

CE95314 – PSoC® 3, PSoC 4, and
PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 1

Objective

These code examples demonstrate the usage of the EZI2C slave and I2C master Components in PSoC 3, PSoC 4, and
PSoC 5LP.

Overview

These code examples show how two I2C Components – EZI2C slave and I2C master – communicate with each other. Normally,
these Components would be on separate devices, but for this example project, they are on the same PSoC chip. An off-chip
connection is made between them.

There are two examples:

 For PSoC 3 and PSoC 5LP, running on a kit with two buttons and a character LCD, such as the Cypress CY8CKIT-030 and
CY8CKIT-050 kits.

 For PSoC 4200, running on the Cypress CY8CKIT-042 kit, which has one button and an RGB LED.

Each I2C Component maintains its own data buffer. Note that an EZI2C buffer can be defined such that only the first N bytes
are writeable by the master and the remaining bytes are read-only. This functionality is demonstrated in this example.

Requirements

Tool: PSoC Creator™ 4.1

Programming Language: C: GCC 5.4-1026-q2-update or MDK/armcc for PSoC 4200 and PSoC 5LP; DP 8051 Keil 9.5.1 for

PSoC 3

Associated Parts: All PSoC 3, PSoC 4200, and PSoC 5LP parts

Related Hardware: CY8CKIT-030, CY8CKIT-042, CY8CKIT-050

http://www.cypress.com/
http://www.cypress.com/?rID=49524&source=ce95314
http://www.cypress.com/?rID=51577&source=ce95314
http://www.cypress.com/?rID=77780&source=ce95314
http://www.cypress.com/products/psoc-creator-integrated-design-environment-ide
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-030-psoc-3-development-kit
http://www.cypress.com/documentation/development-kitsboards/release-notes-cy8ckit-042-psocr-4-pioneer-kit
http://www.cypress.com/documentation/development-kitsboards/cy8ckit-050-psoc-5lp-development-kit

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 2

Design

Figure 1 shows the code example design for PSoC 3 and PSoC 5LP, and Figure 2 shows the example design for PSoC 4200.

Figure 1. EZI2C Code Example for PSoC 3 and PSoC 5LP

Figure 2. EZI2C Code Example for PSoC 4200 on the CY8CKIT-042

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 3

Both code examples feature the following:

 An I2C master communicating with an EZI2C slave over an off-chip I2C bus connection

 For the PSoC 3 and PSoC 5LP design, the EZI2C uses one of the fixed I2C blocks, and the master is configured in the
universal digital blocks (UDBs)

 For PSoC 4200, both Components use a PSoC 4 serial communication block (SCB), in I2C or EZI2C mode

 A display Component (Character LCD or Pins driving LEDs) to show that the I2C Components are communicating.

 The button press detect subsystem causes the CPU to read a ‘1’ when a button transitions from not pressed to pressed,
and a ‘0’ at all other times. Pressing a button changes the data on the master and/or slave side.

Code Design

In both code examples, the main loop first executes the EZI2C slave side code, followed by the I2C master code:

 for(;;)

 {

 /* Do slave side tasks, with the EZI2C Component */

 . . .

 /* Do master side tasks, with the I2C Master Component */

 . . .

 }

The master and slave side each maintain their own data buffers. With EZI2C, the first N bytes of the buffer can be written by the
master; the remaining bytes are read-only. The master side buffer includes an additional byte ‘writeOffset’ to indicate the location
in the write area to start writing. All buffers are packed to ensure reading and writing the correct bytes.

PSoC 3 and PSoC 5LP Design

The PSoC 3 and PSoC 5LP example uses two buttons, which are available on the CY8CKIT-030 and CY8CKIT-050:

 If button SW2 is pressed, the EZI2C side updates its data buffer.

 If button SW3 is pressed, the I2C master side does the following:

 Reads the EZI2C buffer to its data buffer

 Updates the write portion of its data buffer

 Writes the write portion of its data buffer to the EZI2C

The Character LCD Component displays the contents of both data buffers.

PSoC 4200 Design

The PSoC 4200 example uses the single button, SW2, on the CY8CKIT-042 kit. The master and slave sides do the following:

 The EZI2C side runs a code-based counter; the reload value is in its data buffer. Each time the counter rolls over, a control
byte for the LEDs is updated.

 The I2C master side does the following:

 Reads the EZI2C buffer to its data buffer

 If SW2 is pressed:

- Updates the counter reload value in the write portion of its data buffer

- Writes the write portion of its data buffer to the EZI2C

 Updates the LEDs based on the control byte in its buffer

The LEDs change color continually; pressing the button changes the update rate.

