
PSoC® Creator™ Component Data Sheet

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-65211 Rev. ** Revised December 13, 2010

Features
• Supports user defined combinations of button, slider, touch pad,

and proximity capacitive sensors

• Provides automatic SmartSense tuning or manual tuning with
integrated PC GUI.

• High immunity to AC power line noise, EMC noise, and power
supply voltage changes

• Optional two scan channels (parallel synchronized) increases
sensor scan rate.

• Shield electrode support for reliable operation in the presence of water film or droplets

• Guided sensor and terminal assignments using the CapSense customizer

General Description
Capacitive Sensing using a Delta-Sigma Modulator (CapSense CSD) component provides a
versatile and efficient means for measuring capacitance in applications such as touch sense
buttons, sliders, touch pad, and proximity detection.
The following Application notes are recommended reading after reading this datasheet.
Application notes can be found on the Cypress Semiconductor web site at www.cypress.com:

• CapSense Best Practices – AN2394

• Signal-to-Noise Ratio Requirements for CapSense Applications – AN2403

• EMC Design Consideration for PSoC CapSense Applications – AN2318

• Layout Guidelines for PSoC CapSense – AN2292

• Waterproof Capacitive Sensing – AN2398

When to Use a CapSense Component
Capacitance sensing systems can be used in many applications in place of conventional buttons,
switches, and other controls, even in applications that are exposed to rain or water. Such
applications include automotive, outdoor equipment, ATMs, public access systems, portable
devices such as cell phones and PDAs, and kitchen and bathroom applications.

Capacitive Sensing (CapSense® CSD)
2.10

http://www.cypress.com/

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 2 of 73 Document Number: 001-65211 Rev. **

Input/Output Connections
This section describes the various input and output connections for the CapSense CSD
component. An asterisk (*) in the list of I/Os indicates that the I/O may be hidden on the symbol
under the conditions listed in the description of that I/O.

clock – Input *
Supplies the clock for the CapSense CSD component. The clock input is only visible if the
Enable clock input is checked.

shield – Output *
The shield electrode signal is connected to this output. It is only available if shield electrode is
enabled. Details on shield use are provided in the Parameters and Setup section.

vref – Output *
The analog reference voltage is connected to this output. It can be used to adjust the shield
signal amplitude. It is only available if the Shield option is enabled in IDAC Sourcing mode.
Vref output should be connected to SIO reference when SIO is used for a shield signal. Details
on vref use are provided in the Functional Description section of this datasheet.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 3 of 73

Parameters and Setup
Drag a CapSense CSD component onto your design and double-click it to open the Configure
dialog. This dialog has several tabs to guide you through the process of setting up the CapSense
CSD component.

General Tab

Load Settings/Save Settings
Save Settings is used to save all settings and tuning data configured for a component. This
allows quick duplication in a new project. Load Settings is used to load previously saved
settings.
The stored settings can also be used to import settings and tuning data into the Tuner GUI.

Tuning method
This parameter specifies the tuning method. There are three options:

• Auto (SmartSense) – Provides automatic tuning of the CapSense CSD component and is
the recommended tuning method for all designs. . Firmware algorithms determine the best
tuning parameters continuously at run time. Additional RAM and CPU resources are
required in this mode.
Important – Only one CapSense_CSD component in SmartSense mode can be placed
onto the project schematic. SmartSense tuning may be used with an EZI2C
communication component which is specified on the Tuner Helper tab to transmit data
from the target device to the tuner GUI.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 4 of 73 Document Number: 001-65211 Rev. **

• Manual – Allows manual tuning of the CapSense CSD component using the Tuner GUI.
To launch the GUI, right-click on the symbol and select Launch Tuner. For more
information about Manual tuning refer to the CapSense Tuner GUI User Guide section in
this data sheet. Manual tuning requires an EZI2C communication component which is
specified on the Tuner Helper tab to transmit data between the target device and the
tuner GUI.

• None (Default) – Disables tuning. All tuning parameters are stored in flash. This option
should only be used after all parameters of the CapSense component are tuned and
finalized. If this option is used, the communication functions are still provided but do
nothing so Tuner won’t work in this mode.

Number of channels
This parameter specifies the number of hardware scanning channels implemented.
1. Default. Best used for 1-20 sensors. The component is capable of performing one capacitive

scan at a time. One sensor is scanned at a time in succession. Since only a single channel is
implemented in hardware this option results in the minimum hardware resources being
utilized.

• The AMUX buses are tied together.
Note If all capacitive sensors are allocated on one side of the chip Left (#even ports GPIO
for example: P0[X], P2[X], P4[X]) or Right (#odd ports GPIO for example: P1[X], P3[X],
P5[X]) the AMUX buses don’t tie together; the one half of AMUX bus is used.
Note The port pins P15[0-5] have connections to different AMUX busses Left and Right.
P12[X] and P15[6-7] do not have a connection to the AMUX bus. Refer to the TRM for the
selected part.

• The component is capable of scanning 1 to (#GPIO – 1) capacitive sensors.

• One Cmod external capacitor is required.
2. Best used for over 20 sensors. The component is capable of performing two simultaneous

capacitive scans. Both the Left and Right AMUX buses are used, one for each channel. Right
and Left sensors are scanned two at time (one Right sensor and one Left sensor) in
succession. If one channel has more sensors than the other, the channel with the greater
number of sensors will finish scanning the remaining sensors in its array one at a time until
done while the other channel performs no scans. Two channels doubles the resource used vs
1 channel but in return doubles the sensor scan rate.

• The Left AMUX bus can scan 1 to (#even ports GPIO – 1) capacitive sensors.

• The Right AMUX bus can scan 1 to (#odd ports GPIO – 1) capacitive sensors.

• Two Cmod external capacitors are required, 1 for each channel.

• Parallel scans run at the same scan rate.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 5 of 73

Raw Data Noise Filter
This parameter selects the raw data filter. Only one filter may be selected and it is applied to all
sensors. A filter is recommended to reduce the effect of noise during sensor scans. Details on
the types of filters can be found in the Functional Description – Filters sections in this document.

• None – No filter is provided. No filter firmware or SRAM variable overhead is incurred.

• Median – Sorts the last three sensor values in order and returns the middle value.

• Averaging – Returns the simple average of the last three sensor values

• First Order IIR 1/2 – Returns 1/2 of the most current sensor value added to 1/2 of the
previous filter value. IIR filters require the lowest firmware and SRAM overhead of all the
filter types.

• First Order IIR 1/4 – Default – Returns 1/4th of the most current sensor value added to
3/4th of the previous filter value.

• First Order IIR 1/8 – Returns 1/8th of the most current sensor value added to 7/8th of the
previous filter value.

• First Order IIR 1/16 – Returns 1/16th of the most current sensor value added to 15/16th of
the previous filter value.

• Jitter – If the most current sensor value is greater than the last sensor value then the
previous filter value is incremented by 1, if it is less then it is decremented.

Water proofing and detection
This feature configures the CapSense CSD to support water proofing (Unchecked - default). This
feature sets the following parameters:

• Enables the Shield output terminal

• Adds a Guard widget
Note If the Guard widget is not desired with water proofing it can be removed on the Advanced
tab.

Enable clock input
This parameter selects whether the component uses an internal clock or displays an input
terminal for a user supplied clock connection (Unchecked – Default).
Note This option is disabled if the tuning method is Auto (SmartSense) as customizer required to
know clock frequency to calculate internal data.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 6 of 73 Document Number: 001-65211 Rev. **

Scan Clock
This parameter specifies the internal CapSense component clock frequency. The range of
values is 3 MHz to 24 MHz (12 MHz – default). This feature is disabled if the Enable clock input
is checked.
Note Setting Analog Switch Drive Source to "FF Timer (Default)" and/or Digital
Implementation to "FF Timers," does not support the CapSense CSD clock less than or equal
too BUS_CLK, therefore BUS_CLK should be selected.

Widgets Config Tab

Definitions for various parameters are provided in the Functional Description section.

Toolbar
The toolbar contains the following commands:

• Add widget – Adds the selected type of widget to the tree. The widget types are:

• Button – A button detects a finger press on a single sensor and provides a single
mechanical button replacement

• Linear Slider – A linear slider provides an integer value based on interpolating the
location of a figure press on a small number of sensors.

• Radial Slider – A radial slider is similar to a linear slider except that the sensors are
placed in a circle.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 7 of 73

• Matrix Button – A matrix button detects a finger press at the intersection formed by a
row sensor and column sensor. Matrix buttons provide an efficient method of scanning
a large number of buttons.

• Touch Pad – A touch pad returns the X and Y coordinates of a figure press within the
touchpad area. A touchpad is comprised of multiple row and column sensors.

• Proximity Sensor – A proximity sensor is optimized to detect the presence of a finger
hand or other large object at a large distance from the sensor avoiding the requirement
for an actual touch to occur.

• Generic Sensor – Generic sensor provide raw data from a single sensor allowing the
creation of unique or advanced sensors no otherwise possible with processed outputs
of the other sensor types.

• Remove widget – Removes the selected widget from the tree.

• Rename – Opens a dialog to change the selected widget name. You can also double-
click a widget to open the dialog.

Buttons

Tuning:

• Finger Threshold – Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the
button is reported as touched. Default value is 100. Valid range of values is [1…255].
Finger Threshold + Hysteresis cannot be more than 254.

• Noise Threshold – Defines sensor noise threshold. Count values above this threshold do
not update the baseline. If the noise threshold is too low sensor and thermal offsets may
not be accounted for resulting in false or missed touches. If the noise threshold is too high
a finger touch may be interpreted as noise and artificially increase the baseline resulting in
missed finger touches. Default value is 20. Valid range of values is [1…255].

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 8 of 73 Document Number: 001-65211 Rev. **

• Hysteresis – Adds differential hysteresis for sensor active state transitions. If the sensor
is inactive, the difference count must overcome the finger threshold plus hysteresis. If the
sensor is active, the difference count must go below the finger threshold minus hysteresis.
Hysteresis helps to ensure that low amplitude sensor noise and small finger moves do not
cause cycling of the button state. Default value is 10. Valid range of values is [1…255].
Finger Threshold + Hysteresis cannot be more than 254.

• Debounce – Adds a debounce counter for detection of the sensor active state transition.
In order for the sensor to transition from inactive to active, the difference count value must
stay above the finger threshold plus hysteresis for the number of samples specified.
Default value is 5. Debounce ensures that high frequency high amplitude noise does not
cause false detection of a pressed button. Valid range of values is [1…255].

• Scan Resolution – Defines the scanning resolution. This parameter has an effect on the
scanning time of the sensor within the button widget. The maximum raw count for the
scanning resolution for N bits is 2N-1. Increasing the resolution improves sensitivity and
the Signal to Noise Ratio (SNR) of touch detection but increases scan time. Default value
is 10 bits.

Linear Sliders

General:

• Numbers of Sensors Elements – Defines the number of elements within the slider. A
good ratio of API resolution to sensor elements is 20:1. Increasing the ratio of API
resolution to sensor elements too much can result in increased noise on the calculated
finger position. Valid range of values is [2…32]. Default value is 5 elements.

• API Resolution – Defines the slider resolution. The position value will be changed within
this range. Valid range of values is [1…255].

• Diplexing – Non Diplexed (Default) or Diplexed. Diplexing allows two slider sensors to
share a single device pin reducing the total number of pins required for a given number of
slider sensors.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 9 of 73

• Position Noise Filter – Selects the type of noise filter to perform on position calculations.
Only one filter may be applied for a selected widget. Details on the types of filters can be
found in the Functional Description – Filters sections in this document.

• None

• Median Filter

• Averaging Filter

• First Order IIR 1/2

• First Order IIR 1/4 – Default

• Jitter Filter
Tuning:

• Finger Threshold – Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the
button is reported as touched. Default value is 100. Valid range of values is [1…255].

• Noise Threshold – Defines the sensor noise threshold for slider elements. Count values
above this threshold do not update the baseline. If the noise threshold is too low sensor
and thermal offsets may not be accounted for resulting in false or missed touches. If the
noise threshold is too high a finger touch may be interpreted as noise and artificially
increase the baseline resulting in centroid location calculation errors. Count values below
this threshold are not counted in the calculation of the centroid. Default value is 20. Valid
range of values is [1…255].

• Scan Resolution – Defines the scanning resolution. This parameter has an effect on the
scanning time of all sensors within the linear slider widget. The maximum raw count for
scanning resolution for N bits is 2N-1. Increasing the resolution improves sensitivity and
the SNR of touch detection but increases scan time. Default value is 10 bits.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 10 of 73 Document Number: 001-65211 Rev. **

Radial Slider

General:

• Numbers of Sensors Elements – Defines the number of elements within the slider. A
good ratio of API resolution to sensor elements is 20:1. Increasing the ratio of API
resolution to sensor elements to much can result in increased noise on the resolution
calculation. Valid range of values is [2…32]. Default value is 5 elements.

