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Application Note Abstract 
This application note demonstrates how to implement a Continuous Tone Coded Squelch System (CTCSS) carrier generator 
in PSoC

® 
1.

 
The implementation uses a 256-byte sine wave lookup table in ROM and a 6-bit Voltage Output Digital to Analog 

Convertor (DAC6) User Module (UM). The basic routine to generate the sine wave is not application specific and can be used 
to generate other waveforms and frequencies. 

 
 

Introduction 
Continuous Tone Coded Squelch System (CTCSS) or 
similar mechanisms are used in most handheld radios to 
allow multiple users to share one carrier frequency. The 
goal of CTCSS is to allow the receiving radio to suppress 
(or squelch) signals that are not intended for its user. If a 
pair of radios is set to the same CTCSS tone, then the 
audio transmitted by one radio is received on the other 
radio‟s speaker. 

CTCSS works by mixing a single tone with the transmitted 
voice audio at all times. A radio receiving a signal checks 
if the CTCSS tone selected for that radio is present. If the 
tone is present, the receiving radio outputs the voice 
audio. If the tone is not present, any signal received is not 
sent to the speaker. This allows multiple radios to coexist 
on the same carrier frequency in the same area without 
users having to listen to everyone. 

CTCSS Carrier Frequencies 
CTCSS uses 38 different frequencies between 67.0 Hz 
and 250.3 Hz as the selection tones. Table 1 lists the 
frequency associated with each of the tones. Some radios 
use additional “nonstandard” frequencies for CTCSS 
functionality. This application only uses the standard 
CTCSS frequencies. 

Table 1. Standard CTCSS Frequencies 

Tone  Frequency Tone Frequency 

1 67.0 Hz 20 131.8 Hz 

2 71.9 Hz 21 136.5 Hz 

3 74.4 Hz 22 141.3 Hz 

4 77.0 Hz 23 146.2 Hz 

5 79.7 Hz 24 151.4 Hz 

6 82.5 Hz 25 156.7 Hz 

Tone  Frequency Tone Frequency 

7 85.4 Hz 26 162.2 Hz 

8 88.5 Hz 27 167.9 Hz 

9 91.5 Hz 28 173.8 Hz 

10 94.8 Hz 29 179.9 Hz 

11 97.4 Hz 30 186.2 Hz 

12 100.0 Hz 31 192.8 Hz 

13 103.5 Hz 32 203.5 Hz 

14 107.2 Hz 33 210.7 Hz 

15 110.9 Hz 34 218.1 Hz 

16 114.8 Hz 35 225.7 Hz 

17 118.8 Hz 36 233.6 Hz 

18 123.0 Hz 37 241.8 Hz 

19 127.3 Hz 38 250.3 Hz 

Frequency Generation - 
Implementation 

In the project accompanying this application note, the 
CTCSS frequencies are generated by transferring data 
from a 256-entry, 8-bit Look up Table (LUT) into a DAC6 
UM at a fixed rate. The DAC is updated at a constant rate 
in an Interrupt Service Routine (ISR) that is controlled by 
an 8-bit Timer (Timer8 UM). The frequency of the CTCSS 
tone is adjusted by varying the step size through the LUT. 

The 256-byte LUT contains data that represents one cycle 
of a sine wave. This data is stored in sign and magnitude 
format. Sign and magnitude is the native format of the 
DAC data register. Write to the DAC is more efficient in 
this format. 

In the example project, the Timer8 is set to approximately 
10 kHz. The frequency of the output waveform is 
determined by the step size of the index through the LUT. 
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For example, for a 10 kHz update rate and a step size of 
„1‟, the resulting sine wave has a frequency of about 39 Hz 
(10,000/256). If a step size of „2‟ is used, the resulting sine 
wave has a frequency of twice that, at about 78 Hz. The 
Excel file used to generate the LUT is provided along with 
this application note. It contains the options for the clock 
frequency and the number of steps in LUT, and generates 
the LUT based on them. 

The 256-byte LUT is stored in ROM and is accessed using 
the MCU‟s INDEX instruction. The INDEX instruction uses 
a base address, which is hardcoded as the operand in the 
instruction and an index, which is the value in the 
Accumulator at the start of the command. When the 
INDEX instruction is executed, the table entry pointed to 
by the sum of the base address and the index is loaded 
into the Accumulator. The 8-bit index for the LUT comes 
from the upper byte of a 16-bit index (iCTCSSFreqIndex 
in the project). The upper byte can be considered as the 
integer portion of the index and the lower byte as the 
fractional portion of the index. To step through the LUT, a 
16-bit index increment (iCTCSSFreqInc in the project), 
also having an integer portion and a fractional portion, is 
added to the 16-bit accumulated index. This allows the 
use of fractional increments, which creates a more 
accurate frequency than is possible with an integer 
increment. 

