

 www.cypress.com Document No. 001-66627 Rev. *D 1

AN66627
PSoC® 3 and PSoC 5 Intelligent Fan Controller

Author: Jason Konstas
Associated Project: Yes

Associated Part Family: PSoC 3, PSoC 5
Software Version: PSoC Creator™ v2.1

AN66627 demonstrates how to quickly and easily develop 4-wire brushless DC fan control systems using PSoC® 3 or
PSoC 5. The five example projects included with this application note demonstrate how to use the supplied Fan
Controller component to manage fans in a variety of common configurations. This application note also shows how to cut
down development time for fan control systems from weeks to just a few hours.

Contents
Introduction ... 1
4-Wire Fan Basics ... 2
Fan Speed Control .. 2
Measuring Fan Rotational Speeds 2
Fan Cables and Connectors .. 3
Getting Started with the Fan Controller Component 3
Example 1 – Firmware Details .. 6
Example 2 – Firmware Speed Control............................... 7
Example 3 – Hardware Speed Control 10
Example 4 – Advanced Hardware Speed Control 13
Example 5 – Real Time Monitoring 15
PSoC Thermal Management EBK 20
Conclusion .. 20
Worldwide Sales and Design Support 22

Introduction
System cooling is a critical component of any high
performance electronic system. As circuit miniaturization
continues, increasing demands are placed on system
designers to improve the efficiency of their thermal
management designs.

Several factors conspire to make this a difficult task. Fan
manufacturers specify duty-cycle to RPM relationships in
their datasheets with tolerances as high as +/- 20%. To
guarantee a fan will run at the desired speed, system
designers would therefore need to run the fans at speeds
20% higher than nominal to ensure that any fan from that
manufacturer will provide sufficient cooling. This results in
excessive acoustic noise and higher power consumption.

Real-time closed loop control of fan speeds is possible
using any standard microcontroller-based device running
custom firmware algorithms, but this approach requires
frequent CPU interrupts and constantly consumes
processing power to achieve that basic, but fundamental
task.

This application note shows how to use the FanController
component in PSoC Creator to set up a thermal
management system using PSoC 3 or PSoC 5. The first
two examples expose designers to open-loop control
mode (where the firmware is responsible for controlling fan
speeds) and the associated application programming
interfaces (APIs) that make that task quick and easy. The
remaining three examples show how to configure the
FanController into closed-loop control mode where the
programmable logic resources in PSoC take care of fan
control autonomously, freeing the CPU completely to do
other important system management tasks.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 2

4-Wire Fan Basics
A typical 4-wire brushless DC fan is shown in Figure 1.
Two of the wires are used to supply power to the fan. The
other two wires are used for speed control and monitoring.

Figure 1. Typical 4-Wire DC Fan

Fans come in standard sizes. 40 mm, 80 mm, and
120 mm are common. The most important specification
when selecting a fan for a cooling application is how much
air the fan can move. This is specified either as cubic feet
per minute (CFM) or meters cubed per minute (m3/min).
The size, shape, and pitch of the fan blades all contribute
to the fan’s capability to move air. Obviously, smaller fans
will need to run at a higher speed than larger fans to move
the same volume of air in a given time frame. Applications
that are space constrained and need smaller fans due to
physical dimension limitations will generate significantly
more acoustic noise. This is an unavoidable tradeoff that
needs to be made to meet system level needs.

To manage acoustic noise generation, the FanController
component can be configured to drive the fans at the
minimum possible speed to maintain safe operating
temperature limits. This also extends the operating life of
the fan compared to systems that run all fans at full speed
all of the time.

Fan Speed Control
With 4-wire fans, speed control is made possible through
the use of a pulse-width modulator (PWM) control signal.
Increasing the duty cycle of the PWM control signal will
increase fan speed. Fan manufacturers specify how the
PWM duty cycle relates to nominal fan speed. This is
provided either through a table of data points or a graph

that shows the relationship. An example of this information
is shown below, with PWM control duty cycle in
percentage shown on the horizontal axis and fan speed in
RPM shown on the vertical axis.

Figure 2. Example Duty Cycle to Speed Chart

The FanController component provides a graphical user
interface where designers can enter this information which
then automatically configures and optimizes the firmware
and hardware inside PSoC to control fans with these
parameters.

It is important to note that at low duty cycles, not all fans
behave the same way. Some fans stop rotating as the
duty cycle approaches 0%, while others rotate at a
nominal specified minimum RPM. In both cases, the duty
cycle to RPM relationship can be non-linear or not
specified. When entering duty cycle to RPM information
into the FanController component customizer interface,
select two data points from the linear region where the
behavior of the fan is well-defined.

Measuring Fan Rotational Speeds
3-wire and 4-wire DC fans include hall-effect sensors that
sense the rotating magnetic fields generated by the rotor
as it spins. The output of the hall-effect sensor is a
pulse-train that has a period inversely proportional to the
rotational speed of the fan. The number of pulses that are
produced per revolution depends on how many poles are
used in the electromechanical construction of the fan.

For the most common 4-pole brushless DC fan, the
tachometer output from the hall-effect sensor will generate
two high and low pulses per fan revolution. If the fan stops
rotating due to mechanical failure or other fault, the

0

2000

4000

6000

8000

10000

0 20 40 60 80 100

Duty Cycle to Speed

RP
M

Duty Cycle (%)

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 3

tachometer output signal will remain static at either a logic
low or logic high level.

The FanController component measures the period of the
tachometer pulse train for all fans in the system using a
custom hardware implementation. The firmware APIs
provided convert the measured tachometer periods into
RPM to enable development of fan control algorithms that
are firmware based. That same hardware block can
generate alerts when it detects that a fan has stopped
rotating, referred to as a stall event.

Fan Cables and Connectors
At the cabling level, wire color coding is not consistent
across manufacturers, but the connector pin assignment is
standardized. Figure 3 shows the connector pin out when
viewed looking into the connector with the cable behind.
Note the connectors are keyed to prevent incorrect
insertion into the fan controller board. The keying scheme
chosen also enables 4-wire fans to connect to control
boards that were designed to support 3-wire fans (no
PWM speed control signal) without modification.

Figure 3. 4-Wire DC Fan Connector Pin Assignment

The FanController component interacts with fans by
driving the PWM speed control signals and monitoring fan
actual speeds by measuring the tachometer (TACH) pulse
trains. The component can be configured to automatically
regulate fan speeds and detect fan failures based on the
TACH inputs. Specifically how this is done will be
presented in the example projects provided along with this
application note.

