

USB Vendor Commands with
PSoC® 3 and PSoC 5

November 23, 2010 Document No. 001-56377 Rev. *B 1

AN56377

Authors: Brad Haber, Hridya Valsaraju
Associated Project: Yes

Associated Part Family: CY8CXXXX
Software Version: PSoC® Creator™

Associated Application Notes: None

Abstract
The USB interface on PSoC

®
 3 / PSoC 5 can be used to control PSoC 3 and PSoC 5 based products or monitors fast

changing variables, both from a host computer. The example project discussed in this application note implements these
functions using USB vendor requests through the USBFS component of PSoC 3 / PSoC 5. This provides the ability to easily
log and display data obtained by manipulating the other components in a design.

Introduction
The USB specification describes three types of requests to
communicate to a device: Standard, Class, and Vendor
Specific. All devices must support standard requests, and
may optionally support Class or Vendor requests. This
application note uses the Vendor class requests to
communicate with and exercise PSoC 3 / PSoC 5. For
additional information on USB requests, refer to the USB
specification available from the USB-IF.

Cypress offers two other components that are used in this
example. Unlike a class device, a vendor specific device
requires the developer to provide a device driver. This
example uses a generic USB driver, cyusb.sys, and a .NET
managed DLL, CyUSB.DLL for writing host applications.
You can find both the driver and .DLL files included in
SuiteUSB 3.4 which can be downloaded for free from the
Cypress website www.cypress.com.

This example uses the following items:

 PSoC
®
 Creator™

 PSoC Programmer

 PSoC Development Kit (CY8CKIT-001)

 Cypress SuiteUSB 3.4

Configure Components using PSoC
Creator
This section discusses the implementation of two vendor
commands that are defined to perform the following actions:

1. Change the duty cycle of a PWM wave to a value input
by the user on a host computer GUI application.

2. Initiate streaming data to the host computer from any
PSoC 3 / PSoC 5 register whose address is selected by
the user through the GUI. This implementation helps to
monitor any variable at high speed during run time. This
is done by using the host computer connected to a
PSoC 3 based product.

PSoC Creator is used to configure the PSoC 3 or PSoC 5
device with the components used in this example. A total of
nine components are used to build this project. Create a
new project in PSoC Creator named “PSoC 3 USB Control”
(or any other name you prefer). Add the following
components to the Top Schematic:

 USBFS

 PWM

 ADC

 Digital Port to use with PWM

 Analog Port to use with ADC

 DMA

 Interrupt to use with DMA

 Control register to use with DMA

 Logic Low to use with PWM

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_1

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 2

After adding these components your schematic must be
similar to Figure 1.

Figure 1. Schematic View after Adding Required
Components

 The USBFS component is used for communications

between PSoC 3 / PSoC 5 and the host computer.

 The DMA component is used to dump data into the

USB Data Register from the user specified register.

 The PWM component provides you a configurable duty

cycle.

 The ADC is used for easy demonstration of „stream

from register‟ functionality.

 The Interrupt is triggered when each DMA transaction

is completed.

 The Control register is used to trigger the DMA

component.

 The Analog port pin feeds input from a potentiometer

on the development board.

 The Clock is used for the PWM component.

 The Digital port is used to connect to the output of the

PWM.

Configuring the PSoC Components

Prior to configuring the individual components, configure the
clock settings for this example. The clocks are configured
selecting the *.cydwr file in the Solution Explorer window of
the project. After the .cydwr file is opened, select the
'Clocks' tab and then the 'Edit clock' icon. This opens the
Clock Configuration window. Configure the clocks to the
following settings:

 IMO

 24.000 MHz

 PLL

 IMO (48.000 MHz)

 Desired (48 MHz)

 USB

 Clock Enable block checked

 IMOx2 – 48.000 MHz

 Master Clock

 PLL Out (48.000 MHz)

 Divider 1

 ILO: 100 kHz

The clock configuration window must be similar to Figure 2.

