

Analog – Sine Wave Generation with PSoC®
(Demonstration with CTCSS)

October 27, 2009 Document No. 001-40881 Rev. *A 1

AN2025
Author: Jeff Dahlin

Associated Project: Yes
Associated Part Family: CY8C23x33, CY8C24x23A, CY8C24x94

CY8C27x43, CY8C28xxx, CY8C29x66
Software Version: NA

Associated Application Notes: None

Application Note Abstract
This application note demonstrates how to implement a Continuous Tone Coded Squelch System (CTCSS) carrier generator
in PSoC

®
1.

The implementation uses a 256-byte sine wave lookup table in ROM and a 6-bit Voltage Output Digital to Analog

Convertor (DAC6) User Module (UM). The basic routine to generate the sine wave is not application specific and can be used
to generate other waveforms and frequencies.

Introduction
Continuous Tone Coded Squelch System (CTCSS) or
similar mechanisms are used in most handheld radios to
allow multiple users to share one carrier frequency. The
goal of CTCSS is to allow the receiving radio to suppress
(or squelch) signals that are not intended for its user. If a
pair of radios is set to the same CTCSS tone, then the
audio transmitted by one radio is received on the other
radio‟s speaker.

CTCSS works by mixing a single tone with the transmitted
voice audio at all times. A radio receiving a signal checks
if the CTCSS tone selected for that radio is present. If the
tone is present, the receiving radio outputs the voice
audio. If the tone is not present, any signal received is not
sent to the speaker. This allows multiple radios to coexist
on the same carrier frequency in the same area without
users having to listen to everyone.

CTCSS Carrier Frequencies
CTCSS uses 38 different frequencies between 67.0 Hz
and 250.3 Hz as the selection tones. Table 1 lists the
frequency associated with each of the tones. Some radios
use additional “nonstandard” frequencies for CTCSS
functionality. This application only uses the standard
CTCSS frequencies.

Table 1. Standard CTCSS Frequencies

Tone Frequency Tone Frequency

1 67.0 Hz 20 131.8 Hz

2 71.9 Hz 21 136.5 Hz

3 74.4 Hz 22 141.3 Hz

4 77.0 Hz 23 146.2 Hz

5 79.7 Hz 24 151.4 Hz

6 82.5 Hz 25 156.7 Hz

Tone Frequency Tone Frequency

7 85.4 Hz 26 162.2 Hz

8 88.5 Hz 27 167.9 Hz

9 91.5 Hz 28 173.8 Hz

10 94.8 Hz 29 179.9 Hz

11 97.4 Hz 30 186.2 Hz

12 100.0 Hz 31 192.8 Hz

13 103.5 Hz 32 203.5 Hz

14 107.2 Hz 33 210.7 Hz

15 110.9 Hz 34 218.1 Hz

16 114.8 Hz 35 225.7 Hz

17 118.8 Hz 36 233.6 Hz

18 123.0 Hz 37 241.8 Hz

19 127.3 Hz 38 250.3 Hz

Frequency Generation -
Implementation

In the project accompanying this application note, the
CTCSS frequencies are generated by transferring data
from a 256-entry, 8-bit Look up Table (LUT) into a DAC6
UM at a fixed rate. The DAC is updated at a constant rate
in an Interrupt Service Routine (ISR) that is controlled by
an 8-bit Timer (Timer8 UM). The frequency of the CTCSS
tone is adjusted by varying the step size through the LUT.

The 256-byte LUT contains data that represents one cycle
of a sine wave. This data is stored in sign and magnitude
format. Sign and magnitude is the native format of the
DAC data register. Write to the DAC is more efficient in
this format.

In the example project, the Timer8 is set to approximately
10 kHz. The frequency of the output waveform is
determined by the step size of the index through the LUT.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-40881_pdf_p_1

AN2025

October 27, 2009 Document No. 001-40881 Rev. *A 2

For example, for a 10 kHz update rate and a step size of
„1‟, the resulting sine wave has a frequency of about 39 Hz
(10,000/256). If a step size of „2‟ is used, the resulting sine
wave has a frequency of twice that, at about 78 Hz. The
Excel file used to generate the LUT is provided along with
this application note. It contains the options for the clock
frequency and the number of steps in LUT, and generates
the LUT based on them.

The 256-byte LUT is stored in ROM and is accessed using
the MCU‟s INDEX instruction. The INDEX instruction uses
a base address, which is hardcoded as the operand in the
instruction and an index, which is the value in the
Accumulator at the start of the command. When the
INDEX instruction is executed, the table entry pointed to
by the sum of the base address and the index is loaded
into the Accumulator. The 8-bit index for the LUT comes
from the upper byte of a 16-bit index (iCTCSSFreqIndex
in the project). The upper byte can be considered as the
integer portion of the index and the lower byte as the
fractional portion of the index. To step through the LUT, a
16-bit index increment (iCTCSSFreqInc in the project),
also having an integer portion and a fractional portion, is
added to the 16-bit accumulated index. This allows the
use of fractional increments, which creates a more
accurate frequency than is possible with an integer
increment.