Design Considerations

 Off-chip connections between the I2C master and slave pins form an I2C bus. External I2C bus pull-up resistors may need
to be installed, depending on the kit that is used as well as the Pin Component configuration.

 These code examples can be modified to:

 Run on other kits, such as the CY8CKIT-049 or the CY8CKIT-001.

 Communicate between two or more kits.

http://www.cypress.com/
http://www.cypress.com/?rID=49524&source=ce95314
http://www.cypress.com/?rid=51577&source=ce95314
http://www.cypress.com/?rID=77780&source=ce95314
http://www.cypress.com/?rID=92146&source=ce95314
http://www.cypress.com/?rID=37464&source=ce95314

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 4

 The PSoC Creator installation includes a program called Bridge Control Panel (BCP). BCP enables communications
between your PC and PSoC target devices, over I2C. You can use this link to control the PSoC and read and display data
from the PSoC. For more information, click the Help menu item in the BCP window.

Hardware Setup

For basic kit board setup, see the corresponding Kit Guide.

To form the off-chip I2C bus, connect the master and slave SCL and SDA pins on the kit board:

 For the PSoC 3 and PSoC 5LP example, connect P12[0] to P12[2], and P12[1] to P12[3]. This applies to all supported kits.

 To avoid having to add external I2C bus pull-up resistors, configure the Pin Components as Resistive Pull Up instead of
the default Open Drain, Drives Low. This technique does not meet formal I2C specifications but does work in most cases.

 For the PSoC 4200 example, using the CY8CKIT-042:

 Connect P0[4] to P4[0], by wiring kit connector J4 pin 1 to J3 pin 10.

 Connect P0[5] to P4[1], by wiring kit connector J4 pin 2 to J3 pin 9.

 Note that on the CY8CKIT-042 board, P4[0] and P4[1] have I2C bus pull-up resistors installed.

Software Setup

No special software setup is required. All supported compilers can be used with any optimization.

At the PSoC Creator project’s default CPU clock speed (48 MHz for PSoC 3 and PSoC 5LP, 24 MHz for PSoC 4200), the CPU
has enough cycles to support the examples.

Components

Table 1 and Table 2 list the PSoC Creator Components used in each of the examples, as well as the hardware resources used
by each Component.

Table 1. List of PSoC Creator Components for PSoC 3 and PSoC 5LP Example

Component Version Hardware Resources

EZI2C Slave 2.0 PSoC 3 or PSoC 5LP fixed I2C block, 1 interrupt

I2C Master (UDB) 3.50 ~2 UDBs, 1 interrupt, 1 clock divider

Debouncer, 2 inputs 1.0 UDB (10 macrocells)

Clock 2.20 1 clock divider

Status Register, 2 input 1.90 UDB (1 status register)

Character LCD 2.20 7 pins

Pin 2.20
4 pins for the two I2C Components,
2 pins for the buttons, 7 pins for the Character LCD

Table 2. List of PSoC Creator Components for PSoC 4200 Example

Component Version Hardware Resources

EZI2C Slave (SCB mode) 3.20 PSoC 4200 SCB, 2 pins, 1 interrupt, 1 clock divider

I2C (SCB mode) 3.20 PSoC 4200 SCB, 2 pins, 1 interrupt, 1 clock divider

Debouncer, 1 input 1.0 UDB (5 macrocells)

Clock 2.20 1 clock divider

Status Register, 1 input 1.90 UDB (1 status register)

Control Register, 3 outputs 1.80 UDB (1 control register)

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 5

Component Version Hardware Resources

Pin 2.20
4 pins for the two I2C Components,
1 pin for the button, 3 pins for the RGB LED

Parameter Settings

Table 3 and Table 4 list the parameter settings for each of the PSoC Creator Components used in each of the examples. Only
the parameters that vary from the default values are listed.

Table 3. List of PSoC Creator Component Parameter Settings for PSoC 3 and PSoC 5LP Example

Component Non-default Parameter Settings

EZI2C Slave None

I2C Master (UDB) UDB Clock Source = Internal Clock

Debouncer, 2 inputs Signal width (bits) = 2, only Negative edge is checked

Clock Frequency = 50 Hz

Status Register, 2 input Inputs = 2, Display as bus is checked, Mode = Sticky for all bits

Character LCD None

Pin
I2C Component pins: Drive mode = Resistive Pull Up
Button pins: Number of Pins = 2, Drive mode = Resistive Pull Up

Table 4. List of PSoC Creator Component Parameter Settings for PSoC 4200 Example

Component Non-default Parameter Settings

EZI2C Slave (SCB mode) None

I2C (SCB mode) Mode = Master

Debouncer, 1 input Only Negative edge is checked

Clock Frequency = 50 Hz

Status Register, 1 input Inputs = 1, Mode = Sticky for all bits

Control Register, 3 outputs Outputs = 3

Pin Button pin: Drive mode = Resistive Pull Up

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 6

Design-Wide Resources

Figure 3 and Figure 4 show the pin assignments for each of the examples. No other design-wide resources need to be changed
from their default setting.