Figure 2. Clock Configuration Window

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_2

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 3

Now configure the individual components that were
previously added to this design. To configure the
components in PSoC Creator, first select the component on
the schematic, then right click and select "Configure" from
the available options.

PSoC 3 Pin Assignments
In the .cywdr PSoC 3 configuration window, route the digital
and analog ports to specific pins. This is not necessary,
because PSoC Creator does this automatically when the
application is built. However, this shows that the USBFS
pins are automatically routed and only the port pins remain
unassigned. For this example, the digital port is routed to
P6[7] and the analog port to P6[5], as shown in Figure 3.

Figure 3. Pin Assignments

Configuring the USBFS Component

In this example, the USB component is configured to report
itself to the host computer as a vendor specific peripheral
device. PSoC Creator generates most of what is necessary
to communicate over USB, simplifying what you need to do
for this design. After selecting “Configure” (as discussed in
the previous section), a new window opens. This window
enables you to customize the USB component descriptor
configuration for this application. Select 'Device Descriptor'
to begin customizing the device attributes.

Figure 4. USBFS Configuration Window

 Vendor ID

 For this application, leave the Vendor ID to the
default value of 0x4b4. This Vendor ID is assigned
to Cypress by the USB Implementers Forum. For
your product, you must obtain your own unique
Vendor ID from the USB Implementers Forum.

 Product ID

 The entry for this field is determined by the vendors
to suit their own product identification scheme. For
this example, the default value of 0x8051 is
changed to a new Product ID value of 0x1122.

The Vendor ID and Product ID fields are reported to the host
computer when PSoC 3 is connected to the USB. These
fields are used to ensure that the correct driver is loaded
and that the host computer application used recognizes this
example.

 Device Release

 The entry for this field is determined by the vendors
to suit their own product identification scheme. A
typical use of this entry is a zero based value to
identify revisions of a product. As this is the first
product for this application note, this value is set
to 0.

 Device Class

 This field enables you to define the USB peripheral
as either one of the approved USB Class devices
or as a unique Vendor Specific device. In this
application note, the USB interface is defined as a
vendor specific device. Use the drop down menu to
select “Vendor-Specific”.

 Device Subclass

 The USB peripheral is defined as a Vendor specific
device, so this field must be left as “No subclass”.

 Manufacturing String

 You can enter your company's name in this field.
For this application note, “Cypress” is entered.

 Product String

 You can enter the Product name in this field. For
this application note, “PSoC 3 USB Control” is
entered.

 Serial Number String

 You can enter the Product serial number in this
field. For this application note, this field is left blank.

 Endpoint Memory Management

 Select “Manual” radio button.

[+] Feedback

http://www.usb.org/developers/vendor/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_3

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 4

Press the Apply button to save the configuration settings

defined earlier. The Device Descriptor tab must be similar to
Figure 4 on page 3. Now select the Configuration Descriptor
to continue describing the USB interface.

 Configuration String

 This field can be left blank, because there is only
one configuration. This is described in the Device
Descriptor strings.

 Max Power

 A bus powered USB interface is defined. The USB
specification defines a device as either a low power
device requiring a maximum of one 100 mA unit of
power, or as a high power device requiring five
units of power. In this application, a full speed USB
interface is defined and it fits the low power
definition. This device can draw a maximum of
100 mA. Your product may require less than one
unit load and you can declare the actual maximum
mA value used.

 Device Power

 A USB peripheral is defined as being either bus or
self powered. For this application note, the
peripheral is declared as a bus powered device.
Additional USB compliance requirements are
needed for a self powered device. However, these
requirements are beyond the scope of this
application note. For additional information on self-
powered device USB compliance requirements,
refer to the USBFS component data sheet and the
application note AN15813 “Monitoring the EZ-USB
FX2LP™ VBUS” at www.cypress.com.

 Remote Wakeup

 The USB Control application need not wake a host
computer from a stand-by condition. This field is
left as 'Disabled'.