• API Resolution – Defines the resolution of the slider. The position value will be changed
within this range. Valid range of values is [1…255].

• Position Noise Filter – Selects the type of noise filter to perform on position calculations.
Only one filter may be applied for a selected widget. Details on the types of filters can be
found in the Functional Description – Filters sections in this document.

• None

• Median Filter

• Averaging Filter

• First Order IIR 1/2

• First Order IIR 1/4 – Default

• Jitter Filter
Tuning:

• Finger Threshold – Defines the sensor active threshold resulting in increased or
decreased sensitivity to touches. When the sensor scan value is greater than this
threshold the button is reported as touched. Default value is 100.

• Noise Threshold – Defines the sensor noise threshold for slider elements. Count values
above this threshold do not update the baseline. If the noise threshold is too low sensor
and thermal offsets may not be accounted for resulting in false or missed touches. If the
noise threshold is too high a finger touch may be interpreted as noise and artificially
increase the baseline resulting in centroid location calculation errors. Count values below
this threshold are not counted in the calculation of the centroid. Default value is 20. Valid
range of values is [1…255].

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 11 of 73

• Scan Resolution – Defines the scanning resolution. This parameter has an effect on the
scanning time of all sensors within a radial slider widget. The maximum raw count for
scanning resolution for N bits is 2N-1. Increasing the resolution improves sensitivity and
the SNR of touch detection but increases scan time. Default value is 10 bits.

Matrix Buttons

Tuning

• Column/Row Finger Threshold – Defines the sensor active threshold for matrix button
columns and rows resulting in increased or decreased sensitivity to touches. When the
sensor scan value is greater than this threshold the button is reported as touched. Default
value is 100. Valid range of values is [1…255]. Finger Threshold + Hysteresis cannot be
more than 254.

• Column/Row Noise Threshold – Defines the sensor noise threshold for matrix button
columns and rows. Count values above this threshold do not update the baseline. If the
noise threshold is too low, sensor and thermal offsets may not be accounted for resulting
in false or missed touches. If the noise threshold is too high a finger touch may be
interpreted as noise and artificially increase the baseline resulting in missed finger
touches. Default value is 20. Valid range of values is [1…255].

• Column/Row Hysteresis – Adds differential hysteresis for sensor active state transitions
for matrix button columns and rows. If the sensor is inactive, the difference count must
overcome the finger threshold plus hysteresis. If the sensor is active, the difference count
must go below the finger threshold minus hysteresis. Hysteresis helps to ensure that low
amplitude sensor noise and small finger moves do not cause cycling of the button state.
Default value is 10. Valid range of values is [1…255]. Finger Threshold + Hysteresis
cannot be more than 254.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 12 of 73 Document Number: 001-65211 Rev. **

• Column/Row Debounce – Adds a debounce counter for detection of the sensor active
state transition for matrix buttons column/row. In order for the sensor to transition from
inactive to active, the difference count value must stay above the finger threshold plus
hysteresis for the number of samples specified. Default value is 5. Debounce ensures that
high frequency high amplitude noise does not cause false detection of a pressed button.
Valid range of values is [1…255].

• Column/Row Scan Resolution – Defines the scanning resolution of matrix button
columns and rows. This parameter has an effect on the scanning time of all sensors within
a column/row of a matrix button widget. The maximum raw count for scanning resolution
for N bits is 2N-1. Increasing the resolution improves sensitivity and the SNR of touch
detection but increases scan time. The Column and Row scanning resolutions should be
the same to get the same sensitivity level. Default value is 10 bits.

General

• Number of Sensor Columns/Rows – Defines the number of columns and rows that form
the matrix. Valid range of values is [2…32]. Default value is 5 elements for both Column
and Row.

Touch Pads

Tuning

• Column/Row Finger Threshold – Defines the sensor active threshold for touchpad
columns and rows resulting in increased or decreased sensitivity to touches. When the
sensor scan value is greater than this threshold the touchpad reports the touch position.
Default value is 100. Valid range of values is [1…255].

• Column/Row Noise Threshold – Defines the sensor noise threshold for touchpad
columns and rows. Count values above this threshold do not update the baseline. Count
values below this threshold are not counted in the calculation of the centroid location. If
the noise threshold is too low sensor and thermal offsets may not be accounted for

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 13 of 73

resulting in false or missed touches. If the noise threshold is too high a finger touch may
be interpreted as noise and artificially increase the baseline resulting in centroid
calculation errors. Default value is 20. Valid range of values is [1…255].

• Column/Row Scan Resolution – Defines the scanning resolution of touchpad columns
and rows. This parameter has an effect on the scanning time of all sensors within a
column/row of a touchpad widget. The maximum raw count for scanning resolution for N
bits is 2N-1. Increasing the resolution improves sensitivity and the SNR of touch detection
but increases scan time. The Column and Row scanning resolution should be equal to get
the same sensitivity level. Default value is 10 bits.

General

• Numbers of Sensors Colum/Row – Defines the number of columns and rows that form
the touchpad. Valid range of values is [2…32]. Default value is 5 elements for both the
column and row.

• API Resolution Colum/Row – Defines the resolution of the touch pad columns and rows.
The finger position values will be reported within this range. Valid range of values is
[1…255].

• Position Noise Filter – Adds noise filter to position calculations. Only one filter may be
applied for a selected widget. Details on the types of filters can be found in the Functional
Description – Filters sections in this document.

• None

• Median Filter

• Averaging Filter

• First Order IIR 1/2

• First Order IIR 1/4 – Default

• Jitter Filter

Proximity Sensors

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 14 of 73 Document Number: 001-65211 Rev. **

General

• Numbers of Dedicated Sensors elements – Selects the number of dedicated proximity
sensors. These sensor elements are in addition to all the other sensors instantiated for
other Widgets. Any Widget sensors may be used individually or connected together in
parallel to create proximity sensors.

• 0 – The proximity sensor will only scan one or more existing sensors to determine
proximity. No new sensors are allocated for this widget.

• 1 – Number of dedicated proximity sensors in the system. – Default.
Tuning

• Finger Threshold – Defines the sensor active threshold resulting in increased or
decreased sensitivity to the proximity of a touch. When the sensor scan value is greater
than this threshold the proximity sensor is reported as touched. Default value is 100. Valid
range of values is [1…255]. Finger Threshold + Hysteresis cannot be more than 254..

• Noise Threshold – Defines the sensor noise threshold. Count values above this
threshold do not update the baseline. If the noise threshold is too low sensor and thermal
offsets may not be accounted for resulting in false or missed proximity touches. If the
noise threshold is too high a figure touch may be interpreted as noise and artificially
increase the baseline resulting in missed finger touches. Valid range of values is [1…255].

• Hysteresis – Adds differential hysteresis for the sensor active state transition. If the
sensor is inactive, the difference count must overcome the finger threshold plus
hysteresis. If the sensor is active, the difference count must go below the finger threshold
minus hysteresis. Hysteresis helps to ensure that low amplitude sensor noise and small
finger/body moves do not cause cycling of the proximity sensor state. Valid range of
values is [1…255].

• Debounce – Adds a debounce counter for detection of the sensor active state transition.
In order for the sensor to transition from inactive to active, the difference count value must
stay above the finger threshold plus hysteresis for the number of samples specified.
Debounce ensures that high frequency high amplitude noise does not cause false
detection of a proximity event. Valid range of values is [1…255].

• Scan Resolution – Defines the scanning resolution. This parameter has an effect on the
scanning time of a proximity widget. The maximum raw count for scanning resolution for N
bits is 2N-1. Increasing the resolution improves sensitivity and the SNR of touch detection
but increases scan time. We recommend using a higher resolution for proximity detection
than what is used for a typical button to increase detection range. Default value is 10 bits.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 15 of 73

Generics

Tuning

• Scan Resolution – Defines the scanning resolution. This parameter has an effect on the
scanning time of a generic widget. The maximum raw count for scanning resolution for N
bits is 2N-1. Increasing the resolution improves sensitivity and the SNR of touch detection
but increases scan time. Default value is 10 bits.

Only one tuning option is available for a generic widget because all high Level handling is left to
the customer to support CapSense sensors and algorithms that do not fit into any of the
predefined widgets.

Guard Sensor
This special sensor is added or removed using the Advanced Tab. The Guard sensor does not
report a finger press like other sensors but reports an invalid condition near the other widgets to
suppress their update. For more information about this sensor type and when it should be used,
refer to "Guard Sensor Implementation" in the Functional Description section of this data sheet.

Tuning:

• Finger Threshold – Defines sensor active threshold resulting in increased or decreased
sensitivity to touches. When the sensor scan value is greater than this threshold the guard

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 16 of 73 Document Number: 001-65211 Rev. **

sensor is reported as touched. Default value is 100. Valid range of values is [1…255].
Finger Threshold + Hysteresis cannot be more than 254.

• Noise Threshold – Defines the sensor noise threshold. Count values above this
threshold do not update the baseline. If the noise threshold is too low sensor and thermal
offsets may not be accounted for resulting in false or missed touches. If the noise
threshold is too high a finger touch may be interpreted as noise and artificially increase
the baseline resulting in missed finger touches. Default value is 20. Valid range is
[1…255].

• Hysteresis – Adds the differential hysteresis for sensor active state transition. If the
sensor is inactive, the difference count must overcome the finger threshold plus
hysteresis. If the sensor is active, the difference count must go below the finger threshold
minus hysteresis. Hysteresis helps to ensure that low amplitude sensor noise and small
finger moves do not cause cycling of the button state. Default value is 10. Valid range of
values is [1…255]. Finger Threshold + Hysteresis cannot be more than 254.

• Debounce – Adds a debounce counter for detection of the sensor active state transition.
In order for the sensor to transition from inactive to active the difference count value must
stay above the finger threshold plus hysteresis for the number of samples specified.
Debounce ensures that high frequency high amplitude noise does not cause false
detection of the guard sensor. Default value is 5. Valid range of values is [1…255].

• Scan Resolution – Defines the scanning resolution. This parameter has an effect on the
scanning time of a guard sensor. The maximum raw count for scanning resolution for N
bits is 2N-1. Increasing the resolution improves sensitivity and the SNR of touch detection
but increases scan time. Default value is 10 bits.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 17 of 73

Scan Order Tab

Toolbar
The toolbar contains the following commands:

• Promote/Demote – moves the selected widget up or down in the data grid. The whole
widget is selected if one or more of its elements are selected.

• Move to Channel 1/ Channel 0 – moves the selected widget to another channel. This
option is active only in two channel designs. The whole widget is selected if one or more
of its elements are selected

Note Pins should be re-assigned if scanning order is changed.
Note Proximity sensor is excluded from scanning process by default. Its scan must be started
manually at run time as it is typically not scanned at the same time as the other sensors.

IDAC Value
Specifies the IDAC value of the selected sensors. This option is active only when IDAC is
selected as the Current Source (under the Advanced tab). Valid range is 0-255, default value is
200.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 18 of 73 Document Number: 001-65211 Rev. **

Sensitivity
Sensitivity is the nominal change in Cs (sensor capacitance) required to activate a sensor. The
valid range of values is [1…4] which corresponds to sensitivity levels: 0.1, 0.2, 0.3, and 0.4 pF.
The default value is 2. Sensitivity sets the overall sensitivity of the sensors to account for
different thicknesses of overlay material. Thicker material should use a lower sensitivity value.
This option is only available if the Tuning method parameter is set to "Auto (SmartSense)."

Sensor Scan Time
Shows the approximate scan time required for the selected sensor in typical systems.
When Auto(SmartSense) is selected as the tuning method the displayed value may be
inaccurate because parameters are changed while tuning. ‘Unknown’ is shown when the
CapSense CSD component input clock frequency is unknown.
The following parameters of the CapSense CSD component have effects on the scan time of
sensor:

• Scan Speed

• Resolution

• CapSense CSD clock

Total Scan Time
Shows total scan time required to scan all of the sensors. This value is the approximate sensor
scan time, so it could be slightly different from real.
When Auto(SmartSense) is selected as the tuning method the displayed value may be
inaccurate because parameters are changed while tuning. ‘Unknown’ is shown when the
CapSense CSD component input clock frequency is unknown.

Widget List
Widgets are listed in alternating gray and orange rows in the table. All sensors associated with a
widget share the same color to highlight different widget elements.
Proximity scan sensors can use dedicated proximity sensors, or they can detect proximity from a
combination of dedicated sensors and/or other sensors. For example, the board may have a
trace that goes all the way around an array of buttons and the proximity sensor may be made up
of the trace and all of the buttons in the array. All of these sensors are scanned at the same time
to detect proximity. A drop down is provided on proximity scan sensors to choose one or more
sensors to scan to detect proximity.
Like proximity sensors, generic sensors can consist of multiple sensors as well. A generic sensor
can get data from a dedicated sensor, any other existing sensor, or from multiple sensors. Select
the sensors with the drop down provided.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 19 of 73

Advanced Tab

Analog Switch Drive Source
This parameter specifies the source of the analog switch divider which determines the rate at
which the sensors are switched to and from the modulation capacitor Cmod. Implementing the
timer in the Fixed Function Timer blocks (FF Timer) results in minimal resources used while still

• Direct – Does not use FF Timer or UDB resources but limits device maximum clock rate to
the same as the analog switch rate. Not recommended in most designs.

