Saturday,July 14,2012

3:41PM

APR96: ALGORITHM ALLEY Page 1 of 6

ALGORITHM ALLEY
A Fast I nteger Square Root

Peter Heinrich

Peter is a video and computer game programmer who has worked on products for Amiga, PC, Sega,
3DO, and Macintosh. He's currently working for Starwave and can be contacted at
peterh@starwave.com.

Complex calculation has dways frustrated speed-conscious programmers, since mathematical formulas
often form bottlenecks in programs that rely on them. To cope with this problem, three primary tactics
have evolved: eliminate, simplify, and be tricky.

Rarely will aprogrammer eliminate a calculation completely. (If a program operates without it, why was
it there in the first place?) Instead, integer or fixed-point may replace expensive floating-point math. At
the same time, a simpler version of the formulamay be sought--one which is easier to compute but gives
roughly the same result.

If this proves difficult (as it often does), atricky solution may provide the answer. This approach
requires dmost as much luck as programming skill, and is definitely the most difficult. Then again, the
fun isin the challenge.

Trick or Treat

The square-root function certainly qualifies as a complex caculation, as anyone who has actually
computed one by hand will readily attest. In general, square roots are avoided in speed-critical code, and
rank even higher than division on the list of things to avoid. The technique | present here is an iterative
approach to finding LvN, the largest integer |ess than or equal to the square root of N. Like many tricky
solutions, it's aso simple, fast, and elegant.

Before attacking the actua agorithm, it might be useful to look briefly at two other iterative methods for
computing the square root. Example 1(a) simply applies Newton's Method, a straightforward way to
zeroinon avaluegiven an initia guess. This method is theoretically fast, having order O(log,N).

Unfortunately, it uses alot of multiplication, which may form a bottleneck in itself.

Example 1(b) uses a different approach, summing terms until they exceed N. The number of terms
summed to that point is the square root of N. While this method eliminates the multiplication, it has a
higher order of O(vN) .

It would be niceto find a practical agorithm that also is efficient, that is, one which requires only
elementary operations but aso is of low order. The Binomia Theorem suggests a possible gpproach.
Assume vN is the sum of two numbers, uand v. Then N=(u+ v)2=uz+2uv+ V. Choosing uand v
carefully may simplify calculation of the quadratic expansion. But what constitutes a good choice?

Finding Your Roots

http://collaboration.cmc.ec.ge.ca/science/rpr/biblio/ddj/Website/articles) DD J/1996/9604/9... 7/14/2012

Unfiled Notes Page 1

APR96: ALGORITHM ALLEY Page 2 of 6

For any number N, it's easy to determine JogzNJ--sj mply find the position of the highest set bit.
Similarly, llog,/NI=llog, N'"2|=11/2 log,N! indicates the position of highest bit set in result, VNl Now

the problem just entails finding which of the remaining (less
significant) bits, if any, also are set in vl

Let u=2."/2109, N|; thet i, et 1 teke the value of the highest bit set in the result, lYAL 1t isn't known
if the next-lower bit is also set in the result, so let v take its value, then sol ve
u2+2uv+v2, This calculation is easy because each termis a sinple shift. Since v is
known to be a power of two, even the middle term 2uv, reduces to a shift operation.

If the sum of al three terms is less than or equal to N, the next-lower bit must be set. In that case, the
result just computed will be used for 12 and u=u+v for the next iteration. If the sum is greater than N,
the next lower bit isn't set, so v remains unchanged. In either case, move on to the next-lower bit and

repeat the process until there are no more bits to test.

Example 2(a) implements (in C) an dgorithm that appears to satisfy both design goals. It uses only
elementary operations (addition and shift) and is extremely efficient, weighing in a O(log, vN) .
However, a few minor optimzations still can be performed: determining .1/2 f092 n
can be inmproved; v doesn't have to be reconputed fromscratch every iteration; and
noticing that 2uv+v2=v(2u+v) sinplifies some conputation inside the |oop. Exanple 2
(b) is the final result.

Actually, many assembly languages make thefirst optimization moot. In fact, two of the three assembler
listings presented here use a shortcut. Only the ARM processor lacks a specidized instruction to find the
highest set bit in a number (but it'sa RISC chip, after all). Listings One through Three present
implementations of the optimized algorithm for the Motorola 68020, Intel 80386, and ARM family of
processors, respectively.