Press the Apply button to save the configuration settings
defined earlier. The Configuration Descriptor tab must be
similar to Figure 5.

Figure 5. USBFS Configuration Window

This example has only one interface, so there is nothing to
configure in the Interface Descriptor section. Select
Alternate Setting 0 to continue defining the USB interface.

 Interface String

 This field can be left blank, because only one
interface is described for the USB interface.

 Interface Number

 This field is filled in by PSoC Creator based on the
previous entries made in the „Configure USBFS‟
window. .

 Alternate Settings

 This field is filled in by PSoC Creator based on the
previous entries made in the „Configure USBFS‟
window.Class

 Use the drop down menu and select
“Vendor-Specific”.

 Subclass

 Because the USB device we create belongs to a
vendor specific class, the Subclass field can be left
in its default setting of “No subclass”.

[+] Feedback

http://www.cypress.com/?rID=12961
http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_4

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 5

Press the Apply button to save the settings defined earlier.

The Alternate Setting 0 tab must be similar to Figure 6.

Figure 6. Alternate Setting 0 Window

This section defines the endpoint that this example uses to
send data to the host computer. Click on Endpoint
Descriptor to begin.

 Endpoint Number

 Select an endpoint from the drop down menu. For
this example, “EP1” is selected.

 Direction

 USB is a host centric interface. All transfers are
considered from the host computer perspective.
Hence, we define the direction of the endpoint as
“IN” because we stream data from the PSoC3 USB
device into the host computer.

 Transfer Type

 USB offers four types of transfers: Control, Bulk,
Isochronous, and Interrupt. Bulk transaction types
are characterized by the ability to guarantee
error-free delivery of data between the host and a
function. This is done by error detection and retry.
Bulk transfers are used for this example.

 Interval

 For a full speed bulk IN endpoint, such as that
defined for this application, the Interval field does
not apply. It may be safely left with its default value.
Additional information on this field is available in
Table 9-13 of the USB 2.0 specification.

The Endpoint Descriptor window is similar to Figure 7.

Figure 7. Endpoint Configuration Window

Configuring the PWM Component

After opening the configuration window as described earlier,
select the following settings for the PWM component. Leave
the other settings with their default settings:

 Resolution: 8-bit

 PWM Mode: One output

 Period: 255

 CMP Value 1: 127

 CMP Type 1: Less

 Kill Mode: Disabled (Advanced tab)

 Interrupts: None (Advanced tab)

The note next to the Period field can be safely ignored at
this point.

Configuring the DMA Component

After opening the configuration window as described earlier,
select the following settings for the DMA component:

 hw_request_enabled: false

 hw_termination_enabled: false

 num_tds: 1

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_5

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 6

Configuring the ADC Component

After opening the configuration window as described earlier,
select the required ADC settings. For example, in this
project, the following settings are used.

 Power: High power

 Conversion: Continuous

 Resolution: 8

 Conversion Rate: 10000

 Input Range: Vssa to Vdda (Single Ended)

 Input Buffer Gain: 1

 Reference: Internal Reference

Configuring the Digital Port Component

After opening the configuration window as described earlier,
select the following settings for the Digital Port component:

 Set the port direction to PortDirection_Output.

 Set the access mode to PortAccessMode_HW

 Set Pin Mode (Pins) to CMOS

The clock placed next to the PWM is used with its default
setting of 24 MHz.

Now use the wiring tool to connect the components as
shown in Figure 1 on page 2.

Note that the USBFS component is a software component,
so no wiring tool connections are necessary for it. We are
not ready to build the project to generate the APIs. Select
'Build' from the top menu and then 'Build USBControl'.

Customizing PSoC Creator Generated Source
Code Files

PSoC Creator automatically generates the source code file
needed for this example project. You only need to add the
custom code to the appropriate files. After the project is
built, you begin to add the code to finish the project in the
main.c and USBFS_1_vnd.c files.