Getting Started with the Fan
Controller Component
Distributed with this application note is a PSoC Creator™
bundled project ZIP file that contains five example design
projects and a library project that contains the
FanController component. Save the ZIP file to a
convenient location on your hard drive and extract the
contents to a local folder.

To get started with the example projects, double-click the
AN66627.cywrk PSoC Creator workspace file.

1. In the Workspace Explorer tab to the left of the
screen, expand project Example1 by clicking on the
small ‘+’ icon to the left of it.

2. Double-click TopDesign.cysch to open the top-level
design schematic for the hardware blocks inside
PSoC.

Figure 4 shows the top-level design schematic for
Example Project 1.

All of the example projects provided with this application
note are designed to run on the CY8CKIT-001 PSoC
Development Kit (DVK), with support for two fans. The
projects are easily modified to support more fans for
further development and testing.

To replicate this environment properly, some wire
connections are required on the CY8CKIT-001. Using the
prototyping area on the DVK, wire power and ground to
4-pin headers for connecting to the fans. Using header
P19 on the DVK, make the six connections shown in blue
color in Figure 4.

An example of this hardware setup is shown in Figure 5.
The example shown uses two 12 V DC fans. Power for the
fans is drawn directly from the DVK. It should be noted
that the DVK can only provide around 1 A on the 12 V
supply. If the fans you are working with exceed that
current limit, use an external power supply to power the
fans separately to avoid damaging the power electronics
on the DVK.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 4

Figure 4. Top-level Design Schematic for Example Project 1

Figure 5. Wiring Fans to the DVK

Double-click the FanController component to open the
component customizer as shown in Figure 6.

Figure 6. FanController Customizer – Basic Tab

For the first example project, the FanController is
configured to use firmware (CPU) fan control mode. In this
mode, PSoC hardware blocks are used to implement the
PWM blocks and the tachometer speed monitor (Tach)
block, but firmware is entirely responsible for fan speed
control.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 5

A simplified representation of firmware fan control mode is
shown in Figure 7. In this mode, firmware can set
individual PWM duty cycles using the SetDutyCycle() API
to change fan speeds. Actual speeds measured by the
Tach block are transferred to SRAM using one channel of
PSoC’s DMA controller. Firmware can read individual fan
speeds using the GetActualSpeed() API.

The Tach block can be configured to generate an alert
signal if any of the fans stalls. This feature can be enabled
by selecting the Fan Stall / Rotor Lock checkbox on the
customizer Basic Tab, but leave that box unselected for
the first example project.

Figure 7. Firmware Fan Control Mode

Move to the Fans Tab of the customizer to complete the
configuration of the FanController component.

Figure 8. FanController Customizer – Fans Tab

This tab enables you to configure all of the parameters
related to the PWM fan drivers. The number of fans
including banking arrangement can be entered. A fan bank
is defined as multiple fans that are driven by the same
PWM speed control signal. For the first example, we will
drive two fans with the same PWM signal representing
one bank of fans.

The resolution of the PWM drivers can be set to 8-bit or
10-bit as required for your application. 10-bit resolution
gives finer speed control, but uses more digital resources
in the application. When 8-bit resolution is selected, the
PWM frequency can be set to either 25 kHz or 50 kHz. 25
kHz is the industry standard for PWM drive signals, but
fans that support higher PWM control frequencies can be
supported with this control.

The final section of this tab enables you to enter the
electromechanical parameters of the fans you are working
with. If you have this information from the fan
manufacturer’s datasheet, enter it here. The Duty A (%),
RPM A, Duty B (%), and RPM B parameters represent two
data points from the fan’s duty cycle to speed chart. If you
are not able to get this information for the fans you are
working with, stick with the default settings for now and
you will be able to measure the actual duty cycle to speed
relationship for your fans in the first example project. Once
captured, you can come back into the customizer and
enter those parameters later.

Now that the component configuration is complete,
program the Example1 project into the DVK by selecting
Debug > Program from the pull-down menus. Note that
all the example projects will run on PSoC 3 or PSoC 5.
The projects are configured for PSoC 3 by default. To
switch to PSoC 5, simply change the target device using
the Device Selector and rebuild the project to target the
selected device.

If the project is running correctly, the text displayed on the
debug LCD should display something like this:

 50% RPM1: 3250
 Bank RPM2: 3674

The same PWM duty cycle is being driven to both fans on
PSoC port pin P0.5. Be sure to connect this signal to the
PWM speed control pin on both fans for this example.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 6

Example 1 – Firmware Details
In the Workspace Explorer, double-click main.c to
examine the firmware used in this example project. The
code is shown in code excerpt Code 1.

The purpose of this first example is twofold:

1) Get a sense of the accuracy of the fans. It is common
for two “identical” fans to spin at very different speeds
even when they are both driven with the same PWM duty
cycle. This highlights that driving fans using conventional
banks (a shared PWM drive signals across multiple fans)
is far from optimal. In later examples when we explore
closed loop hardware control mode, we will revisit this
topic.

2) Capture duty cycle to RPM relationship if the fan
manufacturer’s datasheet is not available.

Looking at the code excerpt from example 1, it should be
evident that there is no speed control algorithm
implemented. Pressing switch SW1 on the DVK decreases
the duty cycle by 5%. Doing so should result in a reduction
in speed of both fans. Pressing switch SW2 on the DVK
increases the duty cycle by 5%.

This example also introduces some of the basic APIs
specific to the FanController component. Refer to the
comments in the code excerpt to understand the
relevance of the API calls and the component datasheet
for a full list of APIs, their parameters, return values, and
operation.