In the example described earlier, where a step size of „2‟ 
resulted in an output frequency of 78 Hz, the index 
increment is 0x0200. To get an output frequency of 67 Hz 
(CTCSS tone 1), a step size of 1.72 is needed. The index 
increment in this case is 0x01b3. 

Frequency Selection 

In this project, a function is provided that sets the index 
increment value for the desired frequency. This function, 

SetCTCSSFreq(), is passed a 1-byte argument that is 

the CTCSS tone number. The tone number is manipulated 
(subtract 1 and multiply by 2) to convert it into an index for 
a 38 entry 16-bit LUT which contains index increment 
values. 

Phase Coherence  

A side effect of the way in which the output frequency is 
changed (the accumulated index variable is not cleared) is 
that the sine wave exhibits no discontinuity when the 
frequency changes. Although this is not critical for CTCSS 
generation, it may be required in other waveform 
applications. 

Hardware Configuration 

Figure 1 shows the placement of the three user modules 
used in this project. CTCSS_DAC, a DAC6, outputs the 
analog signal that is the sine wave. CTCSS_DAC is 
configured to use a SignAndMagnitude data format. The 
output to the analog column bus is enabled and Buf0 is 
enabled to output the analog signal to Port0[3]. 

Figure 1. CTCSS User Module Placement 

 

DAC_Timer, a Timer8 configured to divide the 48M clock 
by 61, is used to generate the column clock for the DAC6. 
This results in a DAC update rate of 197 kHz. A high DAC 
update rate is required for this application. The DAC 
update frequency appears in the spectrum of the output. 
The higher the DAC update rate, the more effectively it is 
removed with a simple R-C low pass filter. 

Sine_Timer, a Timer8 configured to divide the output of 
DAC_Timer by 78, generates an output frequency of 
10.088 kHz. 

Port0[3] (pin 3 on a 28-pin package) is set to 
AnalogOutBuf0 with a drive mode of High Z to enable the 
analog signal to be output. 

The frequency accuracy requirement for CTCSS is usually 
better than the ±2.5% accuracy of the Internal Main 
Oscillator in the PSoC

®
 microcontroller; therefore an 

external crystal oscillator is required. The Port1[0] and 
Port1[1] pins are set to High Z and a 32.678 kHz crystal is 
connected to the part as specified in the Cypress 
application note AN2027, Using the PSoC Microcontroller 
External Crystal Oscillator. 
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Note To check working of the project without an external 
oscillator, the PLL_Mode in global parameters must be set 
to “Disable” and the 32K_Select must be set to “Internal”. 
If a crystal is added, but the selection for the 32K_Select is 
external, the ECO circuit continues to oscillate. The 
frequency of this oscillation is far from 32 kHz. With these 
settings, the project outputs at an unexpected frequency. 

ISR Overhead 

If the PSoC microprocessor also has other tasks, the 
amount of CPU overhead used by the ISR while 
generating the CTCSS output is important. There are 
three factors that impact the ISR overhead. They are the 
DAC6 analog column clock speed, CPU clock speed, and 
Sine_Timer clock rate. 

The Sine_Timer ISR involves a write stall when updating 
the CTCSS_DAC. A write stall pauses the CPU until the 
start of the rising edge of the Phi1 clock in the analog 
column. This is done to prevent glitches from occurring on 
the DAC output. (See the Analog Synchronization 
Interface section in the Analog Interface chapter of the 
Technical Reference Manual (TRM) for more details on 
write stall.) The worst-case stall period for the DAC_Timer 

period used in this project is 5.1 sec. Apart from the write 
stall, the ISR takes an additional 93 CPU clock cycles to 
execute.  

With a DAC update rate of 10.088 kHz, the worst-case 
ISR overhead is 15%. Table 2 shows the ISR overhead for 
different CPU clock rates, assuming an analog column 
clock of 197 kHz and a DAC update rate of 10.088 kHz. 

Table 2. CTCSS ISR Overhead 

CPU_Clock ISR Overhead 

24 MHz 15 % 

12 MHz 24 % 

6 MHz 44 % 

3 MHz 82 % 

This project cannot be run below 3 MHz 

 

If different timings are used for this application, the 
resulting ISR overhead differs from those listed in Table 2. 

Tradeoffs 

There are some tradeoffs that must be made when 
designing a waveform generator, as discussed in this 
section. 