Customizing USBFS_1_vnd.c

Place your custom vendor specific code in this file. As
mentioned earlier, this section describes the vendor
commands that enable PSoC 3 to carry out specific tasks.

Three vendor commands are defined: one to change the
duty cycle of the PWM, one to start a streaming read for a
register, and the last vendor command stops the data
streaming. Each vendor request is defined under a case
statement. If there is no data to be returned to the host in
the control transfer, then the firmware calls the
USBFS_1_InitNoDataControlTransfer () function before the
'break' statement. This provides an acknowledgement to the
host for the control transfer. If there is a data stage in the
control transfer, then the firmware calls either
USBFS_1_InitControlWrite() or USBFS_1_InitControlRad()
as necessary.

Here are some vendor specific declarations:

/***

* Vendor Specific Declarations

**

************************************/

/* `#START VENDOR_SPECIFIC_DECLARATIONS`

Place your declaration here */

#include "device.h"

#include "CyDmac.h"

#define StartStream 0xA1

#define ChangeDC 0xB1

#define StopStream 0xE1

extern int STARTbit;

extern uint8 MYTD;

extern T_USBFS_1_TD CurrentTD;

extern int MyChannel;

extern uint8 FINISHED;

uint8 pDC, CmpVal;

uint16 RegAddHi = 0x4000;

uint16 RegAddLo;

uint8

USBFS_1_InitNoDataControlTransfer(void);

/* `#END` */

Now add the custom vendor command code to the
USBFS_1_HandleVendorRqst() function:

uint8 USBFS_1_HandleVendorRqst(void)

{

uint8 requestHandled = USBFS_1_FALSE;

if ((CY_GET_REG8(USBFS_1_bmRequestType) &

USBFS_1_RQST_DIR_MASK) ==

USBFS_1_RQST_DIR_D2H)

{

/* Control Read */

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_6

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 7

switch (CY_GET_REG8(USBFS_1_bRequest))

{

case

USBFS_1_GET_EXTENDED_CONFIG_DESCRIPTO

R:

#if

defined(USBFS_1_ENABLE_MSOS_STRING)

 currentTD.pData =

&USBFS_1_MSOS_CONFIGURATION_DESCR[0u]

;

 currentTD.count =

USBFS_1_MSOS_CONFIGURATION_DESCR[0u];

 requestHandled =

USBFS_1_InitControlRead();

 #endif /* End

USBFS_1_ENABLE_MSOS_STRING */

 break;

 default:

 break;

 }

 }

 /* `#START VENDOR_SPECIFIC_CODE` Place

your vendor specific request here */

switch (CY_GET_REG8(USBFS_1_bRequest))

{

case StartStream:

RegAddHi = CY_GET_REG16(USBFS_1_wValue); //

Read the upper 16 bits from the wValue field

of setup packet

RegAddLo = CY_GET_REG16(USBFS_1_wIndex);

//Read the lower 16 bits from the wIndex

field of setup packet

#if (defined(__C51__)) /* PSoC3

CyDmaTdSetAddress(MYTD, RegAddLo,

CYDEV_USB_ARB_RW1_DR);

#else/* PSoC5

MyChannel = MyDMA_DmaInitialize(1, 0,

RegAddHi, HI16(USBFS_1_ARB_RW1_DR));

CyDmaTdSetAddress(MYTD,

RegAddLo,LO16(CYDEV_USB_ARB_RW1_DR));

/* Associate the TD with the channel. */

CyDmaChSetInitialTd(MyChannel, MYTD);

//enable the channel

CyDmaChEnable(MyChannel, 1);

#endif

requestHandled =

USBFS_1_InitNoDataControlTransfer();

STARTbit =1;

break;

case ChangeDC:

pDC = CY_GET_REG8(USBFS_1_wValueLo); //Read

the desired dutycycle value from wValue

field

CmpVal = pDC*0.01*255;