Code 1. Example1 main.c Firmware Listing

/* Duty cycles expressed in percent */
#define MIN_DUTY 0
#define MAX_DUTY 100
#define INIT_DUTY 50
#define DUTY_STEP 5

void main()
{
 uint16 dutyCycle = INIT_DUTY;

 /* Initialize the Fan Controller */
 FanController_Start();

 /* API uses Duty Cycles Expressed in
Hundredths of a Percent */
 FanController_SetDutyCycle(1,
dutyCycle*100);

 /* Initialize the LCD */
 LCD_Start();
 LCD_Position(0,0);
 LCD_PrintDecUint16(dutyCycle);
 LCD_PrintString("%");
 LCD_Position(1,0);
 LCD_PrintString("Bank");

 while(1)
 {
 /* Display Actual Speed Readings */
 LCD_Position(0,5);
 LCD_PrintString("RPM1: ");

LCD_PrintDecUint16(FanController_GetActualSpeed(
1));
 LCD_PrintString(" ");

 LCD_Position(1,5);
 LCD_PrintString("RPM2: ");

LCD_PrintDecUint16(FanController_GetActualSpeed(
2));
 LCD_PrintString(" ");
 CyDelay(250);

 /* Check for Button Press to Change
 Duty Cycle */
 if((!SW1_Read()) || (!SW2_Read()))
 {
 /* Increase Duty Cycle */
 if(!SW1_Read())
 {
 if(dutyCycle > MIN_DUTY)
 dutyCycle -= DUTY_STEP;
 }

 /* SW2 = Increase Duty Cycle */
 else
 {
 if((dutyCycle += DUTY_STEP) >
MAX_DUTY)
 dutyCycle = MAX_DUTY;
 }

 /* Adjust Duty Cycle of the Fan
 Bank */
 FanController_SetDutyCycle(1,
 dutyCycle*100);
 LCD_Position(0,0);
 LCD_PrintDecUint16(dutyCycle);
 LCD_PrintString("% ");

 /* Switch Debounce *.
 CyDelay(250);
 }
 }
}

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 7

Example 2 – Firmware Speed Control
Close main.c and TopDesign.cysch for Example1. Go
back to the Workspace Explorer and right-click on Project
‘Example2’. Select Set As Active Project.

Open TopDesign.cysch for Example2 to start working on
this project. The main change made to the top-level design
schematic is the addition of a Status Register component
available in the standard Cypress Component Catalog
that the firmware can use to synchronize with hardware.

The purpose of this example is to use the same basic
hardware configuration as Example1, but add
firmware-based closed loop speed control. From example
project 2 onward, the fans will have individual PWM
control. Add a wire to the DVK to connect the second fan’s
PWM control input to PSoC port P0.6. This is shown in the
top-level schematic for Example2.

Open the Component Customizer and go to the Fans tab.
The one required change is to remove fan banking by
setting the number of banks to 0. Doing so will expose an
additional row to enter the electromechanical parameters
for the second fan. Now is a good time to enter the fan
parameters for your specific fans that you measured in
example project 1. Note also that now that we are setting
up the component to drive two fans independently, it is
possible to enter different duty-cycle to RPM relationships
for each fan. This capability allows the FanController
component to work with any combination of fans, giving
system designers more flexibility to mix and match
different types of fans in their application to meet system
cooling needs.

Now that the component configuration is complete,
program the Example2 project into the DVK by selecting
Debug > Program from the pull-down menus.

If the project is running correctly, the text displayed on the
debug LCD should display something like this:

 5000 5245 34.50%
 F/W 4850 32.75%

The desired speed in RPM is displayed on the left.
Pressing SW1 on the DVK decreases the desired speed
by 500 RPM (SW2 increases by 500 RPM). A firmware
algorithm responds by adjusting the duty cycle for both
fans and continuously works at fine tuning the duty cycle
until the actual fan speeds approach the desired speed.

The center of the display shows the actual speed in RPMs
of both fans. If the actual speeds display zero, check the
connection of the TACH signals from the fans. On the right
of the display, the duty cycles for each fan are displayed
for reference. In contrast to Example 1 where the fans
were driven with the same duty cycle and we observed the
difference in actual speeds, Example 2 shows the
difference in duty cycles required to achieve the same
desired speed on both fans.

The “F/W” text displayed on the bottom left of the display
highlights that this project is using firmware speed control.
This is done because the LCD display in example
project 3 (when hardware closed loop control is
introduced) is virtually identical, so this text helps to
identify which example project is currently running on
PSoC.

In the Workspace Explorer, double-click on main.c to
examine the firmware used in this example project. The
code is shown in code excerpt Code 2.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 8

Code 2. Example2 main.c Firmware Listing

/* PWM duty cycle controls - units are hundredths of a percent */
#define MIN_DUTY 50
#define MAX_DUTY 9950
#define DUTY_STEP_COARSE 100
#define DUTY_STEP_FINE 2

/* Speed controls - units are RPM */
#define MIN_RPM 2500
#define MAX_RPM 9500
#define INIT_RPM 4500
#define RPM_STEP 500
#define RPM_DELTA_LARGE 500
#define RPM_TOLERANCE 100

void main()
{
 uint16 desiredSpeed = INIT_RPM;
 uint16 dutyCycle[2];
 uint8 fanNumber;
 char displayString[6];

 FanController_Start();
 FanController_SetDesiredSpeed(1, desiredSpeed);
 FanController_SetDesiredSpeed(2, desiredSpeed);
 dutyCycle[0] = FanController_GetDutyCycle(1);
 dutyCycle[1] = FanController_GetDutyCycle(2);

 LCD_Start();
 LCD_Position(0,0);
 LCD_PrintDecUint16(desiredSpeed);
 LCD_Position(1,0);
 LCD_PrintString("F/W");

 while(1)
 {
 /* Synchronize firmware to end-of-cycle pulse from FanController */
 if (eocStatus_Read())
 {

 for(fanNumber = 1; fanNumber <= 2; fanNumber++)
 {
 /* Display Fan Actual Speeds */
 LCD_Position(fanNumber-1,5);
 LCD_PrintDecUint16(FanController_GetActualSpeed(fanNumber));
 LCD_PrintString(" ");

 /* Firmware Speed Regulation */
 LCD_Position(fanNumber-1,9);

 /* Fan Below Desired Speed */

 if(FanController_GetActualSpeed(fanNumber) < desiredSpeed)
 {
 if((desiredSpeed - FanController_GetActualSpeed(fanNumber)) > RPM_DELTA_LARGE)
 dutyCycle[fanNumber-1] += DUTY_STEP_COARSE;
 else
 dutyCycle[fanNumber-1] += DUTY_STEP_FINE;
 if(dutyCycle[fanNumber-1] > MAX_DUTY)
 {
 dutyCycle[fanNumber-1] = MAX_DUTY;
 }
 }

 /* Fan Above Desired Speed */
 else if(FanController_GetActualSpeed(fanNumber) > desiredSpeed)
 {
 if((FanController_GetActualSpeed(fanNumber) - desiredSpeed) > RPM_DELTA_LARGE)