In the example described earlier, where a step size of „2‟
resulted in an output frequency of 78 Hz, the index
increment is 0x0200. To get an output frequency of 67 Hz
(CTCSS tone 1), a step size of 1.72 is needed. The index
increment in this case is 0x01b3.

Frequency Selection

In this project, a function is provided that sets the index
increment value for the desired frequency. This function,

SetCTCSSFreq(), is passed a 1-byte argument that is

the CTCSS tone number. The tone number is manipulated
(subtract 1 and multiply by 2) to convert it into an index for
a 38 entry 16-bit LUT which contains index increment
values.

Phase Coherence

A side effect of the way in which the output frequency is
changed (the accumulated index variable is not cleared) is
that the sine wave exhibits no discontinuity when the
frequency changes. Although this is not critical for CTCSS
generation, it may be required in other waveform
applications.

Hardware Configuration

Figure 1 shows the placement of the three user modules
used in this project. CTCSS_DAC, a DAC6, outputs the
analog signal that is the sine wave. CTCSS_DAC is
configured to use a SignAndMagnitude data format. The
output to the analog column bus is enabled and Buf0 is
enabled to output the analog signal to Port0[3].

Figure 1. CTCSS User Module Placement

DAC_Timer, a Timer8 configured to divide the 48M clock
by 61, is used to generate the column clock for the DAC6.
This results in a DAC update rate of 197 kHz. A high DAC
update rate is required for this application. The DAC
update frequency appears in the spectrum of the output.
The higher the DAC update rate, the more effectively it is
removed with a simple R-C low pass filter.

Sine_Timer, a Timer8 configured to divide the output of
DAC_Timer by 78, generates an output frequency of
10.088 kHz.

Port0[3] (pin 3 on a 28-pin package) is set to
AnalogOutBuf0 with a drive mode of High Z to enable the
analog signal to be output.

The frequency accuracy requirement for CTCSS is usually
better than the ±2.5% accuracy of the Internal Main
Oscillator in the PSoC

®
 microcontroller; therefore an

external crystal oscillator is required. The Port1[0] and
Port1[1] pins are set to High Z and a 32.678 kHz crystal is
connected to the part as specified in the Cypress
application note AN2027, Using the PSoC Microcontroller
External Crystal Oscillator.

[+] Feedback

http://www.cypress.com/?rID=2844
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-40881_pdf_p_2

AN2025

October 27, 2009 Document No. 001-40881 Rev. *A 3

Note To check working of the project without an external
oscillator, the PLL_Mode in global parameters must be set
to “Disable” and the 32K_Select must be set to “Internal”.
If a crystal is added, but the selection for the 32K_Select is
external, the ECO circuit continues to oscillate. The
frequency of this oscillation is far from 32 kHz. With these
settings, the project outputs at an unexpected frequency.

ISR Overhead

If the PSoC microprocessor also has other tasks, the
amount of CPU overhead used by the ISR while
generating the CTCSS output is important. There are
three factors that impact the ISR overhead. They are the
DAC6 analog column clock speed, CPU clock speed, and
Sine_Timer clock rate.

The Sine_Timer ISR involves a write stall when updating
the CTCSS_DAC. A write stall pauses the CPU until the
start of the rising edge of the Phi1 clock in the analog
column. This is done to prevent glitches from occurring on
the DAC output. (See the Analog Synchronization
Interface section in the Analog Interface chapter of the
Technical Reference Manual (TRM) for more details on
write stall.) The worst-case stall period for the DAC_Timer

period used in this project is 5.1 sec. Apart from the write
stall, the ISR takes an additional 93 CPU clock cycles to
execute.

With a DAC update rate of 10.088 kHz, the worst-case
ISR overhead is 15%. Table 2 shows the ISR overhead for
different CPU clock rates, assuming an analog column
clock of 197 kHz and a DAC update rate of 10.088 kHz.

Table 2. CTCSS ISR Overhead

CPU_Clock ISR Overhead

24 MHz 15 %

12 MHz 24 %

6 MHz 44 %

3 MHz 82 %

This project cannot be run below 3 MHz

If different timings are used for this application, the
resulting ISR overhead differs from those listed in Table 2.

Tradeoffs

There are some tradeoffs that must be made when
designing a waveform generator, as discussed in this
section.

ISR overhead versus DAC update rate is one tradeoff that
must be considered. More steps in a wavelength results in
a lower harmonic distortion of the waveform. Fewer steps
in one wavelength reduce the ISR overhead, leaving more
of the CPU available for other tasks.

Waveform distortion versus output-filter complexity is
another part of the same tradeoff. If the DAC update rate
is much higher than the frequency of the output waveform,
the major contributor to distortion is at the DAC update
frequency. In this case a simple R-C low pass filter on the
output (often called a reconstruction filter) can acceptably

reduce the waveform distortion. If the DAC update rate is
too close to the frequency of the output waveform, the
harmonics of the output frequency is the major contributor
to distortion. In this case something more than a simple R-
C low pass filter is needed to clean up the waveform. A
Low Pass Filter User Module can be used.