PWM_1_WriteCompare(CmpVal);

requestHandled =

USBFS_1_InitNoDataControlTransfer();

break;

case StopStream:

STARTbit=0; //stop

streaming

requestHandled =

USBFS_1_InitNoDataControlTransfer();

break;

 }

/* `#END` */

return(requestHandled);

}

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_7

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 8

Customizing isr_1.c

The interrupt MyDMADone gets asserted when each DMA
transfer is over. When each packet of 64 bytes is filled in the
EP1 buffer by DMA, this interrupt is triggered and the
variable FINISHED is set to “1”.
When each packet of 64 bytes is filled in the EP1 buffer by
DMA, this interrupt is triggered and the variable FINISHED
is set to “1”.

/***

* Place your includes, defines and code

here

**

************************************/

/* `#START MyDmaDone_intc` */

extern uint8 FINISHED;

/* `#END` */

/***

* Function Name: MyDmaDone_Interrupt

**

* Summary:

* The default Interrupt Service Routine

for MyDmaDone.

*

* Add custom code between the coments to

keep the next version of this file

* from over writting your code.

*

* Parameters:

*

* Return:

* void.

*

**

***********************************/

CY_ISR(MyDmaDone_Interrupt)

{

 /* Place your Interrupt code here. */

 /* `#START MyDmaDone_Interrupt` */

 FINISHED=1;

 /* `#END` */

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_8

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 9

Customizing main.c

Customize the main.c file by adding the code needed to

implement this design. Code is added to load the IN
endpoint with data specified from the user-defined register,
the definitions of the various registers used are present in
the PSoC 3 / PSoC 5 Register TRM. A flow chart for the
loading of IN endpoint is present in Figure 26.4 of the
PSoC 3 TRM. The customized main.c file is shown in the
following code:

#include <device.h>

uint8 MyChannel;

uint8 MYTD;

int STARTbit = 0;

uint8 FINISHED = 0 ;

extern uint16 RegAddHi;

extern T_USBFS_1_EP_CTL_BLOCK USBFS_1_EP[];

void main()

{

CYGlobalIntEnable; /*Enable Global

Interrupts*/

PWM_1_Start();

ADC_DelSig_1_Start();

ADC_DelSig_1_StartConvert();

ADC_DelSig_1_IsEndConversion(ADC_DelSig_1_WA

IT_FOR_RESULT);

USBFS_1_Start(0, USBFS_1_3V_OPERATION);

while(!USBFS_1_bGetConfiguration());

MyDmaDone_Start();

#if (defined(__C51__))

MyChannel = MyDMA_DmaInitialize(1,

 0,

 0,

 0);

#else

/* PSoC 5 */

MyChannel = MyDMA_DmaInitialize(1, 0,

RegAddHi, HI16(CYDEV_USB_ARB_RW1_DR));

#endif

MYTD = CyDmaTdAllocate(); /* Get a TD*/

CyDmaTdSetConfiguration(MYTD,

 64,

 DMA_INVALID_TD,

 MyDMA__TD_TERMOUT_EN

);

/* Set TD to transfer 64 bytes */

/* Associate the TD with the channel. */

CyDmaChSetInitialTd(MyChannel, MYTD);

/* Enable the channel */

CyDmaChEnable(MyChannel, 1);

while(1)

{

if(STARTbit == 1)

{

/*We are implementing the transfer in

register level since the endpoint data

register is configured as the DMA

destination. We directly use the APIs (which

are simpler to use) if we leave out the DMA

in between. Refer to the PSoC3 Register TRM

for a detailed description of these

registers.*/

/* load the write address pointer of the

endpoint into the USBFS_ARB_RW1_WA registers

*/

CY_SET_REG8(&USBFS_1_ARB_RW1_WA_PTR[0],

USBFS_1_EP[1].buffOffset & 0xFFu);

CY_SET_REG8(&USBFS_1_ARB_RW1_WA_MSB_PTR[0],

(USBFS_1_EP[1].buffOffset >> 8u));