Figure 3. Pin Assignments for PSoC 3 and PSoC 5LP Example

Figure 4. Pin Assignments for PSoC 4200 Example

Operation

Build and install the code examples in the corresponding kits. For more information on building a project and device
programming, see PSoC Creator Help.

Test the code example by doing the following:

For the PSoC 3 and PSoC 5LP example:

 Reset the PSoC; press kit button SW1. Observe the character LCD.

 Confirm that the top row displays “EZ: 00 00 00 00”. That is, the EZI2C buffer is all zeros.

 Confirm that the bottom row is blank, indicating that the I2C master has not yet read the EZI2C buffer.

 Press kit button SW2.

 Confirm that the bytes in the EZI2C buffer are incremented, by different values, on each button press.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 7

 Press kit button SW3.

 Confirm that the bottom row displays “MST: ” followed by the contents of the EZI2C buffer. Confirm also that the first two
bytes are decremented by different values. That is, the I2C master has read the EZI2C buffer and decremented the
read/write bytes of its buffer.

 Confirm that the top row displays the first two bytes in the EZI2C buffer as the same as those in the master buffer. This
indicates a successful write of the EZI2C data by the master.

For the PSoC 4200 example:

 Reset the PSoC; press kit button SW1.

 Confirm that the RGB LED changes color at a high rate. This indicates a successful read of the EZI2C data by the master.
The EZI2C data has LED control bits that are continually changed by the EZI2C side code.

 Press kit button SW2. Confirm that the RGB LEDs change color at a different rate. This indicates a successful write of the
EZI2C data by the master.

Related Documents

Table 5 lists all relevant application notes, code examples, knowledge base articles, device datasheets, and Component
datasheets.

Table 5. Related Documents

Application Notes

AN60317 PSoC 3 and PSoC 5LP I2C Bootloader Shows how to build an I2C-based bootloader for PSoC 3 and PSoC 5LP

AN86526 PSoC 4 I2C Bootloader Shows how to build an I2C-based bootloader for PSoC 4 family devices

AN50987 Getting Started with I2C in PSoC 1 Discusses the I2C protocol, and how PSoC 1 devices handle I2C
communications

AN74875 Designing with Cypress Serial I2C nvSRAM Provides design guidelines and example circuits for the Cypress I2C
nvSRAM device

Code Examples

DelSig_I2CM Provides an 8-channel multiplexed Delta Sigma ADC with sequencing logic. The analog inputs to the ADC
are converted to digital sequentially and then made available through an I2C Master interface.

DelSig_I2CS Provides an 8-channel multiplexed Delta Sigma ADC with sequencing logic. The analog inputs to the ADC
are converted to digital sequentially and then made available through an I2C Slave interface.

I2C_LCD_Example Demonstrates the functionality of the I2C LCD Component

SCB_EzI2cCommSlave Demonstrates the basic operation of the EZI2C Slave (SCB mode) Component

SCB_I2cCommMaster Demonstrates the basic operation of the I2C Master (SCB mode) Component

SCB_I2cCommSlave Demonstrates the basic operation of the I2C Slave (SCB mode) Component

Knowledge Base Articles

I2C pins in PSoC 3 and PSoC 5 Per PSoC 3 and PSoC 5 pinouts in the datasheet, there are only two sets of I2C
pins. Are these the only pins which can be used for I2C or is there a way to use
some other pins for I2C?

Assigning I2C SDA and SCL pins to any GPIO in
PSoC 3 and PSoC 5LP

When I try to route the I2C SCL and SDA pins to any GPIO, I get the following
error: IO "I2C_SCL(0)" cannot be placed into "PX[x]" because the pin does not
support the features required by the IO. (App=cydsfit) What is the reason for this
error and how can this be fixed?

Wiring a bus to I2C in PSoC Creator How can I connect my I2C Component to a digital pin through a bus?

Multiple Slave Addresses with EZI2C Can I have three slave address using an EZI2C Slave Component?

