock

tDSW Data setup time − 1 − tCY_clock

tDHW Data hold time − 1 − tCY_clock

tACC Data access time − tPWHR – 1 − tCY_clock

tDHR Output hold time − 0 − tCY_clock

4. tCY_clock = 1/fCLOCK. This is the cycle time of one clock period

Graphic LCD Interface (GraphicLCDIntf)

Page 18 of 20 Document Number: 001-79294 Rev. *A

Figure 4. Data Transition Timing Diagram

 Graphic LCD Interface (GraphicLCDIntf)

Document Number: 001-79294 Rev. *A Page 19 of 20

How to Use STA Results for Characteristics Data
You can calculate the maximums for your designs with the Static Timing Analysis (STA) results
using the following methods:
fCLOCK Maximum component clock frequency appears in Timing results in the clock summary as

the named component clock (CLK in this case). The following graphic shows an example
of the clock limitations.

The remaining parameters are implementation-specific and are measured in clock cycles. They
can be divided into two categories.

 The parameters that are used to configure the component:
tPWLW The minimum pulse width low time for the write signal
tPWLR The minimum pulse width low time for the read signal
tPWHR The minimum pulse width high time for the read signal
You can find the specific description of how to use these parameters when configuring the
component in the When to Use a GraphicLCDIntf section on page 1.

 The parameters that are fixed based on the component implementation:
tPWHW The minimum pulse width high time for the write signal
tAS The minimum amount of time the address signal is valid before the falling edge of the

nwr/nrd signal
tAH The minimum amount of time the address signal is valid after the rising edge of the

nwr/nrd signal
tCYCLE The period of time during which a single transaction (write/read) is performed on the

interface
tDSW The minimum amount of time the data is valid before the rising edge of the write

signal
tDHW The minimum amount of time the data is valid after the rising edge of the write signal
tACC The minimum amount of time the data is sampled after the negative edge of the read

signal
tDHR The minimum amount of time the data should be valid after rising edge of the nrd

signal

Graphic LCD Interface (GraphicLCDIntf)

Page 20 of 20 Document Number: 001-79294 Rev. *A

Component Changes
This section lists the major changes in the component from the previous version.

Version Description of Changes Reason for Changes / Impact

1.70.a Added MISRA Compliance section. The component was not verified for MISRA compliance.

1.70 Added GraphicLCDIntf_WriteM8/16
APIs to the component.

Increase the performance of image drawing operations of the
emWin graphics library.

Added DC characteristics section to
datasheet.

1.61 Added all component APIs with the
CYREENTRANT keyword when they
are included in the .cyre file.

Not all APIs are truly reentrant. Comments in the component
API source files indicate which functions are candidates.
This change is required to eliminate compiler warnings for
functions that are not reentrant used in a safe way: protected
from concurrent calls by flags or Critical Sections.

Added timing constraints to mark
false timing paths in the component.

Removes paths that are not used from timing analysis. This
avoids false timing violation messages.

1.60.a Removed references to the
associated kits from the datasheet.

1.60 Resampled the FIFO block status
signals to the DP clock.

Allows the component to function with the same timing results
for all PSoC 3 and PSoC 5 silicons.

Added characterization data to the
datasheet

Minor datasheet edits and updates

© Cypress Semiconductor Corporation, 2012. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used
for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for
use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-
support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use a GraphicLCDIntf
	Solomon Systech SSD1289
	Solomon Systech SSD2119
	Himax HX8347A
	ILITEK ILI9325
	Epson S1D13743

	Input/Output Connections
	clock
	di_lsb[7:0]
	di_msb[7:0] *
	do_lsb[7:0]
	do_msb[7:0] *
	oe
	d_c
	ncs
	nwr
	nrd

	Schematic Macro Information
	Component Parameters
	Bus Width
	Low Pulse Width Time
	High Pulse Width Time

	Clock Selection
	Application Programming Interface
	Global Variables
	void GraphicLCDIntf_Start(void)
	void GraphicLCDIntf_Stop(void)
	void GraphicLCDIntf_Write8(uint8 d_c, uint8 data)
	void GraphicLCDIntf_Write16(uint8 d_c, uint16 data)
	void GraphicLCDIntf_WriteM8(uint8 d_c, uint8 * data, uint16 num)
	void GraphicLCDIntf_WriteM16(uint8 d_c, uint16 * data, uint16 num)
	uint8 GraphicLCDIntf_Read8(uint8 d_c)
	uint16 GraphicLCDIntf_Read16(uint8 d_c)
	void GraphicLCDIntf_Sleep(void)
	void GraphicLCDIntf_Wakeup(void)
	void GraphicLCDIntf_Init(void)
	void GraphicLCDIntf_Enable(void)
	void GraphicLCDIntf_SaveConfig(void)
	void GraphicLCDIntf_RestoreConfig(void)

	MISRA Compliance
	Sample Firmware Source Code
	Functional Description
	Bus Transactions
	Idle Condition
	Write Transaction
	Read Transaction

	Block Diagram and Configuration
	Registers
	GraphicLCDIntf_STATUS_REG
	GraphicLCDIntf_DIN_LSB_DATA_REG
	GraphicLCDIntf_DIN_MSB_DATA_REG

	Resources
	API Memory Usage
	DC and AC Electrical Characteristics
	DC Characteristics
	AC Characteristics
	How to Use STA Results for Characteristics Data

	Component Changes