/* Request DMA action. */

CyDmaChSetRequest(MyChannel, CPU_REQ);

/* Set the count and data toggle */

CY_SET_REG8(&USBFS_1_SIE_EP1_CNT0_PTR[0],

(0x40 >> 8u) | (USBFS_1_EP[1].epToggle)); /*

count is 64 */

CY_SET_REG8(&USBFS_1_SIE_EP1_CNT1_PTR[0],

0x40 & 0xFFu);

/* load the read address pointer of the

endpoint into the USBFS_ARB_RW1_RA registers

*/

CY_SET_REG8(&USBFS_1_ARB_RW1_RA_PTR[0],

USBFS_1_EP[1].buffOffset & 0xFFu);

CY_SET_REG8(&USBFS_1_ARB_RW1_RA_MSB_PTR[0],

(USBFS_1_EP[1].buffOffset >> 8u));

USBFS_1_EP[1].apiEpState =

USBFS_1_NO_EVENT_PENDING;

/* Write the Mode register */

CY_SET_REG8(&USBFS_1_SIE_EP1_CR0_PTR[0],

USBFS_1_EP[1].epMode);

while(!FINISHED); /* Wait for DMA done

interrupt*/

FINISHED=0;

}

}

}

/* [] END OF FILE */

After modifying the source files, rebuild the project. You are
now ready to program the custom firmware into PSoC 3.
Pressing the 'Program' icon in PSoC Creator, loads the
firmware through the PSoC Programmer utility.

[+] Feedback

http://www.cypress.com/?rID=37833
http://www.cypress.com/?rID=37832
http://www.cypress.com/?rID=35180
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_9

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 10

A message is displayed in the bottom status bar of PSoC
Creator stating that the PSoC 3 device is successfully
programmed.

Configure the CY8CKIT-001

The PSoC 3 development kit has a variable resistor that
connects to the analog port defined earlier. Configure the
development board using the following steps:

 Wire connection from VR to P6[5]

 Set J8 to VBUS

Creating a GUI using Cypress Suite USB 3.4

The Cypress Suite USB 3.4 is a powerful, yet easy to use
set of USB Development tools that enables you to create
.NET managed C# applications to communicate with
PSoC 3 and other Cypress USB products. It includes
CyUSB.dll which is a managed .NET class library. It
provides a number of classes and methods which are used
by you for easy communication with a USB device. A robust
API simplifies communications between the host and
peripheral device.

For this application, a GUI is created to capture the
streamed data from the register. This is shown in Figure 8. A
commented source code for this GUI is available as an
attachment to this application note.

Figure 8 Cypress Suite USB 3.4 GUI for PSoC 3 USB
Control

Figure 9 shows a CATC USB trace of the data transferred
after pressing "Stream from register" in the GUI shown in
Figure 9. This example uses a 2 Hz square wave input to
the ADC.

Figure 9. CATC USB Trace of Data Transferred from
PSoC 3 to the Host Computer

Create INF to bind cyusb.sys to PSoC 3

As the USB device created here of a vendor specific class,
the cyusb.sys driver is used with it which is a generic USB
driver.

To bind this window compatible driver to your device, an INF
file is has to be specified which tells Windows about the
services and the driver required.

 The following code is an example for an INF file that
provides the necessary information to Windows to allow the
device to bind to CYUSB.sys and enable communications:

[Version]

Signature="$CHICAGO$"

Class=USB

ClassGUID= {36FC9E60-C465-11CF-8056-

444553540000}

provider=%CYPRESS%

; ---Uncomment and complete below to support

WHQL submission---;

;CatalogFile=

;DriverVer=mm/dd/yyyy,x.y.v.z

;---

[Manufacturer]

%MfgName%=Cypress

[Cypress]

%VID_04b4&PID_1122.DeviceDesc%=CYUSB,

USB\VID_04b4&PID_1122

; This entry contains the VID/PID in the

; PSoC 3 firmware

; to do

; replace 04b4 (x2) with your unique VID

; replace 1122 (x2) with your unique PID

[DestinationDirs]