Conclusion

For programmers developing high-performance code, complex mathematical calculation is not always
practical. Some may spurn floating-point math altogether, especialy if a math coprocessor isn't
guaranteed to be present on the target platform. The agorithm | present here computes an integer square
root suitable for just such situations. Even as hardware speeds increase, programs demand more and
more. Fast and elegant little tricks like this one can still be useful.

Example 1: (a) Newton's M ethod; (b) summing terms.

(a)
/1 Newton's Method -- O log2 N)
unsigned |ong sqroot(unsigned long N)
{

unsigned long n, p, |low high;

if(2 >N)

return(N);

low = 0;

high = N

while(high > low + 1)

{

n

(high + low) / 2;
p - .

n n;

http://collaboration.cmc.ec.ge.calscience/rpn/biblio/dd) /\Website/articles DD J/1996/9604/9... 7/14/2012

Unfiled Notes Page 2

APR96: ALGORITHM ALLEY Page 3 of 6

if(N<p)
high = n;

else if(N>p)
low = n;

el se
break;

return(N==p ?2n: low);

}

(b)
// Summing terns -- sqrt N)
unsi gned | ong sqroot(unsigned long N)

{
unsigned long n, u, v;
if(2>N)
return(N);
u = 4
v = 5;
for(n =1, u<=N n++)
{
u += V;
v += 2;
return(n);
}

Example 2: (a) Binomial theorem; (b) optimized binomial theorem.

(a)
// Binomal Theorem-- 1/2 log2 N)
unsi gned | ong sqroot(unsigned long N)
{
unsigned long 12, u, v, u2, v2, uv2, n;
if(2>N)
return(N);
u =N
12 =0;
while(u >>= 1)
| 2++;
12 >>= 1;
u =1L << | 2;
u2 = u << 12;
while(12--)
{
1L << 1'2;
v << | 2;
u<< (12 +1);
u2 + uv2 + v2;
<= N)

v
v2
uv2

Sunuwounn

n
i f(
{
+= v;

cc
N

}

return(u);

(b)

http://collaboration.cmc.ec.ge.calscience/rprvbiblio/ddj/Website/articles' DD J1996/9604/9... 7/14/2012

Unfiled Notes Page 3

APR96: ALGORITHM ALLEY Page 4 of 6

// Optimzed Binomal Theorem
unsi gned | ong sqroot(unsigned long N)

{
unsigned long 12, u, v, u2, n;
if(2>N)
return(N);
u =N
12 =0;
while(u >>=2)
| 2++;
u =1L << | 2;
v = u;
u2 = u << |2
while(12--)
{
v >>= 1;
n =(u+u+yv) <<|2
n += u2;
if(n<=N)
{
u += v,
u2 = n;
}
return(u);
}
Listing One
MACHI NE MC68020
EXPORT sqroot
;5 unsigned long sqroot(unsigned long N).
;5 This routine assumes standard standard Macintosh C calling conventions,
;7 so it expects argument N to be passed on the stack. Macintosh C register
;» conventions specify that dO-d1/a0-a1 are scratch.
sqroot PRCC
; If N<2, return N otherwi se, save non-scratch registers.
nmove. | 4(sp),do ; just past the return address
crpi . | #2,d0
bes. b done
movem | d2-d3,-(sp)
; Conpute the position of the highest bit set in the root.
; Using a loop instead of BFFFOwi || make this code run
; on any 680x0 processor.
novea. | do, a0 ; preserve N for |ater
bfffo do{0: 0}, d3
neg. | d3
addi . | #31,d3
Isr.| #1,d3
; Determine the initial values of u, u*2, and v.
nmoveq. | #1, dO
Isl.| d3, do u
move. | do, d1 ; v starts equal to u
nmovea. | do, a1
Isl.| d3, d1 ; uh2
exg. | d1, a1
; Process bits until there are no nore.
checkBi t dbf. w d3, nextBit
movem | (sp)+,d2-d3

http://collaboration.cmc.ec.gc.ca/science/rpr/biblio/ddj/Website/articless DD J/1996/9604/9... 7/14/2012

Unfiled Notes Page 4

APR96: ALGORITHM ALLEY

done rts
; Solve the equation u*2 + 2uv + v*2.
next Bi t Isr.| #1, d1 ;v = next |ower bit
nove. | d1, d2
add. | do, d2
add. | do, d2 ;N =2u +v
Isl.| d3, d2
add. | al, d2 ;N =uf2 + v(2u + v)
: = utr2 + 2uv + vh2
; 1f n<=N, the bit v is set.
crpa. | d2, a0
bcs. b checkBit
add. | d1, do LU A=y
nmovea. | d2, a1 ; utr2 =n
bra.b checkBit
END
Listing Two
NANE sqroot
PUBLI C _sqroot

7+ unsigned long sqroot(unsigned long N).