• UDB Timer – Uses UDB resources

• FF Timer – Default – Does not use UDB resources

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 20 of 73 Document Number: 001-65211 Rev. **

Analog Switch Divider
This parameter specifies the value of the analog switch divider and determines the pre-charge
switch output frequency. Valid range of values is [1…255]. Default value is 11.
This feature is disabled if Analog Switch Drive Source is set to Direct.

• The sensors are continuously switched to and from the modulation capacitor Cmod at the
speed of the precharge clock. The Analog Switch Divider divides the CapSense CSD
clock to generate the precharge clock. When the divider value is decreased, the sensors
are switched faster and the raw counts increase and vice versa.

Scan Speed
This parameter specifies the CapSense CSD component digital logic clock frequency which
determines the scan time of sensors. Slower scanning speeds take longer but provide the
advantages of improved SNR, and better immunity to power supply and temperature changes,

• Slow – Divides the component input clock by 16

• Normal – Divides the component input clock by 8 – Default

• Fast – Divides the component input clock by 4

• Very Fast – Divides the component input clock by 2

Table 1. Scanning Time in µs vs Scan Speed and Resolution

Resolution, bits Scanning speed

Very Fast Fast Normal Slow

8 58 80 122 208

9 80 122 208 377

10 122 208 377 718

11 208 377 718 1400

12 377 718 1400 2770

13 718 1400 2770 5500

14 1400 2770 5500 10950

15 2770 5500 10950 21880

16 5500 10950 21880 43720

Note Table 1 scan time is an estimate based on the following settings. Master Clock and CPU
Clock = 48 MHz, CapSense CSD clock = 24 MHz, number of channels = 1. Scanning time was
measured as time interval of one sensor scan. This time includes sensor setup time, sample

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 21 of 73

conversion interval, and data processing time. These values can be used to estimate scanning
speed for other clock rates and additional sensors by scaling the provided values linearly.

PRS EMI Reduction
This parameter specifies if the Psuedo Random Sequence (PRS) generator will be used to
generate the analog pre-charge clock. Use of the PRS is recommended as it spreads the
spectrum of the CapSense analog switching frequency reducing EMI emissions and sensitivity.
The PRS clock source is provided by the Analog Switch Divider settings. If PRS EMI reduction is
not enabled a single frequency will be used resulting in increased emissions of the fundamental
frequency and harmonics:

• Disabled

• Enabled 8 bits – 8 bit provides better SNR but the shorter repeat period increases EMI.

• Enabled 16 bits, full speed – Default – 16 bit provides a lower SNR but superior EMI
reduction

• Enabled 16 bits, ¼ full speed - Requires a 4 times faster clock to obtain the same PRS
clock output as “Enable 16 bits, full speed”

Sensor Auto Reset
This parameter enables auto reset which causes the baseline to always update regardless of
whether the difference counts are above or below the noise threshold. When auto reset is
disabled, the baseline only updates when difference counts are within the plus/minus noise
threshold (the noise threshold is mirrored). You should leave this parameter Disabled unless you
have problems with sensors permanently turning on when the raw count suddenly rises without
anything touching the sensor.

• Enable – Auto reset ensures that the baseline is always updated avoiding missed button
presses and stuck buttons but limits the maximum length of time a button will report as
pressed. This setting limits the maximum time duration of the sensor (typical values are 5
– 10s), but it prevents the sensors from permanently turning on when the raw count
suddenly rises without anything touching the sensor. This sudden rise can be caused by a
large power supply voltage fluctuation, a high energy RF noise source, or a very quick
temperature change.

• Disable – Default – Abnormal system conditions can cause the baseline to stop updating
by continuously exceeding the noise threshold resulting in missed button presses or stuck
buttons. The benefit is that a button can continue to report its pressed state indefinitely.
The designer may need to provide an application dependant method of determining stuck
or unresponsive buttons.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 22 of 73 Document Number: 001-65211 Rev. **

Widget Resolution
This parameter specifies the Signal resolution that the Widget reports. 8 bits (1 byte) is the
default option and should be used for the vast majority of applications. If widget values exceed
the 8 bit range the system is too sensitive and should be tuned to move the nominal value to
approximately mid range (~128). Slider and Touchpad widgets that require high accuracy can
benefit from 16 bit resolution. 16 bit resolution increases linearity by avoiding rounding errors
possible with 8 bits but at the expense of additional SRAM usage of two bytes per sensor.

• 8 bits (1 byte) – Default

• 16 bits (2 bytes)

Shield electrode
This parameter specifies if the shield electrode output, which is used to remove the effects of
water droplets and water films, is enabled or disabled. For more information about shield
electrode usage refer to the Shield electrode usage and Restrictions section.

• Disable – Default

• Enable

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 23 of 73

Inactive Sensor Connection
This parameter defines the default sensor connection for all sensors not being actively scanned

• Ground – Default - Should be used for the vast majority of applications as it reduces noise
on the actively scanned sensors.

• Hi-Z Analog - Leaves the inactive sensors at Hi-Z.

• Shield - Provides the shield waveform to all unscanned sensors, the amplitude of the
shield signal is equal to Vddio. Provides increased water proofing and lower noise when
used with the Shield Electrode.

Guard Sensor
This parameter enables the guard sensor, which helps detect water drops in an application that
requires water proofing. This feature is enabled automatically if Water Proofing and detection
(under the General tab) is checked. For more information about the Guard sensor, refer to
"Guard Sensor Implementation" in the Functional Description section of this data sheet.

• Disable – Default

• Enable

Current Source
CapSense CSD requires a precision current source for detecting touch on the sensors. IDAC
Sink and IDAC Source require the use of a hardware IDAC on the PSoC device. External
Resistor uses a user supplied resistor on the PCB rather than an IDAC and is useful in IDAC
constrained applications.

• IDAC Sourcing – Default - The IDAC sources the current into the modulation capacitor
CMOD. The analog switches are configured to alternate between the modulation
capacitor CMOD and GND providing a sink for the current. IDAC Sourcing is
recommended for most designs because it provides the greatest Signal To Noise Ratio of
the three methods but may require an additional VDAC resource to set the Vref level that
the other modes do not require.

• IDAC Sinking - The IDAC sinks current from the modulation capacitor CMOD. The analog
switches are configured to alternate between Vdd and the modulation capacitor CMOD
providing a source for the current. Works well in most designs although SNR is generally
not as high as the IDAC Sourcing mode.

• External Resistor - This functions the same as the IDAC sinking configuration except the
IDAC is replaced with a bleed resistor to ground, Rb. The bleed resistor is connected
between the modulation capacitor, Cmod and a GPIO. The GPIO is configured to Open-
Drain Drives Low drive mode allowing Cmod to be discharged through Rb. This mode
requires the least analog resources and should only be used when resource constraints
require. Because this mode does not require an IDAC or VDAC it can result in the lowest
power configuration of the component if power is critical system consideration.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 24 of 73 Document Number: 001-65211 Rev. **

IDAC Range
This parameter specifies the IDAC Range of the Current Source. This parameter is disabled if
Current Source is set to External Resistor. The Default is the best choices for almost all
CapSense designs. The lower and higher current ranges are generally only used with non touch
capacitive based sensors.

• 32uA

• 255uA – Default

• 2.04mA

Number of Bleed Resistors, channel 0/channel 1
This parameter specifies the number of bleed resistors. The maximum number of bleed resistors
is three per channel. This feature is disabled if the Current Source is set to IDAC Source or
IDAC Sink. Multiple bleed resistors are supported to allow different currents for up to three
groups of sensors which aids in system tuning. Most designs with a similar sensor size require
only one bleed resistor.

Digital Resource Implementation, channel 0/channel 1
This parameter specifies the type of resources to be used for implementing the digital portion of
CapSense which includes a timer and a counter. For most designs this parameter should not be
changed as it is designed to provide maximum implementation flexibility.

• UDB Timer – Default – Most flexible implementation but uses valuable UDB resources

• FF Timer – FF Timer implementation frees UDB resources but does not support Scan
Speed = Very Fast.

Voltage Reference Source
This parameter specifies the type and level of the reference source voltage. It is best to have as
high a reference voltage for IDAC Source mode and as low a reference voltage for IDAC Sink or
External Resistor Current Source modes.

• 1.024V – Default – Best for IDAC sink mode

• VDAC – Best for IDAC source mode. Allows adjusting the reference voltage using a
Voltage DAC to maximize the available range. Reference source VDAC is only available
when Current Source is set to IDAC Source and requires a VDAC device resource. As
the reference voltage is increased so is sensitivity but the influence on the shield
electrode is decreased.

When VDAC is selected the CapSense buffer isn’t used, as it is designed for low voltage. This
causes Cmod to be charged to Vref from VDAC on start up. The amount of time required to
charge Cmod to Vref, may cause baseline initialization fails. Typically, double baseline
initialization will solve the problem.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 25 of 73

Tune Helper Tab

Enable Tune Helper
This parameter adds functions to support communication with the Tuner GUI with minimal user
effort. This feature should be checked if the Tuner GUI will be used. If this option is not checked,
the communication functions are still provided but do nothing. Therefore, when tuning is
complete or the tuning method is changed you do not need to remove these functions. Default –
Checked.

Instance name for EZI2C component
This parameter defines the instance name for the EZI2C component in your design to be used
for communication with the Tuner GUI.
Note There is no real time Design Rule Check to ensure the actual instance name matches the
instance name entered here. You must make sure they match. If the names do not match, build
errors will be generate during the project build do to misnamed APIs.
For more information about how to use Tuner GUI, refer to the Tuner GUI User Guide section of
this data sheet.

Placement
Not applicable

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 26 of 73 Document Number: 001-65211 Rev. **

Resources
CapSense CSD analog and pins resources.

Resources

Analog resources

Pins (per External I/O)VIDAC Comparator
CapSense

Buffers

Channels: 1
Current Mode: External resistor

0 1 1 2 + Shield +
SensorsNumber

Channels: 2
Current Mode: External resistor

0 2 2 4 + Shield +
SensorsNumber

Channels: 1
Current Mode: IDAC sinking

1 1 1 1 + Shield +
SensorsNumber

Channels: 2
Current Mode: IDAC sinking

2 2 2 2 + Shield +
SensorsNumber

Channels: 1
Current Mode: IDAC sorcing
Vref: VDAC

2 1 1 1 + Shield +
SensorsNumber

Channels: 2
Current Mode: IDAC sorcing
Vref: VDAC

4 2 2 2 + Shield +
SensorsNumber

CapSense CSD digital resources (only scanning and sleep APIs are included to Flash and RAM
usage).

Description

Digital resources
API Memory

(Bytes)

Data-
paths

Macro
cells

Status
Registers

Control
Registers Counter7 Interrupt Flash RAM

Channels: 1
Current Mode: External
resistor

4 19 0 1 1 1 1270 11

Channels: 2
Current Mode: External
resistor

6 31 0 1 1 2 2262 17

Channels: 1
Current Mode: IDAC
sinking

4 19 0 1 1 1 1345 10

Channels: 2
Current Mode: IDAC
sinking

6 31 0 1 1 2 2446 15

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 27 of 73

Description

Digital resources
API Memory

(Bytes)

Data-
paths

Macro
cells

Status
Registers

Control
Registers Counter7 Interrupt Flash RAM

Channels: 1
Current Mode: IDAC
sorcing
Vref: VDAC

4 18 0 1 1 1 1452 11

Channels: 2
Current Mode: IDAC
sorcing
Vref: VDAC

6 30 0 1 1 2 2656 17

CapSense CSD high level API resources

Project description

API Memory
(Bytes)

Flash RAM

Widgets type: Buttons
Count: 4

1197 22

Widgets type: Non-diplexed linear slider
Size: 5 sensors

1866 25

Widgets type: Diplexed linear slider
Size: 5 sensors

2304 25

Widgets type: Matrix buttons
Size: 5x5 sensors

1526 55

Widgets type: Radial slider
Size: 5 sensors

1704 25

Widgets type: Touch-pad
Size: 5x5 sensors

2289 48

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 28 of 73 Document Number: 001-65211 Rev. **

Tuner GUI User Guide
This section provides instructions and information that will help you use the CapSense Tuner.
The CapSense Tuner assists in tuning the CapSense component to the specific environment of
the system when in manual tuning mode. It is also capable of displaying the tuning values (read
only) and performance when the component is in SmartSense mode. No tuning is supported
when the component is in no tuning mode as all parameters are stored in Flash and are read
only for minimum SRAM usage.