EZI2C does not work with address greater than
63

Why does the EZI2C User Module not work when the I2C address is greater than
63?

http://www.cypress.com/
http://www.cypress.com/?rID=41002&source=ce95314
http://www.cypress.com/?rID=83293&source=ce95314
http://www.cypress.com/?rID=34486&source=ce95314
http://www.cypress.com/?rID=34486&source=ce95314
http://www.cypress.com/?rID=101641&source=ce95314
http://www.cypress.com/?rID=101641&source=ce95314
http://www.cypress.com/?rID=101641&source=ce95314
http://www.cypress.com/?rID=101641&source=ce95314
http://www.cypress.com/?rID=101641&source=ce95314
http://www.cypress.com/?rID=101641&source=ce95314
http://www.cypress.com/?id=4&rID=44357&source=ce95314
http://www.cypress.com/?id=4&rID=43480&source=ce95314
http://www.cypress.com/?id=4&rID=43480&source=ce95314
http://www.cypress.com/?id=4&rID=43889&source=ce95314
http://www.cypress.com/?id=4&rID=46510&source=ce95314
http://www.cypress.com/?id=4&rID=37909&source=ce95314
http://www.cypress.com/?id=4&rID=37909&source=ce95314

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 8

MiniProg3 connections for bootloading over I2C How should I connect the MiniProg3 to a DVK board, to bootload over I2C?

BootLdrI2C - In Master mode Is it possible to configure the I2C bootloader in Master mode and read the firmware
from an external source?

Clock Stretching and I2C speed How does the I2C clock speed affect the duration of clock stretching introduced by
the I2C slave?

Series resistors on I2C lines Why are resistors of 330 ohm required on I2C lines?

PSoC Creator Component Datasheets

EZI2C Slave Implements an I2C register-based slave device

I2C Master/Multi-Master/Slave Supports I2C Slave, Master, and Multi-Master configurations

PSoC 4 Serial Communication Block (SCB) Supports a PSoC 4 multifunction hardware block that implements I2C, SPI, UART, and
EZI2C communications

Debouncer Takes an input signal from a bouncing switch contact and generates a clean output for
digital circuits

Control Register Allows firmware to generate output digital signals

Status Register Allows firmware to read digital signals

Character LCD (CharLCD) Contains a set of library routines that enable simple use of one, two, or four-line LCD
modules that follow the Hitachi 44780 standard 4-bit interface

Clock Creates local clocks, and allows connection to system and design-wide clocks

Pins Controls interface with physical I/O port pins

External Library Provides a way to include components external to the PSoC device – resistors,
capacitors, transistors, inductors, switches, etc. – on a PSoC Creator schematic.

Device Documentation

PSoC 3 Datasheets PSoC 3 Technical Reference Manuals

PSoC 4 Datasheets PSoC 4 Technical Reference Manuals

PSoC 5LP Datasheets PSoC 5LP Technical Reference Manuals

Development Kit (DVK) Documentation

PSoC 3 and PSoC 5LP Kits

PSoC 4 Kits

http://www.cypress.com/
http://www.cypress.com/?id=4&rID=51738&source=ce95314
http://www.cypress.com/?id=4&rID=30867&source=ce95314
http://www.cypress.com/?id=4&rID=38749&source=ce95314
http://www.cypress.com/?id=4&rID=57541&source=ce95314
http://www.cypress.com/?rID=48917&source=ce95314
http://www.cypress.com/?rID=51969&source=ce95314
http://www.cypress.com/?rID=78826&source=ce95314
http://www.cypress.com/?rID=69780&source=ce95134
http://www.cypress.com/?rID=46452&source=ce95314
http://www.cypress.com/?rID=46453&source=ce95314
http://www.cypress.com/?rID=46445&source=ce95314
http://www.cypress.com/?rID=46449&source=ce95314
http://www.cypress.com/?rID=48513&source=ce95314
http://www.cypress.com/?rID=56759&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=2232&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=2232&applicationID=0&l=0&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=5301&id=4749&id=5284&applicationID=0&l=0&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=5301&id=4749&id=5284&applicationID=0&l=0&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4562&applicationID=0&l=0&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4562&applicationID=0&l=0&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=110&id=2232&id=4562&applicationID=0&l=0&source=ce95314
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=110&id=5301&id=4749&id=5284&applicationID=0&l=0&source=ce95314

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 9

Document History

Document Title: CE95314 – PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

Document Number: 001-95314

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 4622360 MKEA 01/15/2015 New code example

*A 5081848 TDU 01/13/2016 Minor Grammatical Fixes

*B 5789464 MKEA 06/28/2017 Updated project and document for PSoC Creator 4.1. Miscellaneous edits.

http://www.cypress.com/

PSoC® 3, PSoC 4, and PSoC 5LP EZI2C

 www.cypress.com Document No. 001-95314 Rev.*B 10

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the
office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by Cypress
under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and
treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual
property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing
the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its
copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware
products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly
through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress’s patents that are infringed
by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products.
Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make
changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit
described in this document. Any information provided in this document, including any sample design information or programming code, is provided only
for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any
application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components
in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical
devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses
where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A critical component is any
component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety
or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising
from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages,
and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