;3 This routine assunes the argument N is passed on the stack,

;s are scratch registers.

TEXT SEGQVENT PUBLI C ' CODE'
ASSUVE CS: TEXT
P386

_sqroot PRCC FAR
; 1f 2> N, return N, otherw se,
mv eax, [esp+4]
cnp eax, 2
ib short done
push edi
push esi

; Conpute position of the highest set bit
; half the position of the highest bit set in N

save the non-scratch registers.
; just past the return address

in the root.

mv esi , eax ; preserve N for |ater

bsr ecx, eax

shr ecx, 1

; Determine the initial values of u, u*2, and v.

nmov eax, 1

shl eax, cl ,u

mov ebx, eax ; v starts equal to u

nmov edx, eax

shl edx, cl s A2

; Process bits until there are no nore.

checkBit dec ecx

js short restore

; Solve the equation u*2 + 2uv + v*2.

shr ebx, 1 ;v = next |ower bit

mov edi , eax

add edi , eax

add edi , ebx ;N =2u +v

shl edi, cl

add edi, edx ;N = uft2 + v(2u + v)
: = utr2 + 2uv + vA2

; If n<=N, the bit v is set.

cnp edi , esi

ja short checkBit

http://collaboration.cmc.ec.gc.ca/science/rpr/biblio/ddj/Website/articles/ DD J/1996/9604/9...

Unfiled Notes Page 5

and eax- edx

It's just

Page 5 of 6

7/14/2012

APR96: ALGORITHM ALLEY

add eax, ebx
nmv edx, edi
jmp short checkBit
restore pop esi
pop edi
done ; Return to caller.
nmov edx, eax
shr edx, 16
retf
_sqroot ENDP
TEXT ENDS
END
Listing Three
AREA obj ect , CODE
EXPCORT sqgr oot

i+ unsigned long sqroot(unsigned long N).
;5 This routine observes the ARM Procedure Call

;5 the argument N to appear in r0 (referred to as al by the APCS).
r0-r3 (a1-a4 in the APCS),

;o the first four registers,

Page 6 of 6

u +=v
ut2 =n
necessary, but seems silly...

St andard (APCS),

sqroot RQUT
; If N<2 return N, otherwise, save non-scratch registers.
cnp al, #2
nmovce pc,lr
stnfd sp!,{v1,v2,Ir}
; Conpute position of the highest bit set in root. It's just
; half the position of the highest bit set in N
nmv a2, al ; preserve N for later
nmov a3, at
mv v1, #0
findl og2 nmovs a3, a3, LSR #2
addne vi, v1, #1
bne findl og2
; Deternmine the initial values of u, u*2, and v.
mv al, #1
mv atl,al,LSL v1 u
mv a3, at ; v starts equal to u
mv a4, a1, LSL v1 v a2
; Process bits until there are no nore.
checkBit cnp v1, #0
| dmeqfd sp!, {v1, v2, pc}
sub vi, v1, #1
. Solve the equation u*2 + 2uv + v*2.
mv a3, a3, LSR #1 ; v =next lower bit
add v2, a3, a1, LSL #1 ;N =2u +v
add v2,a4,v2, LSL v1 ;N =uf2 + v(2u + v)
: = utr2 + 2uv + vA2
; If n<=N the bit v is set.
cnp v2, a2
addl s at, al, a3 ;U A=y
| dmeqgfd sp!, {v1, v2, pc} ; exit early if n==N
movl s a4, v2 ; ur2 =n
b checkBi t
END

http://collaboration.cmc.ec.gc.ca/science/rpr/biblio/ddj/Website/articles/ DD J/1996/9604/9...

Unfiled Notes Page 6

so it expects
Li kewi se,
are treated as scratch.

7/14/2012