CapSense Tuning Process
The following is the typical process for using and tuning a CapSense component:

Create a design in PSoC Creator
Refer to the PSoC Creator Help as needed.

Place and Configure EZI2C Component
1. Drag an EZI2C component from the Component Catalog onto your design.

2. Double-click it to open the Configure dialog.
3. Change the parameters as follows, and click OK to close the dialog.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 29 of 73

• Sub-address size must be "16 bit."

• The instance Name must match the name used on the CapSense CSD Configure dialog,
under Tune Helper tab in order for the generated APIs to function

Place and Configure the CapSense Component
1. Drag a CapSense_CSD component from the Component Catalog onto your design.

2. Double-click it to open the Configure dialog.
3. Change CapSense CSD parameters as required for your application. Select Tuning method

as Manual or Auto (SmartSense). Click OK to close the dialog and save the selected
parameters.

Selecting Auto (SmartSense)
Auto (SmartSense) allows tuning of the CapSense CSD component to the specifics of the
system automatically. CapSense CSD parameters are computed at runtime by firmware.
Additional RAM and CPU time are used in this mode. Auto (SmartSense) eliminates the error
prone and repetitive process of manually tuning the CapSense CSD component parameters to

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 30 of 73 Document Number: 001-65211 Rev. **

ensure proper system operation. Selecting Auto (SmartSense) tunes the following CSD
parameters:

Parameter Calculation

Finger Threshold Calculated continuously during sensor scanning.

Noise Threshold Calculated continuously during sensor scanning.

IDAC Value Calculated once on CapSense CSD start up.

Analog Switch Divider Calculated once on CapSense CSD start up.

Scan Resolution Calculated once on CapSense CSD start up.

Restrictions of hardware parameters for Auto(SmartSense) tuning method:

Parameter Required Setting

Scan Clock Clock must be internal (“Enable clock input” in General tab set to false).

Current Source IDAC Sourcing.

PRS EMI Reduction Enabled 16 bits.

Scan Speed Normal

Vref 1.024 V

4. In the Tune Helper tab: The EzI2C component instance name must be entered and Enable
Tune Helper checkbox must be checked

Add Code
Add tuner initialization and communication code to the projects main.c file. Example main.c file:

void main()
{

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 31 of 73

CYGlobalIntEnable;
CapSense_1_TunerStart();
while(1)
{

CapSense_1_TunerComm();
}

}

Build the design and program the PSoC device
Refer to PSoC Creator Help as needed.

Launch the Tuner application
Right-click the CapSense CSD component icon and select Launch Tuner from the context
menu.
The Tuner application opens.

Configure communication parameters
1. Click Configuration to open the Tuner Communication dialog.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 32 of 73 Document Number: 001-65211 Rev. **

2. Set the communication parameters and press OK.
Important: Properties must be identical to those in the EZ I2C component: I2C Bus Speed, I2C
Address, Sub-address = 2-Bytes.

Start tuning
Click Start on the tuning GUI. All of the CapSense elements start showing their values.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 33 of 73

Edit CapSense parameter values
Edit a parameter value for one of the elements and it is automatically applied after pressing
“Enter” key or moving to another option. The GUI continues to show the scanning data but it is
now altered based on the application of the updated parameter. Refer to the Tuner GUI Interface
section later in this data sheet.

Repeat as needed
Repeats steps as needed until tuning is complete and the CapSense component provides
reliable touch sensor results.

Close the Tuner application
Click the OK button and the parameters are written back to the CapSense_CSD instance and
the Tuner application dialog closes.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 34 of 73 Document Number: 001-65211 Rev. **

Tuner GUI Interface

General Interface

Top panel buttons:

• Start (or main menu item Debug > Start) – Starts reading and displaying data from the
chip. Also starts graphing and logging if configured.

• Stop (or main menu item Debug > Stop) – Stops reading and displaying data from the
chip.

• Configuration (or main menu item Debug > Configuration) – Opens the Communication
Configuration dialog.

• Enable Logging (or main menu item Debug > Start) – Enables logging of data received
from device to a log file.

Main Menu:

• File > Settings > Load Settings from File – Imports settings from a XML tuning file and
loads all data into the tuner.

• File > Help – Opens help file.

• Other items duplicate functionality of top and bottom panel buttons.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 35 of 73

Tabs

• Tuning Tab – Displays all of the component widgets as configured on a workspace. This
allows you to arrange the widgets similar to how they appear on the physical PCB or
enclosure. This tab is used for tuning widget parameters and visualization widgets data
and states.

• Graphing Tab – Displays detailed individual widget data on charts.

• Logging Tab – Provides logging data functionality and debugging features.
Bottom panel buttons:

• OK (or main menu item File > Apply Changes and Close) – Commits the current values
of parameters to the CapSense component instance and exits the GUI.

• Cancel (or main menu item File > Exit) – Exits the GUI without committing the values of
parameters to the component instance.

Tuning Tab

• Widgets schematic – contains a graphical representation of all of the configured widgets.
If a widget is composed of more than one sensor the individual sensors may be selected
for detailed analysis.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 36 of 73 Document Number: 001-65211 Rev. **

• Bar graph – Displays signal values for the selected sensor.

• The maximum scale of the detailed view bar graph can be adjusted by double clicking
on Max Value label. Valid range is between 1 and 255, default is 255.

• The current finger turn on threshold is displayed as a green line across the bar graph.

• The current finger turn off threshold is displayed as a red line across the bar graph.

• The current noise threshold is displayed as a yellow line across the bar graph.

• SNR – The signal to noise ratio is computed in real time for the selected sensor. SNR
values below 5 are poor and colored red, 5 to 10 are marginal and yellow, and greater
than 10 is good and colored green. SNR value is calculated based on previously received
data.

• Revert Parameters button – Resets the parameters to their initial values and sends those
values to the chip. Initial values are what were displayed when the GUI was launched

• Sensor properties – Displays the properties for the selected sensor based on the widget
type. It is located on the right side panel.

• General CapSense properties (Read Only) – Displays global properties for the
CapSense CSD component that cannot be changed at run time. These are for reference
only. It is located on the bottom of the right side panel

• Widget controls context menu (this functionality applies only to the layout of widget
controls in GUI):

• Send To Back – Sends widget control to the back of the view.

• Bring To Front – Brings widget control to the front of the view.

• Rotate Clockwise 90 – Rotates widget control 90 degrees clockwise. (Only for Linear
Sliders)

• Rotate Counter Clockwise 90 – Rotates widget control 90 degrees counter clockwise.
(Only for Linear Sliders)

• Flip Sensors – Reverses the order of the sensors. (Only for Linear and Radial Sliders)

• Flip Columns Sensors – Reverses the order of the Columns sensors. (Only for Touch
Pads and Matrix Buttons)

• Flip Row Sensors – Reverses the order of the Row sensors. (Only for Touch Pads and
Matrix Buttons)

• Exchange Columns and Rows – Columns sensors become rows and rows sensors
become columns. (Only for Touch Pads and Matrix Buttons)

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 37 of 73

Graphing Tab

• Chart area – Displays charts for selected items from the tree view.

• Chart area right click context menu item Export to .jpg makes a screenshot of the
chart area and saves it as a .jpg picture.

• Tree view – Provides all combinations of data for widgets and sensors which can be
shown on the chart and logged to a file if the logging feature is enabled. The On/Off
Status data value can only be logged, it can’t be show on a chart.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 38 of 73 Document Number: 001-65211 Rev. **

Logging Tab

• Data that will be logged is selected by checking checkboxes on the Tree View of the
Graphing tab.

• Path – Defines log file path (file extension is .csv).

• Append new data to existing file checkbox – If checked, new data is appended to an
existing file. If not checked, old data will be erased from the file and replaced with the new
data.

• Log duration – Defines log duration in minutes.

• Connect – Connects to the PSoC device.

• Disconnect – Disconnects from the PSoC device.

• Read – Reads data from the PSoC device. The address field defines the address in the
buffer. Data field defines number of bytes to read.

• Write – Writes data to the PSoC device. The address field defines the address in the
buffer. Data field defines the data to write.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 39 of 73

Save/Load Settings feature
The tuner GUI also can be opened as standalone application. In this case the user has to use
the Save and Load Settings feature of the CapSense CSD component Tuner GUI.

1. Click the Save Settings button in the customizer

2. In Save File Dialog window specify name of the file and location where it will be saved.
3. Open Tuner window and click File > Settings > Load Settings from File

4. In File Open Dialog point to the previously saved file with the component settings.
Settings will automatically load into the Tuner.

Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table provides an overview of each function. The subsequent sections
cover each function in more detail.
By default, PSoC Creator assigns the instance name "CapSense_1" to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
"CapSense".

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 40 of 73 Document Number: 001-65211 Rev. **

General APIs
These are the general CapSense API functions that place the component into operation or halt
operation:

Function Description

CapSense_Start Preferred method to start the component. Initializes registers and enables
active mode power template bits of the sub components used within
CapSense

CapSense_Stop Disables component interrupts, and calls CapSense_ClearSensors() to reset
all sensors to an inactive state.

CapSense_Sleep Prepares the component for the device entering a low power mode. Disables
Active mode power template bits of the sub components used within
CapSense, saves non-retention registers and resets all sensors to an inactive
state.

CapSense_WakeUp Restores CapSense configuration and non-retention register values after the
device wake from a low power mode sleep mode.

CapSense_Init Initializes the default CapSense configuration provided with the customizer

CapSense_Enable Enables the Active mode power template bits of the sub components used
within CapSense.

CapSense_SaveConfig Saves the configuration of CapSense non-retention registers. Resets all
sensors to an inactive state.

CapSense_RestoreConfig Restores CapSense configuration and non-retention register values.

void CapSense_Start (void)
Description: This is the preferred method to begin component operation. CapSense_Start() calls the

CapSense_Init() function, and then calls the CapSense_Enable() function. Initializes registers
and starts the CSD method of the CapSense component. Resets all sensors to an inactive
state. Enables interrupts for sensors scanning. When SmartSense tuning mode is selected the
tuning procedure is applied for all sensors. The CapSense_Start() routine must be called
before any other API routines.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 41 of 73

void CapSense_Stop (void)
Description: Stops the sensor scanning, disables component interrupts, and resets all sensors to an

inactive state. Disables Active mode power template bits for the subcomponents used within
CapSense.

Parameters: None

Return Value: None

Side Effects: This function should be called after all scanning is completed.

void CapSense_Sleep(void)
Description: This is the preferred method to prepare the component for device low power modes.

Disables Active mode power template bits for the sub components used within CapSense.
Calls CapSense_SaveConfig() function to save customer configuration of CapSense non-
retention registers and resets all sensors to an inactive state.

Parameters: None
Return Value: None
Side Effects: This function should be called after scans will be completed.

This function does not put pins used by CapSense component into lowest power
consumption state. To change a pin’s drive mode, use the functions described in the “Pins
APIs” section.

void CapSense_WakeUp(void)
Description: Restores the CapSense configuration and non-retention register values. Restores the

enabled state of the component by setting Active mode power template bits for the
subcomponents used within CapSense.

Parameters: None
Return Value: None
Side Effects: This function does not restore pins used by the CapSense component to the state it was

before.

void CapSense_Init(void)
Description: Initializes the default CapSense configuration provided by the customizer that defines

component operation and resets all sensors to an inactive state.
Parameters: None
Return Value: None
Side Effects: None

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 42 of 73 Document Number: 001-65211 Rev. **

void CapSense_Enable(void)
Description: Enables Active mode power template bits for the subcomponents used within CapSense.
Parameters: None
Return Value: None
Side Effects: None

void CapSense_SaveConfig(void)
Description: Saves the configuration of CapSense non-retention registers. Resets all sensors to an

inactive state.
Parameters: None
Return Value: None
Side Effects: This function should be called after scanning is complete.

This function does not put pins used by CapSense component into lowest power
consumption state. To change a pin’s drive mode, use the functions described in the “Pins
APIs” section

void CapSense_RestoreConfig(void)
Description: Restores CapSense configuration and non-retention registers.
Parameters: None
Return Value: None
Side Effects: This function should be called after scanning is complete.

This function does not restore pins used by the CapSense component to the state it was
before.

Scanning Specific APIs
These API functions are used to implement CapSense sensor scanning.

Function Description

CapSense_ScanSensor Sets scan settings and starts scanning a sensor or group of combined
sensors on each channel.

CapSense_ScanEnabledWidgets The preferred scanning method. Scans all of the enabled widgets.

CapSense_IsBusy Returns status of sensor scanning.

CapSense_SetScanSlotSettings Sets the scan settings of the selected scan slot (sensor or pair of sensors).