ISR overhead versus DAC update rate is one tradeoff that 
must be considered. More steps in a wavelength results in 
a lower harmonic distortion of the waveform. Fewer steps 
in one wavelength reduce the ISR overhead, leaving more 
of the CPU available for other tasks.  

Waveform distortion versus output-filter complexity is 
another part of the same tradeoff. If the DAC update rate 
is much higher than the frequency of the output waveform, 
the major contributor to distortion is at the DAC update 
frequency. In this case a simple R-C low pass filter on the 
output (often called a reconstruction filter) can acceptably 

reduce the waveform distortion. If the DAC update rate is 
too close to the frequency of the output waveform, the 
harmonics of the output frequency is the major contributor 
to distortion. In this case something more than a simple R-
C low pass filter is needed to clean up the waveform. A 
Low Pass Filter User Module can be used. 

In some designs, due to limited resources, the source for 
the DAC‟s analog column clock must be shared with 
another function. For this, a slower clock must be used. 
This affects the ISR overhead; it increases the maximum 
stall time, which in turn increases the waveform distortion 
by moving the DAC clock frequency closer to the output 
frequency. Ideally, a frequency close to the DAC6 
maximum update rate is used.  

In this project, a 6-bit DAC is selected over an 8-bit DAC. 
The 8-bit DAC results in more precise steps, but uses 
more analog SoC blocks. Experiments show that the 
number of steps per waveform has a much greater impact 
on the accuracy of the output waveform than the DAC 
resolution. 

Performance 

After configuring the timers as described in the previous 
sections and using an external crystal, data was collected 
to determine the frequency accuracy and the waveform 
distortion of the output. 

The output frequencies were measured for all 48 CTCSS 
tones using a Fluke 87 Digital Multimeter. The results of 
these measurements are shown in Table 3. The range of 
the frequency error is between +0.10% and –0.13%. 

The waveform distortions for selected CTCSS tones (1, 7, 
13, 19, 26, 32, and 38) are calculated based on 
measurements taken with a Hewlett-Packard 3585A 
Spectrum Analyzer. The measurements are taken directly 
from the output of the PSoC microcontroller with no 
reconstruction filter. The results are graphed in Figure 2. 
The maximum distortion, 3.8%, occurred at the highest 
output frequency, as expected. 

Additional testing was run using a DAC update rate 
(Sine_Timer) of 6.5 kHz. The maximum distortion 
increased to 6.3%. 

Figure 2. Waveform Distortion 
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Table 3. Frequency Accuracy 

Tone # Frequency Measured Error Tone # Frequency Measured Error 

1 67.0 67.09 -0.13% 20 131.8 131.83 -0.02% 

2 71.9 71.83 0.10% 21 136.5 136.47 0.02% 

3 74.4 74.45 -0.07% 22 141.3 141.20 0.07% 

4 77.0 77.08 -0.10% 23 146.2 146.16 0.03% 

5 79.7 79.71 -0.01% 24 151.4 151.37 0.02% 

6 82.5 82.45 0.06% 25 156.7 156.79 -0.06% 

7 85.4 85.39 0.01% 26 162.2 162.15 0.03% 

8 88.5 88.50 0.00% 27 167.9 167.87 0.02% 

9 91.5 91.54 -0.04% 28 173.8 173.83 -0.02% 

10 94.8 94.81 -0.01% 29 179.9 179.81 0.05% 

11 97.4 97.38 0.02% 30 186.2 186.18 0.01% 

12 100.0 100.01 -0.01% 31 192.8 192.72 0.04% 

13 103.5 103.51 -0.01% 32 203.5 203.40 0.05% 

14 107.2 107.22 -0.02% 33 210.7 210.70 0.00% 

15 110.9 110.93 -0.03% 34 218.1 218.10 0.00% 

16 114.8 114.78 0.02% 35 225.7 225.60 0.04% 

17 118.8 118.83 -0.03% 36 233.6 233.50 0.04% 

18 123.0 123.12 -0.10% 37 241.8 242.10 -0.12% 

19 127.3 127.22 0.06% 38 250.3 250.30 0.00% 

 

Figure 3 and Figure 4 show the waveforms for Tone 1 and Tone 38, respectively. They are captured with a Tektronix TDS 
3034 Digital Storage Oscilloscope. Notice that the individual DAC increments are more apparent at the higher frequency. This 
is because there are fewer steps per cycle at higher frequencies. This results in a greater waveform distortion. 

Figure 3. Tone 1 (67.0 Hz) Waveform 

 

Figure 4. Tone 38 (250.3 Hz) Waveform 
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