In some designs, due to limited resources, the source for
the DAC‟s analog column clock must be shared with
another function. For this, a slower clock must be used.
This affects the ISR overhead; it increases the maximum
stall time, which in turn increases the waveform distortion
by moving the DAC clock frequency closer to the output
frequency. Ideally, a frequency close to the DAC6
maximum update rate is used.

In this project, a 6-bit DAC is selected over an 8-bit DAC.
The 8-bit DAC results in more precise steps, but uses
more analog SoC blocks. Experiments show that the
number of steps per waveform has a much greater impact
on the accuracy of the output waveform than the DAC
resolution.

Performance

After configuring the timers as described in the previous
sections and using an external crystal, data was collected
to determine the frequency accuracy and the waveform
distortion of the output.

The output frequencies were measured for all 48 CTCSS
tones using a Fluke 87 Digital Multimeter. The results of
these measurements are shown in Table 3. The range of
the frequency error is between +0.10% and –0.13%.

The waveform distortions for selected CTCSS tones (1, 7,
13, 19, 26, 32, and 38) are calculated based on
measurements taken with a Hewlett-Packard 3585A
Spectrum Analyzer. The measurements are taken directly
from the output of the PSoC microcontroller with no
reconstruction filter. The results are graphed in Figure 2.
The maximum distortion, 3.8%, occurred at the highest
output frequency, as expected.

Additional testing was run using a DAC update rate
(Sine_Timer) of 6.5 kHz. The maximum distortion
increased to 6.3%.

Figure 2. Waveform Distortion

% Distortion vs. Frequency

0%

1%

2%

3%

4%

5%

50 100 150 200 250 300

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-40881_pdf_p_3

AN2025

October 27, 2009 Document No. 001-40881 Rev. *A 4

Table 3. Frequency Accuracy

Tone # Frequency Measured Error Tone # Frequency Measured Error

1 67.0 67.09 -0.13% 20 131.8 131.83 -0.02%

2 71.9 71.83 0.10% 21 136.5 136.47 0.02%

3 74.4 74.45 -0.07% 22 141.3 141.20 0.07%

4 77.0 77.08 -0.10% 23 146.2 146.16 0.03%

5 79.7 79.71 -0.01% 24 151.4 151.37 0.02%

6 82.5 82.45 0.06% 25 156.7 156.79 -0.06%

7 85.4 85.39 0.01% 26 162.2 162.15 0.03%

8 88.5 88.50 0.00% 27 167.9 167.87 0.02%

9 91.5 91.54 -0.04% 28 173.8 173.83 -0.02%

10 94.8 94.81 -0.01% 29 179.9 179.81 0.05%

11 97.4 97.38 0.02% 30 186.2 186.18 0.01%

12 100.0 100.01 -0.01% 31 192.8 192.72 0.04%

13 103.5 103.51 -0.01% 32 203.5 203.40 0.05%

14 107.2 107.22 -0.02% 33 210.7 210.70 0.00%

15 110.9 110.93 -0.03% 34 218.1 218.10 0.00%

16 114.8 114.78 0.02% 35 225.7 225.60 0.04%

17 118.8 118.83 -0.03% 36 233.6 233.50 0.04%

18 123.0 123.12 -0.10% 37 241.8 242.10 -0.12%

19 127.3 127.22 0.06% 38 250.3 250.30 0.00%

Figure 3 and Figure 4 show the waveforms for Tone 1 and Tone 38, respectively. They are captured with a Tektronix TDS
3034 Digital Storage Oscilloscope. Notice that the individual DAC increments are more apparent at the higher frequency. This
is because there are fewer steps per cycle at higher frequencies. This results in a greater waveform distortion.

Figure 3. Tone 1 (67.0 Hz) Waveform

Figure 4. Tone 38 (250.3 Hz) Waveform

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-40881_pdf_p_4

AN2025

October 27, 2009 Document No. 001-40881 Rev. *A 5

Document History
Document Title: Analog – Sine Wave Generation with PSoC

®
 (Demonstration with CTCSS)

Document Number: 001-40881

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1536344 JVY See ECN New application note

*A 2793434 YARA 10/27/09 Updated part number from CY8C25xxx to CY8C27xxx. Updated accompanying
projects from PSoC Designer version 2.1 to 5.0. Updated document text where
appropriate.

In March of 2007, Cypress recataloged all of its Application Notes using a new documentation number and revision code. This new documentation
number and revision code (001-xxxxx, beginning with rev. **), located in the footer of the document, will be used in all subsequent revisions.

PSoC is a registered trademark and PSoC Designer is a trademark of Cypress Semiconductor Corp. All other trademarks or registered
trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2002-09. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‟ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-40881_pdf_p_5