CapSense_ClearSensors Resets all sensors to the non-sampling state.

CapSense_EnableSensor Configures the selected sensor to be scanned during the next scanning cycle.

CapSense_DisableSensor Disables the selected sensor so it is not scanned in the next scanning cycle.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 43 of 73

Function Description

CapSense_ReadSensorRaw Returns sensor raw data from the CapSense_SensorResult[] array.

CapSense_SetRBleed Sets the pin to use for the bleed resistor (Rb) connection if multiple bleed
resistors are used.

void CapSense_ScanSensor (uint8 sensor)
Description: Sets scan settings and starts scanning a sensor or pair of sensors on each channel. If two

channels are configured, two sensors may be scanned at the same time. After scanning is
complete the isr copies the measured sensor raw data to the global raw sensor array. Use of
the isr ensures this function is non-blocking. Each sensor has a unique number within the
sensor array. This number is assigned by the CapSense customizer in sequence.

Parameters: (uint8) sensor: Sensor number

Return Value: None

Side Effects: None

void CapSense_ScanEnabledWidgets (void)
Description: This is the preferred method to scan all of the enabled widgets. Starts scanning a sensor or

pair of sensors within the enabled widgets. The isr continues scanning sensors until all
enabled widgets are scanned. Use of the isr ensures this function is non-blocking. All widgets
are enabled by default except proximity widgets. Proximity widgets must be manually enabled
as their long scan time is incompatible with the fast response desired of other widget types.

Parameters: None

Return Value: None

Side Effects: If no widgets are enabled the function call has no effect.

uint8 CapSense_IsBusy (void)
Description: Returns status of sensor scanning.

Parameters: None

Return Value: (uint8) Returns the state of scanning. ‘1’ – scanning in progress, ‘0’ – scanning completed.

Side Effects: None

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 44 of 73 Document Number: 001-65211 Rev. **

void CapSense_SetScanSlotSettings (uint8 slot)
Description: Sets the scan settings provided in the customizer or wizard of the selected scan slot (sensor

or pair of sensors for a two channel design). The scan settings provide an IDAC value (for
IDAC configurations) for every sensor as well as resolution. The resolution is the same for all
sensors within a widget.

Parameters: (uint8) slot: Scan slot number

Return Value: None

Side Effects: None

void CapSense_ClearSensors (void)
Description: Resets all sensors to the non-sampling state by sequentially disconnecting all sensors from

the Analog MUX Bus and connecting them to the inactive state.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_EnableSensor(uint8 sensor)
Description: Configures the selected sensor to be scanned during the next measurement cycle. The

corresponding pins are set to Analog High-Z mode and connected to the Analog Mux Bus.
This also affects the comparator output.

Parameters: (uint8) sensor: Sensor number

Return Value: None

Side Effects: None

void CapSense_DisableSensor(uint8 sensor)
Description: Disables the selected sensor. The corresponding pins are disconnected from the Analog Mux

Bus and put into the inactive state.

Parameters: (uint8) sensor: Sensor number

Return Value: None

Side Effects: None

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 45 of 73

uint16 CapSense_ReadSensorRaw (uint8 sensor)
Description: Returns sensor raw data from the global CapSense_SensorResult[] array. Each scan sensor

has a unique number within the sensor array. This number is assigned by the CapSense
customizer in sequence. Raw data may be used to perform calculations outside of the
CapSense provided framework.

Parameters: (uint8) sensor: Sensor number

Return Value: (uint16) Current Raw data value

Side Effects: None

void CapSense_SetRBleed(uint8 rbleed)
Description: Sets the pin to use for the bleed resistor (Rb) connection. This function can be called at

runtime to select the current Rb pin setting from those defined in the customizer. The function
overwrites the component parameter setting. This function is available only if Current Source
is set to External Resistor.

This function is effective when some sensors need to be scanned with different bleed resistor
values. For example, regular buttons can be scanned with a lower value of bleed resistor. The
proximity detector can be scanned less often with a larger bleed resistor to maximize proximity
detection distance. This function can be used in conjunction with the CapSense_ScanSensor()
function.

Parameters: (uint8) rbleed: Ordered number for bleed resistor defined in CapSense customizer.

Return Value: None

Side Effects: The number of bleed resistors is restricted by 3. The function does not check for an out of
range number.

High Level APIs
These API functions are used to work with raw data for sensor widgets. The raw data is retrieved
from scanned sensors and converted to on/off for buttons, position for sliders, or X and Y
coordinates for touch pads.

Function Description

CapSense_InitializeSensorBaseline Loads the CapSense_SensorBaseline[sensor] array element with an initial
value by scanning the selected sensor.

CapSense_InitializeAllBaselines Loads the CapSense_SensorBaseline[] array with initial values by scanning
all sensors.

CapSense_UpdateSensorBaseline The historical count value, calculated independently for each sensor, is
called the sensor's baseline. This baseline updated uses a low pass filter
with k = 256.

CapSense_UpdateEnabledBaselines Checks the CapSense_SensorEnableMask[]array and calls the
CapSense_UpdateSensorBaseline function to update the baselines for
enabled sensors.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 46 of 73 Document Number: 001-65211 Rev. **

Function Description

CapSense_EnableWidget Enables all sensor elements in a widget for the scanning process.

CapSense_DisableWidget Disables all sensor elements in a widget from the scanning process.

CapSense_CheckIsWidgetActive Compares the selected of widget to the CapSense_Signal[] array to
determine if it has a finger press.

CapSense_CheckIsAnyWidgetActive Uses the CapSense_CheckIsWidgetActive() function to find if any widget of
the CapSense CSD component is in active state.

CapSense_GetCentroidPos Checks the CapSense_SensorSignal[] array for a finger press in a linear
slider and returns the position.

CapSense_GetRadialCentroidPos Checks the CapSense_SensorSignal[] array for a finger press in a radial
slider widget and returns the position.

CapSense_GetTouchCentroidPos If a finger is present, this function calculates the X and Y position of the
finger by calculating the centroids within the touch pad.

void CapSense_InitializeSensorBaseline (uint8 sensor)
Description: Loads the CapSense_SensorBaseline[sensor] array element with an initial value by scanning

the selected sensor (one channel design) or pair of sensors (two channels design). The raw
count value is copied into the baseline array for each sensor. The raw data filters are initialized
if enabled.

Parameters: (uint8) sensor: Sensor number

Return Value: None

Side Effects: None

void CapSense_InitializeAllBaselines(void)
Description: Uses the CapSense_InitializeSensorBaseline function to load the

CapSense_SensorBaseline[] array with initial values by scanning all sensors. The raw count
values are copied into the baseline array for all sensors. The raw data filters are initialized if
enabled.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 47 of 73

void CapSense_UpdateSensorBaseline (uint8 sensor)
Description: The sensor's baseline is a historical count value, calculated independently for each sensor.

Updates the CapSense_SensorBaseline[sensor] array element using a low pass filter with k =
256. The function calculates the difference count by subtracting the previous baseline from the
current raw count value and stores it in CapSense_SensorSignal[sensor].
If auto reset option is enabled the baseline updates independent of the noise threshold.
If the auto reset option is disabled the baseline stops updating if the signal is greater than the
noise threshold and resets the baseline when signal is less than the minus noise threshold.
Raw data filters are applied to the values if enabled before baseline calculation.

Parameters: (uint8) sensor: Sensor number

Return Value: None

Side Effects: None

void CapSense_UpdateEnabledBaselines(void)
Description: Checks the CapSense_SensorEnableMask[] array and calls the

CapSense_UpdateSensorBaseline() function to update the baselines for all enabled sensors.

Parameters: None

Return Value: None

Side Effects: None

void CapSense_EnableWidget (uint8 widget)
Description: Enables the selected widget sensors to be part of the scanning process.

Parameters: (uint8) widget: Widget number. For every widget there are defines in this format:
#define CapSense_"widget_name"__"widget type" 5

Example:
#define CapSense_MY_VOLUME1__LS 5
#define CapSense_MY_UP__BNT 6

All widget names are upper case.

Return Value: None

Side Effects: None

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 48 of 73 Document Number: 001-65211 Rev. **

void CapSense_DisableWidget (uint8 widget)
Description: Disables the selected widget sensors from the scanning process.

Parameters: (uint8) widget: Widget number. For every widget there are defines in this format:
#define CapSense_"widget_name"__"widget type" 5

Example:
#define CapSense_MY_VOLUME1__RS 5
#define CapSense_MY_UP__MB 6

All widget names are upper case.

Return Value: None

Side Effects: None

uint8 CapSense_CheckIsWidgetActive(uint8 widget)
Description: Compares the selected sensor CapSense_Signal[] array value to its finger threshold.

Hysteresis and Debounce are taken into account. If the sensor is active, the threshold is
lowered by the hysteresis amount. If it is inactive, the threshold is increased by the hysteresis
amount. If the active threshold is met, the Debounce counter increments by one until reaching
the sensor active transition at which point this API sets the Widget as active. This function also
updates the sensor's bit in the CapSense_SensorOnMask[] array.
The touch pad and matrix buttons widgets need to have active sensor within col and row to
return widget active status.

Parameters: (uint8) widget: Widget number. For every widget there are defines in this format:
#define CapSense_"widget_name"__"widget type" 5

Example:
#define CapSense_MY_VOLUME1__LS 5

All widget names are upper case.

Return Value: (uint8) Widget sensor state. 1 if one or more sensors within widget are active, 0 if all sensors
within widget are inactive.

Side Effects: This function also updates values in CapSense_SensorOnMask[] for all sensors belonging to
the widget. The debounce counter is also modified on every call when there is a transition to
the active state.

uint8 CapSense_CheckIsAnyWidgetActive(void)
Description: Compares all sensors of the CapSense_Signal[] array to their finger threshold. Calls

Сapsense_CheckIsWidgetActive() for each widget so the CapSense_SensorOnMask[] array
is up to date after calling this function.

Parameters: None

Return Value: (uint8) 1 if any widget is active, 0 no widgets are active.

Side Effects: Has the same side effects as the CapSense_CheckIsWidgetActive() function but for all
sensors.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 49 of 73

uint16 CapSense_GetCentroidPos(uint8 widget)
Description: Checks the CapSense_Signal[] array for a finger press within a linear slider. The finger

position is calculated to the API resolution specified in the CapSense customizer. A position
filter is applied to the result if enabled. This function is available only if a linear slider widget is
defined by the CapSense customizer.

Parameters: (uint8) widget: Widget number. For every linear slider widget there are defines in this format:
#define CapSense_"widget_name"__LS 5

Example:
#define CapSense_MY_VOLUME1__LS 5

All widget names are upper case.

Return Value: (uint16) Position value of the linear slider

Side Effects: If any sensors within the slider widget are active, the function returns values from zero to the
API resolution value set in the CapSense customizer. If no sensors are active, the function
returns 0xFFFF. If an error occurs during execution of the centroid/diplexing algorithm, the
function returns 0xFFFF.

There are no checks of widget argument provided to this function. An incorrect widget value
provided will cause unexpected position calculations.

Note If noise counts on the slider segments are greater than the noise threshold, this
subroutine may generate a false finger press result. The noise threshold should be set
carefully (high enough above the noise level) so that noise will not generate a false finger
press.

uint16 CapSense_GetRadialCentroidPos(uint8 widget)
Description: Checks the CapSense_Signal[] array for a finger press within a radial slider. The finger

position is calculated to the API resolution specified in the CapSense customizer. A position
filter is applied to the result if enabled. This function is available only if a radial slider widget is
defined by the CapSense customizer.

Parameters: (uint8) widget: Widget number. For every radial slider widget there are defines in this format:
#define CapSense_"widget_name"__RS 5

Example:
#define CapSense_MY_VOLUME2__RS 5

All widget names are upper case.

Return Value: (uint16) Position value of the radial slider.

Side Effects: If any sensors within the slider widget are active, the function returns values from zero to the
API resolution value set in the CapSense customizer. If no sensors are active, the function
returns 0xFFFF.
There are no checks of widget type argument provided to this function. An incorrect widget
value provided will cause unexpected position calculations.

Note If noise counts on the slider segments are greater than the noise threshold, this
subroutine may generate a false finger press result. The noise threshold should be set
carefully (high enough above the noise level) so that noise will not generate a false finger
press.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 50 of 73 Document Number: 001-65211 Rev. **

uint8 CapSense_GetTouchCentroidPos (uint8 widget)
Description: If a finger is present on touch pad, this function calculates the X and Y position of the finger by

calculating the centroids within the touch pad sensors. The X and Y positions are calculated to
the API resolutions set in the CapSense customizer. Returns a ‘1’ if a finger is on the
touchpad. A position filter is applied to the result if enabled. This function is available only if a
touchpad is defined by the CapSense customizer.