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 9

 {
 if(dutyCycle[fanNumber-1] > (MIN_DUTY+DUTY_STEP_COARSE))
 dutyCycle[fanNumber-1] -= DUTY_STEP_COARSE;
 }
 else if((FanController_GetActualSpeed(fanNumber) - desiredSpeed) > RPM_TOLERANCE)
 {
 if(dutyCycle[fanNumber-1] > MIN_DUTY)
 dutyCycle[fanNumber-1] -= DUTY_STEP_FINE;
 }
 }
 FanController_SetDutyCycle(fanNumber, dutyCycle[fanNumber-1]);

 /* Display Current Duty Cycle Settings (in 100ths of a percent) */
 LCD_Position(fanNumber-1,10);
 sprintf(displayString, "%5.2f", (((float)dutyCycle[fanNumber-1])/100));
 LCD_PrintString(displayString);
 LCD_PrintString("% ");
 }
 CyDelay(250);

 /* Check for Button Press to Change Speed */
 if((!SW1_Read()) || (!SW2_Read()))
 {
 /* Decrease Speed */
 if(!SW1_Read())
 {
 if(desiredSpeed > MIN_RPM)
 desiredSpeed -= RPM_STEP;
 }

 /* Increase Speed */
 else
 {
 desiredSpeed += RPM_STEP;
 if(desiredSpeed > MAX_RPM)
 desiredSpeed = MAX_RPM;
 }

 /* Display Updated Desired Speed */
 LCD_Position(0,0);
 LCD_PrintDecUint16(desiredSpeed);
 FanController_SetDesiredSpeed(1, desiredSpeed);
 FanController_SetDesiredSpeed(2, desiredSpeed);
 dutyCycle[0] = FanController_GetDutyCycle(1);
 dutyCycle[1] = FanController_GetDutyCycle(2);

 /* Switch Debounce */
 CyDelay(250);
 }
 }
}

 }

Because the time taken to measure the actual speed from each fan is long (between 12–18 ms per fan at 5000 RPM, for
example), it is important that the firmware speed control algorithm knows when new actual speeds are available before making
the next decision about how to adjust the PWM duty cycles. The end-of-cycle (eoc) output terminal on the FanController
component serves this purpose. The eoc signal is generated by the Tach block inside the component and pulses high when a
new actual speed sample is available from all fans connected to the component.

In this example project, the main firmware loop polls the status register component waiting for the end-of-cycle (eoc) pulse
from the FanController component before running the duty cycle adjustment algorithm.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 10

Example 3 – Hardware Speed Control
Close main.c and TopDesign.cysch for Example2. Go
back to the Workspace Explorer and right-click on Project
‘Example3’. Select Set As Active Project.

Open TopDesign.cysch for Example3 to start working on
this project. The only change made to the top-level design
schematic is the removal of the eoc Status Register
component because firmware is not involved in the speed
control in this project.

The purpose of this example is to replicate the
functionality of example project 2 but this time the custom
hardware blocks inside the FanController component
perform the task of speed regulation, which frees the CPU
to perform other tasks.

A simplified representation of hardware fan control mode
is shown in Figure 9. In this mode, firmware can set
desired fan speeds using the SetDesiredSpeed() API. The
universal digital blocks (UDBs) inside the component will
then work together to measure fan speeds and adjust duty
cycles automatically. Actual fan speeds are still transferred
to memory by the Tach block, which enables firmware to
monitor fan speeds as a background activity if desired.

Figure 9. Hardware Fan Control Mode

Double-click the FanController component to open the
component customizer as shown in Figure 10.

Figure 10. Configuring Closed Loop Control in the
FanController Component Customizer

Hardware fan control mode is enabled by clicking the
Hardware (UDB) radio button on the Basic tab. Doing so
exposes some new controls that can be used to optimize
the behavior of the closed loop hardware system.

Damping Factor

This parameter controls the dynamic response time of the
hardware control loop. It controls how frequently the
hardware will adjust the PWM duty cycles for each fan.

In situations where there are only a few fans, a higher
damping factor will ensure that the control loop can
regulate to the desired speed without oscillating around
the desired speed target. In situations where many fans
are being controlled, a lower damping factor will ensure
adequate response time to changes in fan speed. This
parameter enables fine tuning of the hardware control
logic to match the selected fan’s electromechanical
characteristics.

The valid range for this parameter is 0..1.sec and the
default setting is 640 ms. In example project 5, we will add
an I2C interface to the FanController component to enable
real time monitoring of the fan speeds and the duty cycle
adjustments made by the hardware control loop. That
setup enables designers to experiment with different
Damping Factor settings until the desired performance is
achieved.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 11

Tolerance

This parameter sets the acceptable tolerance when
specifying desired fan speed targets. The tolerance is
specified as a percentage relative to the desired speed
setting. This parameter also enables fine tuning of the
hardware control logic to match the selected fan’s
electromechanical characteristics.

The valid range for this parameter is 1..10%. Default
setting is 1%. If 8-bit PWM resolution is selected in the
FanController Fans tab, a Tolerance parameter setting of
5% is recommended.

Acoustic Noise Reduction

This parameter limits audible noise from fans by limiting
the positive rate of change of speed. If enabled, and
firmware requests an increase in desired fan speed, the
PWM duty cycle applied to the fan will increase gradually
to the new setting rather than applying a sudden step
change. This eliminates noisy fan whir from sudden speed
increases. Default setting is unselected. For this example
project, leave this control unselected. We will enable it in
later projects to see what effect this parameter has on the
hardware control loop.

Alerts

For this example project, enable the Fan Stall / Rotor Lock
alert. The alert pin is connected to LED1 on the DVK, so
we have a visual indication if a fan stalls during operation.

Now that the component configuration is complete,
program the Example3 project into the DVK by selecting
Debug > Program from the pull-down menus.

If the project is running correctly, the text displayed on the
debug LCD should display something like this:

 4500 5245 34.50%
 H/W 4850 32.75%

The desired speed in RPM is displayed on the left.
Pressing SW1 on the DVK decreases the desired speed
by 500 RPM (SW2 increases by 500 RPM). The hardware
blocks in PSoC respond by adjusting the duty cycle for
both fans and continuously work at fine-tuning the duty
cycle until the actual fan speeds approach the desired
speed.

In the Workspace Explorer, double-click on main.c to
examine the firmware used in this example project. The
code is shown in code excerpt Code 3.