CYUSB.Files = 10, System32\Drivers

[CYUSB.Files]

CYUSB.SYS

[CYUSB.NT]

CopyFiles=CYUSB.Files

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_10

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 11

AddReg=CYUSB.AddReg

[CYUSB.NT.HW]

AddReg=CYUSB.AddReg.Guid

[CYUSB.NT.Services]

Addservice = CYUSB, 0x00000002,

CYUSB.AddService

[CYUSB.AddReg]

HKR,,DevLoader,,*ntkern

HKR,,NTMPDriver,,CyUsb.sys

[CYUSB.AddReg.Guid]

HKR,,DriverGUID,,%CYUSB.GUID%

;=======================================

[CYUSB.AddService]

DisplayName = %CYUSB.SvcDesc%

ServiceType = 1 ; SERVICE_KERNEL_DRIVER

StartType = 3 ; SERVICE_DEMAND_START

ErrorControl = 1 ; SERVICE_ERROR_NORMAL

ServiceBinary =

%10%\System32\Drivers\CYUSB.SYS

LoadOrderGroup = Base

[Strings]

PROVIDER="Cypress"

MFGNAME="Cypress Semiconductor"

CYUSB_INSTALL="Cypress Installation Disk"

VID_04b4&PID_1122.DeviceDesc="Cypresss PSoC

3 USB Control example project."

; VID/PID combination programmed in PSoC 3

; firmware

; To do

; replace "Cypress...." string with your own

; meaningful text

; replace the XXXX with your unique VID

; replace the YYYY with your unique PID

CYUSB.SvcDesc="Cypress USB Device"

CYUSB.GUID="{AE18AA60-7F6A-11d4-97DD-

00010229B959}"

; Replace GUID with your own unique GUID

Summary
This application note illustrates the creation of a simple
project that takes advantage of the versatility of PSoC 3
combined with other Cypress utilities. This project
demonstrates a design to control a PSoC 3-based device
from a host computer and to monitor variables during run
time.

About the Authors

Name: Hridya Valsaraju

Title: Applications Engineer

Contact: hridya.v@cypress.com

Name: Brad Haber

Title: Applications Engineer Sr

Contact: brad.haber@cypress.com

[+] Feedback

mailto:hridya.v@cypress.com
mailto:brad.haber@cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_11

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 12

Related Application Notes and
Example Projects:
Application Notes:

1. USB Peripheral Basics - AN57294
2. PSoC

®
 3 / PSoC 5 USB HID Fundamentals -

AN57473
3. PSoC

®
 3 / PSoC 5 USB HID Intermediate -

AN58726
4. USB BULK Loopback with PSoC

®
 3 - AN56718

Example Projects:
1. USBUART in PSoC

®
 3 / PSoC 5

2. Isochronous Transfers in PSoC
®
 3 / PSoC 5

3. Interrupt Loopback with PSoC
®
 3 / PSoC 5

[+] Feedback

http://www.cypress.com/?rID=39327
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=40103
http://www.cypress.com/?rID=40103
http://www.cypress.com/?rID=39156
http://www.cypress.com/?rID=42703
http://www.cypress.com/?rID=45478
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_12

AN56377

November 23, 2010 Document No. 001-56377 Rev. *B 13

Document History

Document Title: USB Vendor Commands with PSoC
®
 3 and PSoC 5

Document Number: 001-56377

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 2811300 BHA/HRID 11/18/2009 New application note

*A 3010626 HRID 08/19/2010 Updated with PSoC 5

*B 3092283 HRID 11/23/2010 The Code Font size has been changed in page 6, 7, 8,9,10 and 11.

PSoC is a registered trademark of Cypress Semiconductor Corporation. PSoC Creator is a trademark of Cypress Semiconductor Corporation.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2009-2010. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress‟ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-56377_pdf_p_13