Parameters: (uint8) widget: Widget number. For every touchpad widget there are defines in this format:
#define CapSense_"widget_name"__TP 5

Example:
#define CapSense_MY_TOUCH1__TP 5

All widget names are upper case.

Return Value: (uint8) 1 if finger is on the touchpad, 0 if not.

Side Effects: The result of calculation of X and Y position are stored in global array. The array name and
position are:

CapSense_position[widget] – position of X
CapSense_position[widget + 1] – position of Y

There are no checks of widget value argument provided to this function. An incorrect widget
value will cause unexpected position calculations.

Tuner Helper APIs
These API functions are used to work with Tuner GUI.

Function Description

CapSense_TunerStart Initializes CapSense CSD and EZI2C components, initializes baselines
and starts the sensor scanning loop.

CapSense_TunerComm Execute communication between the Tuner GUI.

void CapSense_TunerStart (void)
Description: Initialize the CapSense CSD component and EZI2C component. Also initialize baselines and

starts the sensor scanning loop with the currently enabled sensors.

Parameters: None

Return Value: None

Side Effects: None

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 51 of 73

void CapSense_TunerComm (void)
Description: Execute communication functions with Tuner GUI.

• Manual mode: Transfer sensor scanning and widget processing results to the Tuner GUI
from the CapSense CSD component. Reads new parameters from Tuner GUI and apply
them to the CapSense CSD component.

• Auto(SmartSense): Execute communication functions with Tuner GUI. Transfer sensor
scanning and widget processing results to Tuner GUI. The auto tuning parameters also
transfer to Tuner GUI. Tuner GUI parameters are not transferred back to the CapSense
CSD component.

This function is blocking and waits while the Tuner GUI modifies CapSense CSD component
buffers to allow new data.

Parameters: None

Return Value: None

Side Effects: None

Pins APIs
These API functions are used to change drive mode of pins used by CapSense component.
These APIs are most often used to place CapSense CSD component pins into the Strong drive
mode to minimize leakage while the device is in a low power mode.

Function Description

CapSense_SetAllSensorsDriveMode Sets the drive mode for the all pins used by capacitive sensors within the
CapSense component.

CapSense_SetAllCmodsDriveMode Sets the drive mode for the all pins used by Cmod capacitors within the
CapSense component.

CapSense_SetAllRbsDriveMode Sets the drive mode for the all pins used by bleed resistors (Rb) within the
CapSense component. Only available when Current Source is set to
external resistor.

void CapSense_SetAllSensorsDriveMode(uint8 mode)
Description: Sets the drive mode for the all pins used by capacitive sensors within the CapSense

component.

Parameters: (uint8) mode: Desired drive mode. See the Pins component datasheet for information on drive
modes.

Return Value: None

Side Effects: None

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 52 of 73 Document Number: 001-65211 Rev. **

void CapSense_SetAllCmodsDriveMode(uint8 mode)
Description: Sets the drive mode for the all pins used by Cmod capacitors within the CapSense

component.

Parameters: (uint8) mode: Desired drive mode. See the Pins component datasheet for information on drive
modes.

Return Value: None

Side Effects: None

void CapSense_SetAllRbsDriveMode(uint8 mode)
Description: Sets the drive mode for the all pins used by bleed resistors (Rb) within the CapSense

component. Only available when Current Source is set to external resistor.

Parameters: (uint8) mode: Desired drive mode. See the Pins component datasheet for information on drive
modes.

Return Value: None

Side Effects: None

Data Structures
The API functions use several global arrays for processing sensor and widget data. You should
not alter these arrays manually. These values can be viewed for debugging and tuning purposes.
For example, you can use a charting tool to display the contents of the arrays. The global arrays
are:

• CapSense_SensorRaw []

• CapSense_SensorEnableMask []

• CapSense_portTable[] and CapSense_maskTable[]

• CapSense_SensorBaseline []

• CapSense_SensorBaselineLow[]

• CapSense_SensorSignal []

• CapSense_SensorOnMask[]

CapSense_SensorRaw []
This array contains the raw data for each sensor. The array size is equal to the total number of
sensors (CapSense_TOTAL_SENSOR_COUNT). The CapSense_SensorRaw[] data is updated
by these functions:

• CapSense_ScanSensor()

• CapSense_ScanEnabledWidgets()

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 53 of 73

• CapSense_InitializeSensorBaseline()

• CapSense_InitializeAllBaselines()

• CapSense_UpdateEnabledBaselines()

CapSense_SensorEnableMask []
This is a byte array that holds the sensor scanning state CapSense_SensorEnableMask[0]
contains the masked bits for sensors 0 through 7 (sensor 0 is bit 0, sensor 1 is bit 1).
CapSense_SensorEnableMask[1] contains the masked bits for sensors 8 through 15 (if needed),
and so on. This byte array holds as many elements as are necessary to contain the total number
of sensors. The value of a bit specifies if a sensor is scanned by the
CapSense_ScanEnabledWidgets() function call: 1 – sensor is scanned , 0 – sensor is not
scanned. The CapSense_SensorEnableMask[] data is changed by functions:

• CapSense_EnabledWidget()

• CapSense_DisableWidget()
The CapSense_SensorEnableMask[] data is used by function:

• CapSense_ScanEnabledWidgets()

CapSense_portTable[] and CapSense_maskTable[]
These arrays contain port and pin masks for every sensor to specify what pin the sensor is
connected to.

• Port – Defines the port number that pin belongs to.

• Mask – Defines pin number within the port.

CapSense_SensorBaselineLow[]
This array holds the fractional byte of baseline data of each sensor used in the low pass filter for
baseline update. The arrays size is equal to the total number of sensors. The
CapSense_SensorBaselineLow[] array is updated by these functions:

• CapSense_InitializeSensorBaseline()

• CapSense_InitializeAllBaselines()

• CapSense_UpdateSensorBaseline()

• CapSense_UpdateEnabledBaselines()

CapSense_SensorBaseline[]
This array holds the baseline data of each sensor. The arrays size is equal to the total number of
sensors. The CapSense_SensorBaseline[array is updated by these functions:

• CapSense_InitializeSensorBaseline()

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 54 of 73 Document Number: 001-65211 Rev. **

• CapSense_InitializeAllBaselines()

• CapSense_UpdateSensorBaseline()

• CapSense_UpdateEnabledBaselines()

CapSense_SensorSignal[]
This array holds the sensor signal count computed by subtracting the previous baseline from the
current raw count of each sensor. The array size is equal to the total number of sensors. The
Widget Resolution parameter defines the resolution of this array as 1 byte or 2 bytes. The
CapSense_SensorSignal[] array is updated by these functions:

• CapSense_InitializeSensorBaseline()

• CapSense_InitializeAllBaselines()

• CapSense_UpdateSensorBaseline()

• CapSense_UpdateEnabledBaselines()

CapSense_SensorOnMask[]
This is a byte array that holds the sensors on/off state.
CapSense_SensorOnMask[0] contains the masked bits for sensors 0 through 7 (sensor 0 is bit
0, sensor 1 is bit 1). CapSense_SensorOnMask[1] contains the masked bits for sensors 8
through 15 (if needed), and so on. This byte array holds as many elements as are necessary to
contain the total number of sensors. The value of a bit is 1 if the sensor is on (active) and 0 if the
sensor is off (inactive). The CapSense_SensorOnMask[] data is updated by functions:

• CapSense_CheckIsWidgetActive()

• CapSense_CheckIsAnyWidgetActive()

Constants
The following constants are defined. Some of the constants are defined conditionally and will
only be present if necessary for the current configuration.

• CapSense_TOTAL_SENSOR_COUNT – Defines the total number of sensors within the
CapSense CSD component.

For two channels designs the number of sensor belongs to a channel is defined as:

• CapSense_TOTAL_SENSOR_COUNT__CH0 – Defines total number of sensors
belonging to channel 0.

• CapSense_TOTAL_SENSOR_COUNT__CH1 – Defines total number of sensors
belonging to channel 1.

• CapSense_CSD_TOTAL_SCANSLOT_COUNT – Defines the maximum sensor count in
either channel 0 or channel 1.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 55 of 73

Sensor Constants
A constant is provided for each sensor. These constants can be used as parameters in the
following functions:

• CapSense_EnableSensor

• CapSense_DisableSensor
The constant names consist of:

Instance name + "_SENSOR" + Widget Name + element + "#element number" + "__" +
Widget Type

For example:
#define CapSense_SENSOR_TP1_ROW0__TP 0
#define CapSense_SENSOR_TP1_ROW1__TP 1
#define CapSense_SENSOR_TP1_COL0__TP 2
#define CapSense_SENSOR_TP1_COL0__TP 3
#define CapSense_SENSOR_LS0_E0__LS 5
#define CapSense_SENSOR_LS0_E1__LS 6
#define CapSense_SENSOR_PROX1__PROX 7

• Widget Name – The user-defined name of the widget (must be a valid C style identifier).
The widget name must be unique within the CapSense CSD component. All Widget
Names are upper case.

• Element Number – The element number only exists for widgets that have multiple
elements, such as radial sliders. For touch pads and matrix buttons the element number
consists of the word ‘Col’ or ‘Row’ and its number (for example: Col0, Col1, Row0, Row1).
For linear and radial sliders, the element number consists of the character ‘e’ and its
number (for example: e0, e1, e2, e3).

• Widget Type – There are several widget types:

Alias Description

BTN Buttons

LS Linear Sliders

RS Radial Sliders

TP Touch Pads

MB Matrix Buttons

PROX Proximity Sensors

GEN Generic Sensors

GRD Guard Sensor

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 56 of 73 Document Number: 001-65211 Rev. **

Widget Constants
A constant is provided for each widget. These constants can be used as parameters in the
following functions:

• CapSense_CheckIsWidgetActive()

• CapSense_EnableWidget() and CapSense_DisableWidget()

• CapSense_GetCentroidPos()

• CapSense_GetRadialCentroidPos()

• CapSense_TouchPos()
The constants consist of:

Instance name + Widget Name + Widget Type

For example:
#define CapSense_UP__BTN 0
#define CapSense_DOWN__BTN 1
#define CapSense_VOLUME__SL 2
#define CapSense_TOUCHPAD__TP 3

Sample Firmware Source Code
PSoC Creator provides numerous example projects that include schematics and example code
in the Find Example Project dialog. For component-specific examples, open the dialog from the
Component Catalog or an instance of the component in a schematic. For general examples,
open the dialog from the Start Page or File menu. As needed, use the Filter Options in the
dialog to narrow the list of projects available to select.
Refer to the "Find Example Project" topic in the PSoC Creator Help for more information.

Pin Assignments
The CapSense customizer generates a pin alias name for each of the CapSense sensors and
support signals. These aliases are used to assign sensors and signals to physical pins on the
device. Assign CapSense CSD component sensors and signals to pins in the Pin Editor tab of
the Design Wide Resources file view.

Sides
The analog routing matrix within the PSoC device is divided into two halves – left and right. Even
port number pins are on the left side of the device and odd port number pins are on the right
side.
For serial sensing applications, sensor pins can be assigned to either side of the device. If the
application uses a small number of sensors, assigning all sensor signals to one side of the

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 57 of 73

device makes routing of analog resources more efficient and frees analog resource for other
components.
In parallel sensing applications the CapSense component is capable of performing two
simultaneous scans on two independent sets of hardware. Each of the two parallel circuits has a
separate Cmod and Rb (as applicable), and its own set of sensor pins. One set will occupy the
right side and the other will occupy the left side of the device. The signal name alias indicates
which side the signal is associated with.

Sensor Pins – CapSense_cPort – Pin Assignment
Aliases are provided to associate sensor names with widgets types and widgets names in the
CapSense customizer.
The aliases for sensors are:

Widget Name + Element Number + "__" + Widget Type

Note In two-channel designs, widget elements that belong to a channel can only be connected to
the same side of the chip as that channels Cmod. The Pin Editor does not verify correct pin
assignment with a design rule check. Pin placement errors will be flagged during the build
process.
Note The Opamp outputs P0[0], P0[1], P3[6] and P3[7] have greater parasitic capacitance than
other pins. This causes less finger response from P0[0], P0[1], P3[6] and P3[7] in CapSense
applications and they should be avoided if possible. If they must be used, they should be used
for individual buttons where the capacitive difference will not translate into position errors for
sliders and touchpads.

CapSense_cCmod_Port – Pin Assignment
One side of the external modulator capacitor (Cmod) should be connected to a physical pin and
the other to GND. Two-channel designs require two Cmod capacitors, one for the left side and
one for the right side of the device. The Cmod can be connected to any pin, but for most
efficient analog routing the following pins allow for a direct connection:

• Left side: P2[0], P2[4], P6[0], P6[4], P15[4]

• Right side: P1[0], P1[4], P5[0], P5[4]
The aliases for the Cmod capacitors are:

Alias Description

CmodCH0 Cmod for channel 0

CmodCH1 Cmod for channel 1. Only available in two-channel designs.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 58 of 73 Document Number: 001-65211 Rev. **

The recommended value for the modulator capacitor is 4.7 – 47 nF. The optimal capacitance can
be selected by experiment to get the maximum SNR for the application. A value of 5.6 – 10 nF
gives good results in most cases.
A ceramic capacitor should be used. The capacitors temperature coefficient is not important.
When Current Source is set to External Resistor, the external Rb feedback resistor value
should be selected before determining the optimal Cmod value.