This project has been configured to behave very similarly
to example project 2 to demonstrate the power and
convenience of hardware-driven closed loop control. The
main loop in the firmware project deals only with the user
interface—the switches for requesting changes to desired
speed, the LCD to display fan information, and the LED to
display alert status.

For testing purposes, a stall condition can be created by
either forcing the fan to stop rotating or by removing the
fan from the connector on the DVK. For safety reasons
and to observe behavior in the case of a persistent fault,
remove either one of the fan connections from the DVK.
When the stall is detected, the LCD will display the word
“STALL” in place of the actual speed reading and the red
LED1 on the DVK will blink.

Code 3. Example3 main.c Firmware Listing
#define MIN_RPM 2500
#define MAX_RPM 9500
#define INIT_RPM 4500
#define RPM_STEP 500

void main()
{
 uint16 desiredSpeed = INIT_RPM;
 uint16 stallStatus;
 uint8 fanNumber;
 char displayString[6];

 FanController_Start();
 FanController_SetDesiredSpeed(1, desiredSpeed);
 FanController_SetDesiredSpeed(2, desiredSpeed);

 LCD_Start();
 LCD_Position(0,0);
 LCD_PrintDecUint16(desiredSpeed);
 LCD_Position(1,0);
 LCD_PrintString("H/W");

 while(1)
 {
 /* Display Fan Actual Speeds and Duty Cycles */
 for(fanNumber=1; fanNumber<=2; fanNumber++)
 {

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 12

 LCD_Position(fanNumber-1,5);
 LCD_PrintDecUint16(FanController_GetActualSpeed(fanNumber));
 LCD_PrintString(" ");
 LCD_Position(fanNumber-1,10);
 sprintf(displayString, "%5.2f", (((float)FanController_GetDutyCycle(fanNumber))/100));
 LCD_PrintString(displayString);
 LCD_PrintString("% ");

 /* Check for Fan Stall (poll alert status) */
 if(FanController_GetAlertSource())
 {
 stallStatus = FanController_GetFanStallStatus();
 if(stallStatus & fanNumber)
 {
 LCD_Position(fanNumber-1,5);
 LCD_PrintString("STALL");
 }
 CyDelay(250);
 }
 }

 /* Check for Button Press to Change Speed */
 if((!SW1_Read()) || (!SW2_Read()))
 {
 /* Decrease Speed */
 if(!SW1_Read())
 {
 if(desiredSpeed > MIN_RPM)
 desiredSpeed -= RPM_STEP;
 }

 /* Increase Speed */
 else
 {
 desiredSpeed += RPM_STEP;
 if(desiredSpeed > MAX_RPM)
 desiredSpeed = MAX_RPM;
 }
 FanController_SetDesiredSpeed(1, desiredSpeed);
 FanController_SetDesiredSpeed(2, desiredSpeed);

 /* Display Updated Desired Speed */
 LCD_Position(0,0);
 LCD_PrintDecUint16(desiredSpeed);

 /* Switch Debounce */
 CyDelay(250);
 }
 }
}

When an alert is generated, the firmware calls the GetFanStallStatus() API which de-asserts the alert pin. Because the stall
condition is persistent, the alert is generated again the next time the Tach hardware block measures the fan speed. The 500
ms delay in the firmware loop ensures that LED1 stays lit long enough for you to see it.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 13

Example 4 – Advanced Hardware Speed Control
Close main.c and TopDesign.cysch for Example3. Go
back to the Workspace Explorer and right-click on Project
‘Example4’. Select Set As Active Project.

Open TopDesign.cysch for Example4 to start working on
this project. The only change made to the top-level design
schematic is the addition of an Interrupt component
available in the standard Cypress Component Catalog.

Double-click the FanController component to open the
component customizer as shown in Figure 11.

Figure 11. FanController Component Customizer Settings
for Example Project 4

The purpose of this project is to demonstrate the Acoustic
Noise Reduction feature of the hardware speed control
logic and how to use interrupts to respond to alerts instead
of polling alert status in firmware. Select the Acoustic
Noise Reduction checkbox to enable that feature.

Speed Failure Alerts

Speed regulation failure alerts are generated by the closed
loop hardware controller in two cases: 1) If the desired fan
speed exceeds the current actual fan speed but the fan’s
duty cycle is already at 100%, 2) If the desired fan speed
is below the current actual fan speed, but the fan’s duty
cycle is already at 0%.

For this example project, select the Speed Failure
checkbox in the Alerts section of the Basic customizer
tab.

Now that the component configuration is complete,
program the Example4 project into the DVK by selecting
Debug > Program from the pull-down menus.

If the project is running correctly, the text displayed on the
debug LCD should be the same as that observed in
example project 3.

If you left one or both of your fans disconnected from the
DVK, you should see the word “STALL” shown on the LCD
in place of the actual RPM. If so, this indicates that CPU
interrupts are working and being serviced properly. We will

examine the interrupt service routine code shortly. LED1
on the DVK is still connected to the alert pin, but now that
the servicing of the alert is handled by interrupts instead of
polling, the response time is significantly faster. You may
not be able to see the alert pin toggling. Connect an
oscilloscope or logic analyzer to the alert pin on your DVK
to see the operation and timing of that signal.

You can confirm that Speed Regulation failure logic is
working correctly in one of two ways:

1) Set a desired speed beyond the maximum speed that
your fan can achieve. To do that, simply change the
MAX_RPM #define in main.c and use SW2 to increase the
desired speed to that setting. When speed regulation is
not possible, the LCD displays “SPEED” in place of the
actual RPM.

 2) Set a desired speed below the minimum speed that
your fan can achieve. To do that, simply change the
MIN_RPM #define in main.c and use SW1 to decrease the
desired speed to that setting. When speed regulation is
not possible, the LCD will display “SPEED” in place of the
actual RPM.

In the Workspace Explorer, double-click on main.c to
examine the firmware used in this example project. The
code is shown in code excerpt Code 4.

Because this project requires interrupts to function, the
CYGlobalIntEnable macro is called during initialization to
enable interrupts to the CPU core. The AlertInt_Start() API
is provided with the interrupt component and needs to be
called to have an interrupt vector and priority assigned to
that interrupt source.

Code excerpt Code 5 shows the source code that needs
to be manually entered into the API for the AlertInt
component.

Near the top of the file, include the FanController.h file and
reference the global variables defined in main.c. Then edit
the AlertInt interrupt handler as shown.