CapSense_cRb_Ports – Pin Assignment
An external bleed resistor (Rb) is required when Current Source is set to External Resistor. The
external bleed resistor (Rb) should be connected to a physical pin and to the ungrounded
connection of the modulator capacitor (Cmod).
Up to three bleed resistors are supported per channel. The three pins can be allocated for bleed
resistors: cRb0, cRb1 and cRb2.
The aliases for external bleed resistors are:

Alias Description

Rb0CH0, Rb1CH0, Rb2CH0 External resisters for channel 0

Rb0CH1, Rb1CH1, Rb2CH1 External resisters for channel 1. Only available in two-channel designs.

The resistor values depend on the total sensor capacitance. The resistor value should be
selected as follows:

• Monitor the raw counts for different sensor touches.

• Select a resistance value that provides maximum readings about 30% less than the full
scale readings at the selected scanning resolution. The raw count value is increased
when the resistor values increase.

Typical bleed resistor values are 500 Ω - 10 kΩ depending on sensor capacitance.

Interrupt Service Routines
The CapSense component uses an interrupt that triggers after the end of each sensor scan.
Stub routines are provided where you can add your own code if required. The stub routines are
generated in the CapSense_INT.c file the first time the project is built. The number of interrupts
depends on CapSense mode selection depending on the Number of Channels, one per channel.
Your code must be added between the provided comment tags in order to be preserved between
builds.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 59 of 73

Two Channel Mode ISR Priority Set
The ISRs routines of CapSense CSD component are not reentrant. This causes a restriction on
the ISR priority set for two channels designs. To prevent the channel ISR routines from
becoming reentrant the ISR priority of the two channels must be the same.

Functional Description

Definitions

Sensor
One CapSense element connected to PSoC via one pin. A sensor is a conductive element on a
substrate. Examples of sensors include: Copper on FR4, Copper on Flex, Silver ink on PET,
ITO on glass.

Scan Time
A scan time is a period of time that the CapSense module is scanning one or more capacitive
sensors. Multiple sensors can be combined in a given scan sensor to enable modes such as
proximity sensing.

CapSense Widget
A CapSense widget is built from one or more scan sensors to provide higher level functionality.
Some examples of CapSense Widgets include buttons, sliders, radial sliders, touch pads, matrix
buttons, and proximity sensors.

FingerThreshold
This value is used to determine if a finger is present on the sensor or not.

NoiseThreshold
Determines the level of noise in the capacitive scan. The baseline algorithm filters the noise in
order to track voltage and temperature variations in the sensor baseline value.

Debounce
Adds a debounce counter to the sensor active transition. In order for the sensor to transition from
inactive to active the difference count value must stay above the finger threshold plus hysteresis
for the number of samples specified in order to filter out high amplitude and frequency noise.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 60 of 73 Document Number: 001-65211 Rev. **

Hysteresis
Sets the hysteresis value used with the finger threshold. If hysteresis is desired, the sensor will
not be considered "On" or "Active" until the count value exceeds the finger threshold plus the
hysteresis value. The sensor will not be considered "Off" or "Inactive" until the measured count
value drops below the finger threshold minus the hysteresis value.

API Resolution – Interpolation and Scaling
In slider sensors and touch pads it is often necessary to determine finger (or other capacitive
object) position to more resolution than the native pitch of the individual sensors. The contact
area of a finger on a sliding sensor or a touchpad is often larger than any single sensor.
In order to calculate the interpolated position using a centroid calculation, the array is first
scanned to verify that a given sensor location is valid. The requirement is for some number of
adjacent sensor signals to be above the noise threshold. When the strongest signal is found, that
signal and adjacent contiguous signals larger than the noise threshold are used to compute a
centroid. As few as two and as many as eight sensors are used to calculate the centroid.

The calculated value is typically fractional. In order to report the centroid to a specific resolution,
for example a range of 0 to 100 for 12 sensors, the centroid value is multiplied by a scalar. It is
more efficient to combine the interpolation and scaling operations into a single calculation and
report this result directly in the desired scale. This is handled in the high-level APIs. Slider sensor
count and resolution are set in the CapSense CSD customizer.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 61 of 73

Diplexing
In a diplexed slider, each PSoC sensor connection in the slider is mapped to two physical
locations in the array of slider sensors. The first (or numerically lower) half of the physical
locations is mapped sequentially to the base assigned sensors, with the port pin assigned by the
designer using the CapSense Customizer. The second (or upper) half of the physical sensor
locations is automatically mapped by an algorithm in the Customizer and listed in an include file.
The order is established so that adjacent sensor actuation in one half does not result in adjacent
sensor actuation in the other half. Exercise care to determine this order and map it onto the
printed circuit board.

Figure 1. Diplexing

You should balance sensor capacitance in the slider. Depending on sensor or PCB layouts,
there may be longer routes for some of the sensor pairs. The diplex sensor index table is
automatically generated by the CapSense customizer when you select diplexing and is included
below for your reference.

Diplexing Sequence for Different Slider Segment Counts
Total
Slider

Segment
Count

Segment Sequence

10 0,1,2,3,4,0,3,1,4,2

12 0,1,2,3,4,5,0,3,1,4,2,5

14 0,1,2,3,4,5,6,0,3,6,1,4,2,5

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 62 of 73 Document Number: 001-65211 Rev. **

Total
Slider

Segment
Count

Segment Sequence

16 0,1,2,3,4,5,6,7,0,3,6,1,4,7,2,5

18 0,1,2,3,4,5,6,7,8,0,3,6,1,4,7,2,5,8

20 0,1,2,3,4,5,6,7,8,9,0,3,6,9,1,4,7,2,5,8

22 0,1,2,3,4,5,6,7,8,9,10,0,3,6,9,1,4,7,10,2,5,8

24 0,1,2,3,4,5,6,7,8,9,10,11,0,3,6,9,1,4,7,10,2,5,8,11

26 0,1,2,3,4,5,6,7,8,9,10,11,12,0,3,6,9,12,1,4,7,10,2,5,8,11

28 0,1,2,3,4,5,6,7,8,9,10,11,12,13,0,3,6,9,12,1,4,7,10,13,2,5,8,11

30 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,0,3,6,9,12,1,4,7,10,13,2,5,8,11,14

32 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,0,3,6,9,12,15,1,4,7,10,13,2,5,8,11,14

34 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14

36 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,0,3,6,9,12,15,1,4,7,10,13,16,2,5,8,11,14,17

38 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,0,3,6,9,12,15,18,1,4,7,10,13,16,2,5,8,11,14,17

40 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,17

42 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,0,3,6,9,12,15,18,1,4,7,10,13,16,19,2,5,8,11,14,1
7,20

44 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,2,5,8,1
1,14,17,20

46 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,22,2
,5,8,11,14,17,20

48 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,0,3,6,9,12,15,18,21,1,4,7,10,13,16,19,2
2,2,5,8,11,14,17,20,23

50 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,0,3,6,9,12,15,18,21,24,1,4,7,10,13,1
6,19,22,2,5,8,11,14,17,20,23

52 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,0,3,6,9,12,15,18,21,24,1,4,7,10,1
3,16,19,22,25,2,5,8,11,14,17,20,23

54 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,0,3,6,9,12,15,18,21,24,1,4,7,1
0,13,16,19,22,25,2,5,8,11,14,17,20,23,26

56 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,0,3,6,9,12,15,18,21,24,27,
1,4,7,10,13,16,19,22,25,2,5,8,11,14,17,20,23,26

Filters
Several filters are provided in the CapSense component: median, averaging, first order IIR and
jitter. The filters can be used with both raw sensor data to reduce sensor noise and with position
data of sliders and touchpad to reduce position noise.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 63 of 73

Median Filter
The median filter looks at the three most recent samples and reports the median value. The
median is calculated by sorting the three samples and taking the middle value. This filter is used
to remove short noise spikes and generates a delay of one sample. This filter is generally not
recommended because of the delay and RAM use. Enabling this filter consumes 4 bytes of RAM
for each sensor(raw) and Widget(position). It is disabled by default.

Averaging Filter
The averaging filter looks at the three most recent samples of position and reports the simple
average value. It is used to remove short noise spikes and generates a delay of one sample.
This filter is generally not recommended because of the delay and RAM use. Enabling this filter
consumes 4 bytes of RAM for each sensor(raw) and Widget(position). It is disabled by default.

First Order IIR Filter
The first order IIR filter is the recommended filter for both raw and sensor filters because it
requires the smallest amount of SRAM and provides a fast response. The IIR filter scales the
most recent sensor or position data and adds it to a scaled version of the previous filter output.
Enabling this filter consumes and 2 bytes of RAM for each sensor(raw) and Widget(position).
The IIR1/4 is enabled by default for both raw and position filters.
1st-Order IIR filters:

currentpreviousIIR 212121 +=

currentpreviousIIR 414341 +=

currentpreviousIIR 818781 +=

currentpreviousIIR 1611615161 +=

Jitter Filter
This filter eliminates noise in the raw sensor or position data that toggles between two values
(jitter). If the most current sensor value is greater than the last sensor value then the previous
filter value is incremented by 1, if it is less then it is decremented. It is most effective when
applied to data that contains noise of four LSBs peak-to-peak or less and when a slow response
is acceptable which is useful for some position sensors. Enabling this filter consumes 2 bytes of
RAM for each sensor(raw) and Widget(position). It is disabled by default.

Water Influence on CapSense System
The water drop and finger influence on CapSense are similar. However, water drop influence on
the whole surface of the sensing area differs from a finger influence.
There are several variants of water influence on the CapSense surface:

• Forming of thin stripes or streams of water on the device surface.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 64 of 73 Document Number: 001-65211 Rev. **

• Separate drops of water.

• Stream of water cover all or a large portion of the device surface, when the device is
being washed or dipped.

Salts or minerals that the water contains make it conductive. Moreover, the greater their
concentration is the more conductive the water is. Soapy water, sea water, and mineral water
are liquids that influence the CapSense poorly. These liquids emulate a finger touch on the
device surface, which can cause the faulty device performance.

Waterproofing and Detection
• This feature configures the CapSense CSD component to suppress water influence on

the CapSense system. This feature sets the following parameters:

• Enables a Shield electrode to be used to compensate for the water drops influence on the
sensor at the hardware level.

• Adds a Guard sensor. The guard sensor should surround all sensors such that the guard
sensor placement ensures that it will be covered by water if any of the actual sensing
Widgets are covered. CapSense output of widget status should be blocked
programmatically when the Guard sensor triggers.

Shield Electrode
Some applications require reliable operation in the presence of water film or droplets. White
goods, automotive applications, various industrial applications, and others need capacitive
sensors that do not provide false triggering because of water, ice, and humidity changes that
cause condensation. In this case a separate shielding electrode can be used. This electrode is
located behind or around the sensing electrodes. When water film is present on the device
overlay surface, the coupling between the shield and sensing electrodes is increased. The shield
electrode allows you to reduce the influence of parasitic capacitance, which gives you more
dynamic range for processing sense capacitance changes.
In some applications it is useful to select the shield electrode signal and its placement relative to
the sensing electrodes such that increasing the coupling between these electrodes due to
moisture causes a negative touch change of the sensing electrode capacitance measurement.
This simplifies the high level software API work by suppresses false touches due to moisture.
The CapSense CSD component supports separate outputs for the shield electrode to simplify
PCB routing.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 65 of 73

Figure 2. Possible Shield Electrode PCB Layout

The previous figure illustrates one possible layout configuration for the button’s shield electrode.
The shield electrode is especially useful for transparent ITO touchpad devices, where it blocks
the LCD drive electrode’s noise and reduces stray capacitance at the same time.
In this example, the button is covered by a shielding electrode plane. As an alternative, the
shielding electrode can be located on the opposite PCB layer, including the plane under the
button. A hatch pattern is recommended in this case, with a fill ratio of about 30 to 40%. No
additional ground plane is required in this case.
When water drops are located between the shield and sensing electrodes, the parasitic
capacitance (Cpar) is increased and modulator current can be reduced.
The shield electrode can be connected to any pins. Set the drive mode to Strong Slow to reduce
ground noise and radiated emissions. Also, a slew limiting resistor can be connected between
the PSoC device and the shielding electrode.

Shield Electrode Usage and Restrictions
The CapSense CSD component provides the following modes for shield electrode usage.