The interrupt service routine for the alert signal calls the
GetAlertSource() API to determine whether stall failures or
speed regulation failures (or both) caused the alert. The
GetFanStallStatus() or GetFanSpeedStatus() APIs return
a bitmask with ‘1’s populated in each bit corresponding to
the faulty fan number(s). These APIs also de-assert the
alert pin to prepare for future alerts.

As we saw during testing of this project, a persistent stall
failure or speed regulation failure will generate interrupts
continuously at a rate dictated by the amount of time taken
for the Tach block to measure the actual speeds of all fans
in the system. In that situation, the designer may choose
to disable alerts from a known-faulty fan to prevent the
continuous assertion of interrupts to the CPU core. This is
achieved using the SetAlertMask() API which enables

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 14

masking of alerts from the specified fan number. Masking
alerts from a fan disables generating of both stall and
speed regulation alerts from that fan until further notice.

Code 4. Example4 main.c Firmware Listing

#define MIN_RPM 1000
#define MAX_RPM 20000
#define INIT_RPM 4500
#define RPM_STEP 500

uint16 stallStatus = 0;
uint16 speedStatus = 0;

void main()
{
 uint16 desiredSpeed = INIT_RPM;
 uint8 fanNumber;
 char displayString[6];

 /* Globally Enable Interrupts to the CPU
Core */
 CYGlobalIntEnable;

 FanController_Start();
 FanController_SetDesiredSpeed(1,
desiredSpeed);
 FanController_SetDesiredSpeed(2,
desiredSpeed);
 FanController_SetDutyCycle(1, 1000);
 FanController_SetDutyCycle(2, 1000);
 AlertInt_Start();

 LCD_Start();
 LCD_Position(0,0);
 LCD_PrintDecUint16(desiredSpeed);
 LCD_Position(1,0);
 LCD_PrintString("H/W");

 while(1)
 {
 for(fanNumber=1; fanNumber<=2;
fanNumber++)
 {
 /* Check for Fan Stall and Speed
 Failure (flags set in AlertInt
 ISR) */
 LCD_Position(fanNumber-1,5);
 if(stallStatus & fanNumber)
 {
 LCD_PrintString("STALL");
 stallStatus &= ~fanNumber;
 CyDelay(500);
 }

 else if(speedStatus & fanNumber)
 {
 LCD_PrintString("SPEED");
 speedStatus &= ~fanNumber;
 CyDelay(500);
 }
 else
 {
 /* Display Fan Actual Speeds
 When There are no Errors */

LCD_PrintDecUint16(FanController_GetActualSpeed(
fanNumber));

 LCD_PrintString(" ");
 }

 /* Always Display Fan Duty Cycles */
 LCD_Position(fanNumber-1,10);
 sprintf(displayString, "%5.2f",
 (((float)FanController_
 GetDutyCycle(fanNumber))/100));
 LCD_PrintString(displayString);
 LCD_PrintString("% ");
 }

 /* Check for Button Press to Change
 Speed */
 if((!SW1_Read()) || (!SW2_Read()))
 {
 /* Decrease Speed */
 if(!SW1_Read())
 {
 if(desiredSpeed > MIN_RPM)
 desiredSpeed -= RPM_STEP;
 }

 /* Increase Speed */
 else
 {
 desiredSpeed += RPM_STEP;
 if(desiredSpeed > MAX_RPM)
 desiredSpeed = MAX_RPM;
 }
 FanController_SetDesiredSpeed(1,
 desiredSpeed);
 FanController_SetDesiredSpeed(2,
 desiredSpeed);

 /* Display Updated Desired Speed */
 LCD_Position(0,0);
 LCD_PrintDecUint16(desiredSpeed);

 /* Switch Debounce */
 CyDelay(250);
 }
 }
}

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 15

Code 5. Example4 AlertInt.c Firmware Listing

/***

* Place your includes, defines and code here
**
********************************/
/* `#START AlertInt_intc` */
#include "FanController.h"
extern uint16 stallStatus;
extern uint16 speedStatus;
/* `#END` */

CY_ISR(AlertInt_Interrupt)
{
 /* Place your Interrupt code here. */
 /* `#START AlertInt_Interrupt` */

 uint8 alertStatus;

 /* Determine alert source: stall or speed
 regulation failure (could be both) */
 alertStatus = FanController_
 GetAlertSource();

 /* If stall alert, determine which
 fan(s) */
 if (alertStatus & 0x01)
 StallStatus = FanController_
 GetFanStallStatus();

 /* If hardware UDB speed regulation failure
 alert, determine which fan(s) */
 if (alertStatus & 0x02)
 SpeedStatus = FanController_
 GetFanSpeedStatus();

 /* `#END` */
}

Example 5 – Real Time Monitoring
Close main.c and TopDesign.cysch for Example4. Go
back to the Workspace Explorer and right-click on Project
‘Example5’. Select Set As Active Project.

Open TopDesign.cysch for Example5 to start working on
this project. The changes made to the top-level design
schematic is the removal of the LCD and the user
interface switches, replaced by the addition of the EzI2C
Slave component available in the standard Cypress
Component Catalog.

The purpose of this project is to enable you to monitor the
operation of the FanController component in real time over
I2C using a graphical charting GUI. This is useful for
evaluating the dynamic performance of the closed loop
hardware controller and fine tuning and optimizing the
parameters set in the component customizer.

In the Workspace Explorer, double-click on main.c to
examine the firmware used in this example project. The
code is shown in code excerpt Code 6.

This example highlights the benefit of using hardware
closed loop fan control. There is zero code in the main
firmware loop responsible for controlling the fans. The
firmware is responsible only for handling the I2C interface
and translating I2C data to commands for the
FanController.

The example I2C data structure enables an I2C master to
set desired speeds for each fan, read actual speeds, and
current duty cycles.

A new API is introduced in this example:
OverrideHardwareControl(). This API enables designers to
take back control from the closed loop hardware and use
firmware to control the fans. This could be useful in
response to a fault condition or to implement a custom fan
control algorithm temporarily. The same API can be used
to pass fan control back to the hardware.

Program the Example5 project into the DVK by selecting
Debug > Program from the pull-down menus. This project
does not use the LCD, but it is not erased, so the LCD
may still display data from Example4.