Current Mode IDAC Source
This mode has some restrictions, because the sensors alternate between GND and Vref =
1.024 V. The shield electrode signal alternates between GND and Vddio (typically equal to
power supply). The difference is significant and the shield signal could completely offset the
signal from the sensors. The possible solutions are:

• Use a high Vref to eliminate the difference to a minimal value. The VDAC as reference
could be used for this purpose.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 66 of 73 Document Number: 001-65211 Rev. **

• Use SIO pins as the shield to provide output equal to Vref. The CapSense CSD output
Vref terminal could be used to route Vref to the SIO pins. This is the preferred method.
The Sensor Connection to Shield should not be used in this mode because it provides
ouput equal to Vddio. The Vref = 1.024 V setting has routing limitations and can not be
routed to pins.

Current Mode IDAC Sink and External Resistor
These modes have no restriction on Shield and Inactive Sensor mode usage, because the
sensor alternates between Vddio and Vref = 1.024 V. The shield electrode signal alternates
between GND and Vddio (typically equal to power supply). The difference is not significant
enough in this case to cause issues.

Guard Sensor Implementation
The Guard sensor is commonly used in water proof applications to detect water on the surface.
The Advanced Tab option is provided to add a guard sensor. This sensor has to have a special
layout, typically located around the perimeter of the sensing area surface. When water is on the
surface of the Guard sensor, the widget becomes active. The widget active detection firmware
CapSense_1_IsWidgetActive() is available to define the state of the Guard sensor.
The detection of CapSense widgets should block programmatically in user code for a certain
period of time when the Guard sensor triggers. If the guard sensor triggers, water is present and
the other sensors can not be reliably sensed.
Taking into consideration the Guard sensor’s size, its signal will differ from other sensors’
signals. This means a larger amount of water may be present on its surface than on a standard
sensor’s surface. Therefore, the signal received with the presence of water drops will be much
stronger than the signal caused by a finger touch. This allows setting the trigger threshold and
filter so that a finger’s touch on the Guard sensor has no effect. The Guard sensor scans without
any special options. The shield electrode is not disabled while the Guard sensor scanning. The
Guard sensor in two channel designs always scans last and by itself.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 67 of 73

Block Diagram and Configuration
Capacitive sensing using a Sigma-Delta (CSD) modulator) provides capacitance sensing using a
switched capacitor analog technique and a digital delta-sigma modulator to convert the sensed
switched capacitor current into a digital code. It allows implementation of buttons, sliders,
proximity detectors, touch pads, and touchscreens using arrays of conductive sensors. High
level software routines allow for enhancement of slider resolution using diplexing, and
compensation for physical and environmental sensor variation. There are three analog hardware
variations possible on the basic CSD method, they are detailed below.

IDAC Sourcing
The sensor switch stage is configured to alternate between GND and the AMUX bus which
connects to the modulation capacitor. In this configuration, the IDAC is configured to source
current to the sensor.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 68 of 73 Document Number: 001-65211 Rev. **

IDAC Sinking
The sensor switch stage is configured to alternate between Vdd and AMUX bus which connects
to the modulation capacitor. In this configuration, the IDAC is configured to sink current from the
sensor.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 69 of 73

IDAC Disabled, Use External Rb

Using an external bleed resistor Rb functions the same as the IDAC Sinking configuration except
the IDAC is replaced by a resistor to ground, Rb. The bleed resistor is physically connected
between Cmod and a GPIO. The GPIO is configured in the "Open-Drain Drives Low" drive mode.
This mode allows Cmod to be discharged through Rb.

DC and AC Electrical Characteristics

5.0V/3.3V DC and AC Electrical Characteristics

Power Supply Voltage
Parameter Test Conditions and Comments Min Typ Max Units

Value -- 2.7 5.0 5.5 V

Noise
Parameter Test Conditions and Comments Min Typ Max Units

Noise Counts, peak-peak
(noise counts/(baseline
counts)

Resolution = 16 (noise counts/(baseline counts) -- 0.2 -- %

Resolution = 14 -- 0.3 -- %

Resolution = 10 -- 0.4 -- %

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 70 of 73 Document Number: 001-65211 Rev. **

Power Consumption
Parameter Test Conditions and Comments Min Typ Max Units

Active Current Vdd=3.3 V, CPU Clock= 24 MHz, CapSense Scan
Clock=24 MHz, Average current during scan, 8 sensors

-- 9.42 -- mA

Standby
Current

Vdd=3.3 V, CPU Clock= 24 MHz, CapSense Scan
Clock=24 MHz,, Scanning Speed = Ultra Fast, Resolution =
9 100 ms report rate, 8 sensors

-- 92 -- uA

Vdd=3.3 V, CPU Clock= 24 MHz, CapSense Scan
Clock=24 MHz, Scanning Speed = Fast, Resolution = 12
100 ms report rate, 8 sensors

-- 574 -- uA

Sleep/Wake
Current

Vdd=3.3 V, CPU Clock= 24 MHz, CapSense Scan
Clock=24 MHz, 1s report rate, 1 sensor

-- 10 -- uA

Figures
Rawcount vs Supply Voltage at Different Scan Speeds,
PRS 16 full speed

Rawcount vs Supply Voltage at Different Scan Speeds,
PRS 8

Rawcount vs Temperature at Different Scan Speeds,
PRS 16 full speed

Raw Count vs Temperature at Different Speeds, PRS 8

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 71 of 73

Variation of Baseline with time for different raw count step change values
(a) RawCounts Step Change for different step values
(b) Difference between Raw Count.

Capacitive Sensing (CapSense® CSD) PSoC® Creator™ Component Data Sheet

Page 72 of 73 Document Number: 001-65211 Rev. **

Component Changes
Version Description of Changes Reason for Changes / Impact

2.10 When Vdac is used as Reference the CapSense
Buffer is removed. This action has an effect on
designs where 1.024V is used as Reference.

The transient process on Cmod is predictable
when Vdac is used as Reference.

The Tuner GUI communication and scanning are
separated.

EZI2C communication interrupt has no effect on
scanning process.

The user section is added to
CapSenseCSD_PreScan() function.

Makes it possible to disable and enable
interrupts at start of scanning if they affect
scanning results.

Add to CapSense_InitializeEnabledBaselines() to
customer interface.

Allows initializing baselines only for enabled
widgets.

Add vector based images in customizer. Improve image quality in customizer

Redesign Advanced Tab Improve controls layout

Optimize packet size in AutoSense mode. Reduce packet size and increase communication
speed

Redesign Import/Export mechanism between
customizer and tuner

Make it more user friendly

Update Tuner GUI: Added main menu, update color
scheme.

Make it more user friendly

Remove hysteresis related lines in sensor detailed
view for centroid widgets

Clarify sensor detailed view for centroid widgets

Improve SNR calculation speed in slow designs.

Add hysteresis parameter change visualization
during AutoSense procedure in Tuner.

Allows the customer to review current hysteresis
value

Fix Tuner “Log duration” feature.

Implement mechanism that reads sensor
ScanResolution, IdacValue and Prescaler only
during the first read in AutoSense mode, because
that data doesn’t change after the first transaction

Reduce data size that are transferred to Tuner
GUI

Added characterization data to datasheet

Total datasheet rewrite

The CapSense CSD component version 2.10 is improved implementation of the CapSense CSD
component version 2.00.

PSoC® Creator™ Component Data Sheet Capacitive Sensing (CapSense® CSD)

Document Number: 001-65211 Rev. ** Page 73 of 73

© Cypress Semiconductor Corporation, 2009-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® and CapSense® are registered trademarks, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or
registered trademarks referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-
support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

	Features
	General Description
	When to Use a CapSense Component

	Input/Output Connections
	clock – Input *
	shield – Output *
	vref – Output *

	Parameters and Setup
	General Tab
	Load Settings/Save Settings
	Tuning method
	Number of channels
	Raw Data Noise Filter
	Water proofing and detection
	Enable clock input
	Scan Clock

	Widgets Config Tab
	Toolbar
	Buttons
	Linear Sliders
	Radial Slider
	Matrix Buttons
	Touch Pads
	Proximity Sensors
	Generics
	Guard Sensor

	Scan Order Tab
	Toolbar
	IDAC Value
	Sensitivity
	Sensor Scan Time
	Total Scan Time
	Widget List

	Advanced Tab
	Analog Switch Drive Source
	Analog Switch Divider
	Scan Speed
	PRS EMI Reduction
	Sensor Auto Reset
	Widget Resolution
	Shield electrode
	Inactive Sensor Connection
	Guard Sensor
	Current Source
	IDAC Range
	Number of Bleed Resistors, channel 0/channel 1
	Digital Resource Implementation, channel 0/channel 1
	Voltage Reference Source
	Tune Helper Tab
	Enable Tune Helper
	Instance name for EZI2C component

	Placement
	Resources
	Tuner GUI User Guide
	CapSense Tuning Process
	Create a design in PSoC Creator
	Place and Configure EZI2C Component
	Place and Configure the CapSense Component
	Selecting Auto (SmartSense)
	Add Code
	Build the design and program the PSoC device
	Launch the Tuner application
	Configure communication parameters
	Start tuning
	Edit CapSense parameter values
	Repeat as needed
	Close the Tuner application

	Tuner GUI Interface
	General Interface
	Tuning Tab
	Graphing Tab
	Logging Tab
	Save/Load Settings feature

	Application Programming Interface
	General APIs
	void CapSense_Start (void)
	void CapSense_Stop (void)
	void CapSense_Sleep(void)
	void CapSense_WakeUp(void)
	void CapSense_Init(void)
	void CapSense_Enable(void)
	void CapSense_SaveConfig(void)
	void CapSense_RestoreConfig(void)

	Scanning Specific APIs
	void CapSense_ScanSensor (uint8 sensor)
	void CapSense_ScanEnabledWidgets (void)
	uint8 CapSense_IsBusy (void)
	void CapSense_SetScanSlotSettings (uint8 slot)
	void CapSense_ClearSensors (void)
	void CapSense_EnableSensor(uint8 sensor)
	void CapSense_DisableSensor(uint8 sensor)
	uint16 CapSense_ReadSensorRaw (uint8 sensor)
	void CapSense_SetRBleed(uint8 rbleed)

	High Level APIs
	void CapSense_InitializeSensorBaseline (uint8 sensor)
	void CapSense_InitializeAllBaselines(void)
	void CapSense_UpdateSensorBaseline (uint8 sensor)
	void CapSense_UpdateEnabledBaselines(void)
	void CapSense_EnableWidget (uint8 widget)
	void CapSense_DisableWidget (uint8 widget)
	uint8 CapSense_CheckIsWidgetActive(uint8 widget)
	uint8 CapSense_CheckIsAnyWidgetActive(void)
	uint16 CapSense_GetCentroidPos(uint8 widget)
	uint16 CapSense_GetRadialCentroidPos(uint8 widget)
	uint8 CapSense_GetTouchCentroidPos (uint8 widget)

	Tuner Helper APIs
	void CapSense_TunerStart (void)
	void CapSense_TunerComm (void)

	Pins APIs
	void CapSense_SetAllSensorsDriveMode(uint8 mode)
	void CapSense_SetAllCmodsDriveMode(uint8 mode)
	void CapSense_SetAllRbsDriveMode(uint8 mode)

	Data Structures
	CapSense_SensorRaw []
	CapSense_SensorEnableMask []
	CapSense_portTable[] and CapSense_maskTable[]
	CapSense_SensorBaselineLow[]
	CapSense_SensorBaseline[]
	CapSense_SensorSignal[]
	CapSense_SensorOnMask[]

	Constants
	Sensor Constants
	Widget Constants

	Sample Firmware Source Code
	Pin Assignments
	Sides
	Sensor Pins – CapSense_cPort – Pin Assignment
	CapSense_cCmod_Port – Pin Assignment
	CapSense_cRb_Ports – Pin Assignment

	Interrupt Service Routines
	Two Channel Mode ISR Priority Set

	Functional Description
	Definitions
	Sensor
	Scan Time
	CapSense Widget
	FingerThreshold
	NoiseThreshold
	Debounce
	Hysteresis
	API Resolution – Interpolation and Scaling
	Diplexing
	Diplexing Sequence for Different Slider Segment Counts

	Filters
	Median Filter
	Averaging Filter
	First Order IIR Filter
	Jitter Filter

	Water Influence on CapSense System
	Waterproofing and Detection

	Shield Electrode
	Shield Electrode Usage and Restrictions
	Current Mode IDAC Source
	Current Mode IDAC Sink and External Resistor

	Guard Sensor Implementation

	Block Diagram and Configuration
	IDAC Sourcing
	IDAC Sinking
	IDAC Disabled, Use External Rb

	DC and AC Electrical Characteristics
	5.0V/3.3V DC and AC Electrical Characteristics
	Power Supply Voltage
	Noise
	Power Consumption
	Figures

	Component Changes