Code 6. Example5 main.c Firmware Listing

#define INIT_RPM 3000
#define NEW_COMMAND 0x0001
#define TOGGLE_OVERRIDE 0x8000

/* Define I2C Buffer Structure */
typedef struct
{
 /* R/W I2C variable – control word */
 uint16 command;
 /* R/W I2C variables - desired speeds */
 uint16 desiredSpeed[2];
 /* R only I2C variables - actual speeds */
 uint16 actualSpeed[2];
 /* R only I2C variables - actual duty
 cycles*/
 uint16 dutyCycle[2];
} I2C_REGS;

void main()
{
 uint8 override = 0;

 /* Setup I2C Buffer */
 I2C_REGS i2cRegisters;
 I2C_Start();
 I2C_EnableInt();
 I2C_SetBuffer1(sizeof(i2cRegisters), 6 ,
 (void *) &i2cRegisters);
 i2cRegisters.command = 0;
 i2cRegisters.desiredSpeed[0] = INIT_RPM;
 i2cRegisters.desiredSpeed[1] = INIT_RPM;

 /* Initialize Components */
 CYGlobalIntEnable;
 AlertInt_Start();
 FanController_Start();

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 16

 FanController_SetDesiredSpeed(1,
 i2cRegisters.desiredSpeed[0]);
 FanController_SetDesiredSpeed(2,
 i2cRegisters.desiredSpeed[1]);

 while(1)
 {
 /* Synchronize firmware to hardware
 end-of-cycle pulse */
 if(eocStatus_Read())
 {
 /* Check if I2C Host Sent New
 Desired Speeds */
 if(i2cRegisters.command &
 NEW_COMMAND)
 {
 FanController_SetDesiredSpeed(1,
 i2cRegisters.desiredSpeed[0]);
 FanController_SetDesiredSpeed(2,
 i2cRegisters.desiredSpeed[1]);
 i2cRegisters.command &=
 ~NEW_COMMAND;
 }

 /* Check if I2C Host Sent Hardware
 Override Command */
 if(i2cRegisters.command &
 TOGGLE_OVERRIDE)
 {
 override ^= 1;
 FanController_Override
 HardwareControl(override);
 i2cRegisters.command &=
 ~TOGGLE_OVERRIDE;
 }

 /* Update I2C buffer with current
 Actual Speeds and Duty Cycles */
 i2cRegisters.actualSpeed[0] =
 FanController_GetActualSpeed(1);
 i2cRegisters.actualSpeed[1] =
 FanController_GetActualSpeed(2);
 i2cRegisters.dutyCycle[0] =
 FanController_GetDutyCycle(1);
 i2cRegisters.dutyCycle[1] =
 FanController_GetDutyCycle(2);
 }
 }
}

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 17

Using the USB-I2C Bridge Control Panel
The MiniProg3 programmer is also capable of
implementing a USB-to-I2C bridge adaptor. We take
advantage of this feature to send and receive commands
to PSoC over I2C. Provided along with the example
projects are a number of files that are intended for use
with the Bridge Control Panel software. These are located
in the folder called “Bridge Control Panel Files”. To
launch the Bridge Control software GUI, double-click on
the relevant .iic file (Fan_PSoC3.iic or Fan_PSoC5.iic) in
that folder. If the .iic file extension is not recognized on
your computer, manually launch the Bridge Control Panel
from the Start menu under the Cypress folder. Open the
relevant .iic file manually if you started the software in that
manner. Once open, select Chart > Variable Settings
from the pull-down menu and click on Load. Open the
Fan.ini file provided.

Figure 12 shows how the Bridge Control Panel GUI should
look when launched and properly configured.

Leave the DVK powered on and remove the MiniProg3
from the PSoC processor module and connect the white
5-pin connector on the MiniProg3 to a 5-pin header you
will need to wire up on the DVK as shown in the top-level
schematic for this project. Ensure that you see the green
“Connected” and “Powered” status boxes at the bottom of
the Bridge Control panel GUI.

Figure 12. Bridge Control Panel GUI

The Editor tab is exposed by default whenever the Bridge
Control Panel software is opened. The editor provides a
simple text scripting capability to send and receive I2C
data. For full details on the scripting language, refer to the
Help provided in the USB-I2C Bridge Control Panel
software.

The script provided for working with the Example5 project
is shown in Code 7.

Code 7. USB-I2C Bridge Control Panel Script

; Read all fan variables from PSoC 3 I2C Buffer
; For continuous graphing, click once on the
; line below and click "Repeat"
; Click "Stop" to exit this mode.
r 04 [DELAY=50] x x @1Desired1 @0Desired1 +
 @1Desired2 @0Desired2 +
 @1Actual1 @0Actual1 +
 @1Actual2 @0Actual2 +

@1Duty1 @0Duty1 +
@1Duty2 @0Duty2 p

; Change desired speeds (speeds are in
; hexadecimal - MSB first)
; To change speeds, click once on one of the
; lines below and click "Send"

; Fan1=7000rpm (0x1B58), Fan2=7000rpm (0x1B58)
w 04 00 00 01 1B 58 1B 58 p
; Fan1=9000rpm (0x2328), Fan2=9000rpm (0x2328)
w 04 00 00 01 23 28 23 28 p
; Fan1=7000rpm (0x1B58), Fan2=9000rpm (0x2328)
w 04 00 00 01 1B 58 23 28 p
; Fan1=9000rpm (0x2328), Fan2=7000rpm (0x1B58)
w 04 00 00 01 23 28 1B 58 p
; Fan1=4000rpm (0x0FA0), Fan2=4000rpm (0x0FA0)
w 04 00 00 01 0F A0 0F A0 p

; Override closed loop control
; Sending this command toggles the override
; control
w 04 00 80 00 p

The format used in the script language is simple. The “r” at
the beginning of a script line indicates an I2C read transfer.
The next byte (in hexadecimal) is the I2C address in 7-bit
format.

After the address is an optional delay parameter, specified
in milliseconds. This is useful for setting a display update
rate when continuous graphing is enabled.

The script line then contains a list of variable names.
These have been set to match the I2C data structure
defined in Example5. The “x x” indicates that the
MiniProg3 should read the first 2 bytes from PSoC and
discard them. Those first 2 bytes are used to send
commands to PSoC, so we don’t need to read or view
them here. We are interested in viewing the desired
speeds, actual speeds and duty cycles from the
FanController. Those are all 16-bit values transported over
the native 8-bit I2C bus. The “@1” and “@0” prefixes to the
variable names define the endian ordering of the bytes so
that when we view the data in the chart GUI, the numbers
will appear as 16-bit values.

Finally, the “p” at the end of each script line directs the
MiniProg3 to generate an I2C stop condition terminating
the transfer.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 18

Using this script file, we are able to accomplish several
things:

1. Read FanController speeds and duty cycles in real
time by continuously executing the first script line.

2. Set new desired speeds as shown in the second
section of the script file as outlined in the comments.

3. Toggle between hardware closed loop control mode
and firmware control mode as shown in the third
section of the script file.

The first exercise to gain familiarity with the Bridge Control
Panel utility will be to display the actual speeds in real time
and graph them over time. The power on default speed for
both fans was set at 3,000 RPM in main.c.

Click once on the script line beginning with “r” and then
click on the Repeat button at the bottom of the GUI. When
you see the status text scrolling in the window at the
bottom, click on the Chart tab to see a display of the
results.

Figure 13 shows an example of a fan speeding up from
stall with a low Damping Factor parameter set. The red

line shows the target speed of 3000 RPM. The green line
shows the actual speed ramping up from zero,
overshooting the target, and then oscillating a few times
around the target speed before converging. The blue line
shows the duty cycle controlled by the closed loop
controller hardware. The positive and negative duty cycle
adjustments are evident.

Figure 14 shows an example of a fan speeding up from
stall with a medium Damping Factor parameter set. The
green line shows the actual speed ramping up from zero,
overshooting once but then quickly settling back to the
desired speed within tolerance.

Figure 15 shows an example of a fan speeding up from
stall with a high Damping Factor parameter set. The green
line shows the actual speed ramping up very slowly from
zero, achieving the target speed and settling immediately.
Feel free to experiment with various combinations of the
closed loop hardware parameters. Don’t be alarmed if you
initially find that the closed loop controller cannot achieve
regulation and the actual speed oscillates forever around
the target desired speed. This is expected when a small
number of fans are connected and a very low Damping
Factor is set and/or a low tolerance setting. Some tuning
will be required to find the optimal set of control loop
parameters.

Figure 13. Closed Loop Fan Control – Speed up from Stall (Low Damping Factor)

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 19

Figure 14. Closed Loop Fan Control – Speed up from Stall (Medium Damping Factor)

Figure 15. Closed Loop Fan Control – Speed up from Stall (High Damping Factor)

The I2C write commands in the script enable you to
independently change the desired speed for each fan. You
can use these commands to see how the FanController
responds to speed changes and verify the dynamic
behavior of the control loop. To send a command, click
once on the script line and click on the Send button or
simply press Enter.

Remember that when Acoustic Noise Reduction is
enabled, the FanController component limits the positive
rate of change in fan speed. Changing desired fan speed
from 2,000 to 10,000 RPM results in a gradual speed
change, far more pleasing to the ear than a sudden speed
change that not only generates annoying fan whirr noise,
but also causes sudden current surges in the fan’s power
supplies. Experiment with this feature by enabling or

disabling it in the Basic tab of the component customizer.

The I2C script file provided also enables you to turn closed
loop control mode off by toggling the override control to
see the difference in fan behavior when it is running in
open loop mode compared to closed loop control mode.
Disturbing the fan’s airflow by either blocking the air intake
or blowing air against the flow causes noticeable changes
in fan speed in open loop control mode. When closed loop
control is enabled, the FanController will respond quickly
and return the fans to their desired speed within tolerance.

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 20

PSoC Thermal Management EBK

If you would like to continue working with the
FanController component, consider purchasing the PSoC
Thermal Management Expansion Board Kit (CY8CKIT-
036) shown below in Figure16.

The kit comes with two fans installed plus a variety of
analog and digital temperature sensors to enable you to
quickly prototype a complete thermal management
system.

More information on the kit can be found here:
http://www.cypress.com/go/CY8CKIT-036.

Figure16. CY8CKIT-036 PSoC Thermal Management
Expansion Board Kit (EBK)

Conclusion
If you have worked through all the example projects, you
will have gained a good understanding of the various
operating modes of the FanController component and the
associated APIs. The component enables designers to
quickly and easily begin working on thermal management
applications with minimal firmware development required.

Closed loop hardware control mode provides many
benefits including reduced firmware development time and
optimal fan speeds reducing acoustic noise and power
consumption. The custom logic available within the PSoC
architecture provides immense value in these applications,
enabling designers to build complex control systems in
hardware, freeing up the CPU to handle other tasks such
as protocol handling or other critical system management
tasks.

The unique ability of the PSoC architecture to combine
custom digital logic, analog signal chain processing and
an MCU in a single device enables system designers to
integrate many external fixed-function ASSPs. This
powerful integration capability not only reduces BOM cost,
but also results in PCB board layouts that are less
congested and more reliable.

http://www.cypress.com/
http://www.cypress.com/go/CY8CKIT-036

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 21

Document History
Document Title: PSoC® 3 and PSoC 5 Intelligent Fan Controller – AN66627

Document Number: 001-66627

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 3159398 JK 2/10/2011 New Application Note – Initial Release
*A 3265851 JK 6/30/2011 Changed application note title.

Updated the example projects to use Fan Controller Component v1.10
*B 3550058 JK 3/13/2012 Updated document to new Application Note template format.

Updated the example projects for use with PSoC Creator v2.0.
Removed distribution of FanController component library.
Added section introducing the CY8CKIT-036 PSoC Thermal
Management Expansion Board Kit (EBK)

*C 3576608 JK 4/10/2012 Updated the example projects to use the new FanController v1.21
component to address a defect found in the SetDesiredSpeed() API
Updated template according to current Cypress standards.

*D 3676155 JK 07/13/2012 Updated the example projects to use the production FanController
component v2.10.
Updated screenshots of configuration GUI for the FanController
component v2.10

http://www.cypress.com/

PSoC® 3 and PSoC 5 Intelligent Fan Controller

 www.cypress.com Document No. 001-66627 Rev. *D 22

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC is a registered trademark and PSoC Creator is a trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2011-2012. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

	Contents
	Introduction
	4-Wire Fan Basics
	Fan Speed Control
	Measuring Fan Rotational Speeds
	Fan Cables and Connectors
	Getting Started with the Fan Controller Component
	Example 1 – Firmware Details
	Example 2 – Firmware Speed Control
	Example 3 – Hardware Speed Control
	Example 4 – Advanced Hardware Speed Control
	Example 5 – Real Time Monitoring
	PSoC Thermal Management EBK
	/ Conclusion
	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions

