
Rev. 1.3 7/13 Copyright © 2013 by Silicon Laboratories AN118
Silicon Laboratories Confidential. Information contained herein is covered under non-disclosure agreement (NDA).

AN118

IMPROVING ADC RESOLUTION BY OVERSAMPLING AND AVERAGING

1. Introduction
Many applications require measurements using an
analog-to-digital converter (ADC). Such
applications will have resolution requirements
based in the signal’s dynamic range, the smallest
change in a parameter that must be measured, and
the signal-to-noise ratio (SNR). For this reason,
many systems employ a higher resolution off-chip
ADC. However, there are techniques that can be
used to achieve higher resolution measurements
and SNR. This application note describes utilizing
oversampling and averaging to increase the
resolution and SNR of analog-to-digital
conversions. Oversampling and averaging can
increase the resolution of a measurement without
resorting to the cost and complexity of using
expensive off-chip ADCs.
This application note discusses how to increase the
resolution of analog-to-digital (ADC) measure-
ments by oversampling and averaging. Addition-
ally, more in-depth analysis of ADC noise, types of
ADC noise optimal for oversampling techniques,
and example code utilizing oversampling and aver-
aging is provided in appendices A, B, and C
respectively at the end of this document.

2. Key Points
 Oversampling and averaging can be used to

increase measurement resolution, eliminating the
need to resort to expensive, off-chip ADCs.

 Oversampling and averaging will improve the SNR
and measurement resolution at the cost of increased
CPU utilization and reduced throughput.

 Oversampling and averaging will improve signal-to-
noise ratio for “white” noise.

2.1. Sources of Data Converter Noise
Noise in ADC conversions can be introduced from
many sources. Examples include: thermal noise,
shot noise, variations in voltage supply, variation in
the reference voltage, phase noise due to sampling
clock jitter, and noise due to quantization error. The
noise caused by quantization error is commonly
referred to as quantization noise. Noise power from
these sources can vary. Many techniques that may
be utilized to reduce noise, such as thoughtful
board layout and bypass capacitance on the refer-
ence voltage signal trace. However, ADCs will
always have quantization noise, thus the best SNR
of a data converter of a given number of bits is
defined by the quantization noise with no oversam-
pling. Under the correct conditions, oversampling
and averaging will reduce noise and improve the

n-bit
ADC

x(t)

Input Signal

Sample
Frequency (fs) e[n] (Noise)

x[n] x[n]+e[n]
OSR

Low-Pass
Filter

Downsample

Oversample and Average

(Software Accumulate and Dump)

(n+w) bit
Output Data

Figure 1. Oversampling and Averaging to Increase Measurement Resolution By “w”
Bits

AN118

2 Rev. 1.3

SNR. This will effectively increase the number of
bits of a measurement’s resolution. Such a system
is shown in Figure 1 on page 1, and can be imple-
mented with Silicon Lab’s on-chip ADC and a soft-
ware routine that takes a set of samples and
averages (filters) them for the result.

Increasing the Resolution of
an ADC Measurement
Many applications measure a large dynamic range
of values, yet require fine resolution to measure
small changes in a parameter. For example, an
ADC may measure a large temperature range, yet
still require the system to respond to changes of
less than one degree. Such a system could require a
measurement resolution of 16 bits. Rather than
resorting to an expensive, off-chip 16-bit ADC,
oversampling and averaging using Silicon Lab’s
on-chip, 12-bit ADC can measure a parameter with
16 bits of resolution.

Some applications will use an ADC to analyze a
signal with higher frequency components. Such a
system will also benefit from oversampling and
averaging. The required sampling frequency in
accordance with the Nyquist Theorem is the
Nyquist Frequency:

Sampling frequencies (fs) above fn is oversam-
pling, and will increase the resolution of a measure-
ment. Please see Appendix A for a discussion of
how this works.

Calculating the Oversampling
Requirements To Increase
Resolution
To increase the effective number of bits (ENOB),
the signal is oversampled, or sampled by the ADC
at a rate that is higher than the system’s required
sampling rate, fs. The required sampling rate may
be determined by how often a system requires a
parameter be measured (output word rate), or it
may be the Nyquist frequency, fn.

For each additional bit of resolution, the signal
must be oversampled by a factor of four:

A derivation of Equation 2 is presented in
Appendix A.

Assume a system is using a 12-bit ADC to output a
temperature value once every second (1 Hz). To
increase the resolution of the measurement to 16-
bits, we calculate the oversampling frequency as
follows:

Thus, if we oversample the temperature sensor at
fs=256 Hz, we will collect enough samples within
the required sampling period to average them and
can now use 16-bits of the output data for a 16-bit
measurement. To do so, we accumulate (add 256
consecutive samples together), then divide the total
by 16 (or right shift the total by 4-bits). Such a pro-
cess is commonly referred to as decimation. This

fn 2 fm=

where fm is the highest frequency compo-
nent of interest in the input signal

Equation 1. Nyquist Frequency

fos 4w fs=

where w is the number of additional bits of
resolution desired, fs is the original sam-
pling frequency requirement, and fos is the
oversampling frequency

Equation 2. Oversampling Frequency To
Add Measurement Resolution

fos 44 1 Hz 256Hz= =

AN118

Rev. 1.3 3

results in 16-bits of useful data. Such an operation
is referred to as accumulate and dump. Once we
calculate the result of 256 samples (in this exam-
ple), we store or process the data and begin collect-
ing data for the next output word.

Note: The memory location used to accumulate the
oversampled data and perform the divide must
have enough bytes to prevent overflow and trunca-
tion error.

An example of such oversampling and averaging is
provided in Appendix C. In this example, Silicon
Lab’s on-chip temperature sensor is sampled using
the on-chip 12-bit ADC to make a 16-bit measure-
ment. For a more formal discussion of how over-
sampling affects noise and increases resolution,
please see Appendix A.

Calculating the Oversampling
Requirements To Increase SNR
The theoretical limit of the SNR of an ADC mea-
surement is based on the quantization noise due to
the quantization error inherent in the analog-to-dig-
ital conversion process when there is no oversam-
pling and averaging. Because quantization error
depends on the number of bits of resolution of the
ADC (see Equation 5), the best case SNR is calcu-
lated as a function of the Effective Number of Bits
of a data conversion as follows:

Note Equation 3 is valid for a full-scale input. That
is, the dynamic range of the input signal must
match the reference voltage of the ADC. If not, the
SNR will be lower than that calculated using
Equation 3.

If the ADC used to measure a parameter is 12-bits
and not oversampled, then the best SNR (calculated
using Equation 3) is 74 dB. If we desire a better
SNR, then we could calculate the ENOB needed
using Equation 3 for a specified SNR. Once we
know the required ENOB, we can then use
Equation 2 to calculate the oversampling require-
ments.

For example, if the required SNR for an application
is 90 dB, then we will need at least 16-bits of reso-
lution. Using and 12-bit ADC and Equation 2, we
know we must oversample by a factor of 256.

When Oversampling and
Averaging Will Work
The effectiveness of oversampling and averaging
depends on the characteristics of the dominant
noise sources. The key requirement is that the noise
can be modeled as white noise. Please see
Appendix B for a discussion on the characteristics
of noise that will benefit from oversampling tech-
niques. Key points to consider are [2] [3]:

• The noise must approximate white noise with
uniform power spectral density over the fre-
quency band of interest.

• The noise amplitude must be sufficient to cause
the input signal to change randomly from sam-
ple to sample by amounts comparable to at least
the distance between two adjacent codes (i.e.,
1 LSB - please see Equation 5 in Appendix A).

• The input signal can be represented as a ran-
dom variable that has equal probability of exist-
ing at any value between two adjacent ADC
codes.

Note: Oversampling and averaging techniques will
not compensate for ADC integral non-linearity
(INL).

Noise that is correlated or cannot be modeled as
white noise (such as noise in systems with feed-
back) will not benefit from oversampling tech-
niques. Additionally, if the quantization noise
power is greater than that of natural white noise

SNR dB 6.02 ENOB 1.76+=

where ENOB is the effective number of bits
of the measurement
Equation 3. SNR Calculation as a Function

of ENOB

AN118

Rev. 1.3 4

(e.g., thermal noise), then oversampling and aver-
aging will not be effective. This is often the case in
lower resolution ADCs. The majority of applica-
tions using 12-bit ADCs can benefit from oversam-
pling and averaging.

Please see Appendix B for a further discussion on
this topic.

Example
An example that utilizes oversampling and averag-
ing is provided in this application note in
Appendix C. This code uses Silicon Lab’s on-chip,
100 ksps, 12-bit ADC to perform a 16-bit measure-
ment of the on-chip temperature sensor, then out-
puts this data via the hardware UART.

Using Equation 2, the oversampling ratio is 256.
The provided code (in “AN018_SW.c”) adds 256
consecutive ADC samples to the variable accumu-
lator. After 256 samples have been added, it shifts
accumulator right 4 bits and places the result in the
variable result. This gives 16-bits of useful data.
After the result is calculated, accumulate is then
“dumped” (cleared) for the next calculation. The
accumulation of the ADC samples are performed in
an ADC end-of-conversion interrupt service rou-
tine (ADC_isr).

For more information concerning configuring and
using the on-chip temperature sensor, please see
application note “AN003 - Using the On-Chip
Temperature Sensor.”

Resolution Improvement
We oversample and average the temperature sensor
to increase the measurement resolution from 12-
bits to 16-bits. Let’s compare the improvement in
the temperature measurement.

The full-scale output of the on-chip temperature
sensor is slightly less than 1 volt. Assuming a refer-
ence voltage (Vref) of 2.4 volts, we can calculate
the code width and temperature resolution (small-

est measurable change in temperature) for both 12-
bit and 16-bit measurements.

12-bit Temperature Resolution

Without oversampling, we will get a 12-bit result
from the temperature measurement. The on-chip
temperature sensor voltage will change 2.8 mV for
each change in degrees Celsius. The voltage reso-
lution for a 2.4 volt Vref and a PGA gain of 2 is
(using Equation 5 in Appendix A):

Thus, the temperature resolution in a 12-bit mea-
surement (the number a degrees C per ADC code)
is:

So for each ADC code, the minimum temperature
change we may measure is 0.104 degrees C or
above one-tenth of a degree. Perhaps we need bet-
ter temperature resolution that will allow us to dis-
play closer to one-hundredth of a degree. We can
achieve this resolution by using the same 12-bit
ADC with oversampling and averaging.

 2.4
212 2
---------------- 293V/C= =

 is the code width as defined in
Equation 5 on page 7. The factor of 2 in the
denominator is to account for a PGA gain
of 2.

res12
293V
code

------------------= C
2.8mV
------------------ 0.1046 C cod=

Tres12 is the temperature resolution for a 12-
bit measurement.

AN118

Rev. 1.3 5

16-Bit Temperature Resolution

Increasing the effective number of bits (ENOB) to
16-bits through oversampling and averaging, a new
resolution is calculated as follows:

Thus, the smallest temperature change we can mea-
sure is:

We can now measure a 0.007 degree C change in
temperature using the same, on-chip, 12-bit ADC
with oversampling and averaging. This now allows
us to measure temperature to an accuracy of better
than one-hundredth of a degree.

Reduced Throughput

Throughput refers to the number of output data
words we obtain per unit time. If an ADC has a
maximum sample rate of 100 ksps, we would
obtain a 100 ksps output word rate without over-
sampling and averaging. However, if we oversam-
ple and average (decimate) to achieve higher
resolution, throughput will be reduced by a factor
of the oversampling ratio, OSR (see Equation 7).
Oversampling by a factor of 256 as we do in the
provided example, our output word rate will be
100 ksps/256 = 390 samples per second (390 Hz).
Thus, there is a trade-off between resolution and
throughput for a given sampling rate. Another
trade-off is the reduced CPU bandwidth during
each sampling period (1/fs) due to the additional

sampling and computations required to achieve the
additional resolution.

Summary
If ADC noise can be approximated as white noise,
oversampling and averaging can be used to
improve the SNR and effective resolution of the
measurement. This can be done for static dc mea-
surements and for input signals with higher fre-
quency components. Equation 2 shows that each
additional required bit of resolution can be
achieved via oversampling by a factor of four, and
each additional bit will add approximately 6 db of
SNR (Equation 3) at the cost of reduced throughput
and increased CPU bandwidth.

 1.2
216
-------- 18.3V/C= =

es16
18.3V
code

-------------------= C
2.8mV
------------------ 0.0065 C co=

Tres16 is the temperature resolution for a 16
bit measurement.

AN118

6 Rev. 1.3

Appendix A - Theory of
Noise and Oversampling
This section discusses how oversampling and aver-
aging affects in-band noise, and how to calculate
the oversampling requirements to obtain a desired
SNR or measurement resolution.

How Oversampling and
Averaging Improves
Performance
Oversampling and averaging is done to accomplish
two things: improve SNR and increase the effective
resolution (i.e., increase the effective number of
bits of the ADC measurement). Both of these are
really the same entities. For example, if we have a
12-bit ADC and want to generate codes with 16-
bits of resolution, then we can use oversampling
and averaging to get the same SNR of a 16-bit
ADC. This will increase the effective number of
bits (ENOB) of the measured data, which is another
measure of SNR. Producing a lower noise floor in
the signal band, the oversampling and averaging
filter allows us to realize 16-bit output words.

How Oversampling Affects In-Band
Noise

A sampling frequency fs will allow signals of inter-
est to be reconstructed at one-half of the sampling
frequency (Nyquist Theorem). Thus, if the sam-
pling rate is 100 kHz, then signals below 50 kHz
can be reconstructed and analyzed reliably. Along
with the input signal, there will be a noise signal
(present in all frequencies as white noise) that will

fold or alias into the measured frequency band of
interest (frequencies less than one-half of fs)

Equation 4 shows that the Energy Spectral Density
(ESD), or noise floor of the sampled noise will
decrease in the signal band as the sampling fre-
quency is increased.[3]

The Relationship Between
Oversampling and Increased
Resolution

Given the fixed noise power due to quantization
noise, we may calculate the amount of oversam-
pling required to increase the effective resolution.
For example, if we want to increase the effective
number of bits of a parameter measured with a 12-
bit ADC to a 16-bit measurement, then we will
want to establish a relationship that allows us to
calculate the oversampling requirement. To do so,
we first define the characteristics of the noise.

Noise Analysis

To understand the effects of oversampling and
averaging on noise, we must first define what the
quantization noise will be.

The distance between adjacent ADC codes deter-
mines the quantization error. Because the ADC will

E f erms
2
fs

 1 2/
=

Equation 4. Energy Spectral Density of In-
Band Noise

where erms is the average noise power, fs
is the sampling frequency, and E(f) is the
in-band ESD.

AN118

Rev. 1.3 7

round to the nearest quantization level, or ADC
code:

The quantization error (eq) is:

Assuming the noise approximates white noise, the
random variable representing the noise is equally
distributed with zero mean between ADC codes.
Thus, the variance is the average noise power cal-
culated [3] :

A measure of the sampling frequency compared to
the Nyquist frequency (see Equation 1) is the over-
sampling ratio (OSR). This is defined as follows:

If the noise is white, then the in-band noise power
at the output of the low-pass filter is (see
Figure 1 on page 1):

Equation 8 shows we can lower the in-band noise
power by increasing the OSR. Oversampling and
averaging does not affect the signal power [1].
Thus, we increase the SNR because oversampling
lowers noise power and does not affect signal
power.

From Equations 5, 6, and 8, we can derive the fol-
lowing expression relating the noise power to the
oversampling ratio and resolution:

Conversely, given a fixed noise power, we can cal-
culate the required number of bits. Solving
Equation 9 for N, we obtain Equation 10 that shows
how to calculate the number of effective bits given
the reference voltage, in-band noise power, and
oversampling ratio. [1].

 Vref
2N

------------=

where N is the number of bits in the ADC
code and Vref is the reference voltage.

Equation 5. Distance Between ADC codes,
or the LSB

eq

2

erms
2 eq

2

 ed

– 2

 2

2

12
------= =

Equation 6. Noise Power Due to
Quantization in the ADC

OSR fs
2 fm
--------------=

Equation 7. Oversampling Ratio

where fs is the sampling frequency and fm
is the highest frequency component of the
input signal.

0
2 erms f()2 fd

0

fm

= erms
2 2 fm

fs

 erms

2

OSR
------------= =

Equation 8. In-Band Noise Power as a
Function of the OSR

where n0 is the noise power output from the
filter.

n0
2 1

12 OSR
----------------------------- Vref

2N

 2

=

Equation 9. Noise Power As a Function [1]
of OSR and Resolution

where OSR is the oversampling ratio, N
is the number of ADC bits, and Vref is the
reference voltage.

AN118

8 Rev. 1.3

From Equation 10, we observe:

Each doubling of the sampling frequency will lower
the in-band noise by 3 dB, and increase the resolu-
tion of the measurement by 1/2 bit. [3]

In a practical sense, we measure a signal band-lim-
ited to less than 1/2*fs, then oversample that signal
with an oversampling ratio (OSR). The resulting
samples are then averaged (or decimated) for the
resulting output data. For each additional bit of res-
olution or 6dB of noise reduction, we oversample
by a factor of four:

Equation 11 is Equation 2 presented at the begin-
ning of this application note. If we are using the 12-
bit on-chip ADC and wish to have the accuracy of a
16-bit ADC, we need an additional 4 bits of resolu-
tion. Four factors of four (using Equation 11) is
256. Thus, we need to oversample by a factor of
256 times the Nyquist rate. If the desired signal is
band-limited to 60 Hz (fm=60 Hz), then we must
oversample at 120 Hz * 256 = 30.7 kHz. We
improve the effective resolution by improving the
SNR in our frequency band of interest.

Increasing the sampling rate, or OSR, lowers the
noise floor in the signal band of interest (all fre-
quencies less than 1/2 of fs). The frequency profiles
of the quantization noise and input signal are
shown in Figure 2. Note when oversampling
occurs, less of the noise profile overlaps the input
signal profile. Thus, a low-pass filter may be more
selective without affecting the input signal, and fil-
ter more of the in-band noise. The noise power at
the output of the filter is calculated using
Equation 8. This is the noise level lowered due to
the oversampling and averaging filter. This is
depicted in Figure 3.

Equation 10. Number of Effective Bits As a Function of Reference Voltage, In-Band Noise Power,
and Oversampling Ratio

N 1
2
--- OSR 2

1
2
--- 12 2log– 1

2
--- n0

2 2 Vref 2log+log–log–=

fos 4w fs=

where w is the number of additional bits of
resolution desired, fs is the original sam-
pling frequency requirement, and fos is the
oversampling frequency
Equation 11. Oversampling Frequency To

Add Measurement Resolution

AN118

Rev. 1.3 9

f

Noise Power()

Input Signal
Frequency Profile
When Sampled at

Nyquist Frequency (fn)

fnfnOSR

fn

fnOSR

Input Signal
Frequency Profile

Oversampled (With
Oversampling Ratio

OSR)

-fn/OSR-fn
Figure 2. Frequency Profiles of Input Signals Sampled at Nyquist Frequency,

Oversampled Frequency, and the Quantization Noise Floor

f

Noise Power()

fnfnOSR

fnOSR

Input Signal
Frequency Profile

Oversampled (With
Oversampling Ratio

OSR)

-fn/OSR-fn

Frequency Profile of
an Ideal Low-Pass

Filter

Noise Outside Low-
Pass filter is Removed

From Signal

Figure 3. Frequency Profile Of Oversampled Signal and an Ideal Low-Pass Filter
Removing Noise

AN118

10 Rev. 1.3

The noise that is filtered between fm, and fm/OSR.
Without oversampling, the filter would not have
removed this noise. The output is also downsam-
pled (decimated) by a factor of the OSR (see
Figure 1) to the original Nyquist frequency, fn. This
will give the input signal its frequency profile as if
sampled at the Nyquist frequency, and the noise
profile a lower value (if filtered) of erms/OSR (see
Figure 4).

Calculating Signal To Noise
Ratio
Signal-to-noise ratio is defined as the ratio of the
rms signal power to the rms noise power in deci-
bels (dB). No matter how carefully we work to
remove sources of ADC noise, quantization noise
will always be present. Thus, ideal SNR is calcu-
lated based on quantization noise with no oversam-
pling and averaging. Equation 5 shows that the
higher the resolution of the ADC, the lower the
quantization error and therefore, the lower the
quantization noise. The more bits in the ADC, the
better the SNR can be. As shown in the previous
sections, oversampling and averaging lowers the
in-band noise, improving the SNR and increasing

the effective number of bits (ENOB). ENOB is
another measure of SNR, and both can be calcu-
lated to determine specifications and oversampling
requirements needed to meet these specifications.

In order to get the best case SNR, the dynamic
range of the input signal must match the reference
voltage (Vref). If we assume the best case input sig-
nal to be a full-scale sine wave, then it’s rms value
as a function of Vref will be:

From the noise power calculation in Equation 9, we
determine the rms noise power as a function of the
number of bits, N (not oversampled) to be:

f

Noise Power Before
Oversample and Filter

(e)

Unaffected Input
Signal Frequency
Profile Of Signal

Downsampled At the
Filter Output

fn

fn

-fn

New Noise Floor After Filter
and Downsample, Reduced

by a factor of 1/OSR (e/OSR)

Figure 4. Oversampled Signal After Filter and Downsampled to the Nyquist
Frequency Showing Lowered Noise Floor

Vrms
Vref

2 2
-----------=

Equation 12. Input Signal RMS Value as a
Full-Scale Sine Wave

n0
Vref

2N 12
------------------=

Equation 13. RMS Noise Power Value

AN118

Rev. 1.3 11

The SNR in dB is then calculated as follows:

When oversampling, we may substitute the effec-
tive number of bits (ENOB) for N in Figure 14.
Simplifying Equation 14 and substituting the term
ENOB for N we obtain the well known result in
decibels:

Averaging To Increase the
Effective Resolution of a dc
Measurement
Thus far, we have considered measuring signals
within some frequency band of interest, fm. How-
ever, our goal may be to measure a relatively static
dc signal (such as a temperature or strain gauge
output). If we wish to measure a signal that is rela-
tively static, that is, the dominant frequency is near
dc, we can still improve the effective resolution by
oversampling and averaging [2].

Applications Measuring a Static
Voltage

If a weigh scale must measure a wide range of
weights, yet still be able to discern small changes in
weight, then oversampling and averaging can
increase the effective resolution of the measure-

ment. As another example, if the ADC must mea-
sure the output of a temperature sensor, the
temperature range may be large, yet the system
application may have to respond to small changes.

Oversampling and Averaging as an
Interpolative Filter

Averaging data from an ADC measurement is
equivalent to a low-pass digital filter with subse-
quent downsampling (see Figure 1 on page 1). Dig-
ital signal processing that oversamples and low-
pass filters a parameter is often referred to as inter-
polation. In this sense, we use oversampling to
interpolate numbers between the 12-bit ADC
codes. The higher the number of samples averaged,
the more selective the low-pass filter will be, and
the better the interpolation.

NR 20
Vrms
n0

 log 20 2N 12

2 2

log= =

Equation 14. SNR as a Function of the Number
of Bits, N

SNR dB 6.02 ENOB 1.76+=

where ENOB is the effective number of bits
of the measurement
Equation 15. SNR Calculation as a Function

of ENOB

AN118

12 Rev. 1.3

Appendix B - When
Oversampling and
Averaging Will Work
This section discusses guidelines to determine if
oversampling and averaging will be effective for a
given application.

The analog-to-digital data conversion process
introduces noise. Oversampling and averaging can
reduce certain types of noise, thereby increasing
the SNR and effective resolution of the data con-
version. Not all applications will benefit from over-
sampling and averaging. To understand which
ADC measurements will benefit from oversam-
pling, we must understand the type and characteris-
tics of the noise present in a given system.

Noise Requirements For
Effective Oversampling
Oversampling and averaging can improve the SNR
and increase the effective resolution of the analog-
to-digital data measurement. However, this will
work only if the ADC noise can be approximated
as white noise [2] [3]. If the input signal changes
randomly from sample to sample, by amounts
(amplitude) comparable to the code size (1 LSB),
and the input signal has equal probability of being
anywhere between two adjacent codes, then the
noise can be modeled as approximating white
noise. White noise is characterized as having a uni-
form power spectral density over the frequency
band of interest. When the noise can be approxi-
mated as white noise, then oversampling and aver-
aging can improve the SNR and increase the
effective resolution of the data.

If the overall noise is not stationary, (e.g., systems
that have some correlation due to feedback), then
oversampling and averaging may not be effective.
Additionally, if the quantization noise is compara-
ble to sources of white noise (i.e., thermal and shot
noise is small compared to the quantization noise),
then oversampling and averaging may not be effec-

tive. This situation is typical when using lower res-
olution ADCs (e.g., 8-bit ADCs). In this case, the
thermal noise does not have sufficient amplitude to
cause the input signal to change randomly with
equal probability between codes, because the code
width Equation 5, is too large. Some applica-
tions will inject noise into the signal or process
intentionally to overcome this effect. This is
referred to as dithering.

Histogram Analysis
Most applications that measure a signal using a 12-
bit ADC will benefit from oversampling and aver-
aging techniques. A practical means of determining
if the noise characteristics are appropriate is to ana-
lyze the ADC output data using a histogram (see
Figure 5 below).[2] This histogram shows how
many samples in a set from an ADC resulted in
each ADC code. If the input signal is a constant dc
voltage value, the histogram will approximate a
gaussian probability distribution function (PDF) if
the noise is white, as shown in Figure 5.[2] Due to
the input voltage, the “bin” for code 1024 received
the greatest number of samples, while surrounding
codes received some samples due noise. Because
the histogram approximates a Gaussian PDF
(shown as a blue dotted line in Figure 5), the noise
approximates white noise, and this system can ben-
efit from oversampling and averaging techniques.

AN118

Rev. 1.3 13

A system with insufficient noise (besides the quan-
tization noise) will result in a histogram with all
samples going to only one bin, or code. Oversam-
pling and averaging may not be helpful in such a
system.

If the noise is correlated or the ADC’s transfer
function is non-linear (e.g., power supply noise,
poor INL, etc.), the histogram may not approximate
a Gaussian PDF, such as the one in Figure 6). In
this case, oversampling and averaging may not
helpful.

In summary, if the combined sources of noise in the
resultant ADC codes approximates white noise, a
histogram of the samples will approximate a
Gaussian PDF, and oversampling and averaging
will improve the SNR and increase the effective
number of bits of the signal measurement.

N
um

be
r o

f S
am

pl
es

12-bit ADC Codes

"Bin" that has highest
number of samples

and is closest to input
signal

Other "bins" receive
samples due to noise

......

Histogram has a
shape that

approximates a
Gaussian PDF (shown
as dashed line) due to
white noise mixed with
dc input signal voltage

0 4095102410231022102110201019 1025 1026 1027 1028 1029

Figure 5. Histogram of ADC samples: dc Input With White Noise

AN118

14 Rev. 1.3

N
um

be
r o

f S
am

pl
es

12-bit ADC Codes

"Bin" that should
receive the highest
number of samples

and is closest to input
signal

......

Histogram does not
have a shape that

approximates a
Gaussian PDF (shown
as dashed line) due to

possible correlation
and poor INL

0 4095102410231022102110201019 1025 1026 1027 1028 1029

Figure 6. Histogram of ADC Samples Not Optimal For Oversampling and
Averaging Techniques

AN118

Rev. 1.3 15

Appendix C - Example Code
//---
// AN018_SW.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// AUTH: BW
//
// This program outputs the C8051Fxxx die temperature out the hardware
// UART at 115.2kbps. Assumes an 18.432MHz crystal is attached between
// XTAL1 and XTAL2.
//
// The ADC is configured to look at the on-chip temp sensor. The sampling
// rate of the ADC is determined by the constant <SAMPLE_RATE>, which is given
// in Hz. The maximum value of <SAMPLE_RATE> is limited to ~86kHz due to
// the choice of 18.432MHz crystal (SAR clock = SYSCLK / 16 = 1.152MHz. One
// conversion takes 16 SAR clocks --> 72kHz sampling rate).
//
// The ADC End of Conversion Interrupt Handler retrieves the sample
// from the ADC and adds it to a running accumulator. Every 256
// samples, the ADC updates and stores its result in the global variable
// <result>. The sampling technique of adding a set of values and
// decimating them (posting results every 256th sample) is called accumulate
// and dump. It is easy to implement and requires very few resources.
//
// For each power of 4, you gain 1 bit of effective resolution.
// For a factor of 256, gain you 4 bits of resolution: 4^4 = 256.
// Also, to properly scale the result back to 16-bits, perform a right
// shift of 4 bits.
//
// Target: C8051F00x or C8051F01x
// Tool chain: KEIL C51 6.03 / KEIL C51 EVAL version
//

//---
// Includes
//---

#include <stdio.h>

#include <c8051f000.h> // SFR declarations

//---
// 16-bit SFR Definitions for F00x, F01x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 DAC0 = 0xd2; // DAC0 data

AN118

16 Rev. 1.3

sfr16 DAC1 = 0xd5; // DAC1 data

//---
// Global CONSTANTS
//---

#define SYSCLK 18432000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
#define SAMPLE_RATE 100000 // Sample frequency in Hz

#define LED P1.6 // LED=1 means ON

//---
// Function PROTOTYPES
//---

void SYSCLK_Init (void);
void PORT_Init (void);
void UART_Init (void);
void ADC_Init (void);
void TIMER3_Init (int counts);
void ADC_ISR (void);

//---
// Global VARIABLES
//---

long result; // Output result from oversmapling and
 // averaging 256 samples from the ADC for
 // 16-bit measurement resolution

//---
// MAIN Routine
//---

void main (void) {
 long temp_copy;
 int temp_int; // integer portion of temperature
 int temp_frac; // fractional portion of temperature (in
 // hundredths of a degree)

 WDTCN = 0xde; // disable watchdog timer
 WDTCN = 0xad;

 SYSCLK_Init (); // initialize oscillator
 PORT_Init (); // initialize crossbar and GPIO
 UART_Init (); // initialize UART
 TIMER3_Init (SYSCLK/SAMPLE_RATE); // initialize Timer3 to overflow at
 // sample rate
 ADC_Init (); // init ADC

ADCEN = 1; // enable ADC

 result = 0L; // initialize temperature variable

 EA = 1; // Enable global interrupts

while (1) {

AN118

Rev. 1.3 17

 temp_copy = result; // Get most recent sample to convert
 // the ADC code to a temperature
 temp_copy -= 0xa381; // correct offset to 0deg, 0V
 temp_copy *= 0x01a9; // 2.86mV/degree C
 temp_copy *= 100; // convert result to 100ths of a degree C
 temp_copy = temp_copy >> 16; // divide by 2^16
 temp_int = temp_copy / 100; // Seperate integer and fractional components
 temp_frac = temp_copy - (100 * temp_int);

printf (“Temperature is %d.%d\n”, (int) temp_int, (int) temp_frac);
}

}

//---
// Initialization Subroutines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use an 18.432MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{
 int i; // delay counter

 OSCXCN = 0x67; // start external oscillator with
 // 18.432MHz crystal

 for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)

 while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

 OSCICN = 0x88; // select external oscillator as SYSCLK
 // source and enable missing clock
 // detector
}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{
 XBR0 = 0x07; // Enable I2C, SPI, and UART
 XBR1 = 0x00;
 XBR2 = 0x40; // Enable crossbar and weak pull-ups
 PRT0CF |= 0xff; // enable all outputs on P0 as push-pull
 // push-pull; let xbar configure pins
 // as inputs as necessary
 PRT1CF |= 0x40; // enable P1.6 (LED) as push-pull output
}

//---
// PORT_Init
//---

AN118

18 Rev. 1.3

//
// Configure the UART using Timer1, for <baudrate> and 8-N-1.
//
void UART_Init (void)
{
 SCON = 0x50; // SCON: mode 1, 8-bit UART, enable RX
 TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
 TH1 = -(SYSCLK/BAUDRATE/16); // set Timer1 reload value for baudrate
 TR1 = 1; // start Timer1
 CKCON |= 0x10; // Timer1 uses sysclk as time base
 PCON |= 0x80; // SMOD = 1
 TI = 1; // Indicate TX ready
}

//---
// ADC_Init
//---
//
// Configure A/D converter to use Timer3 overflows as conversion source, to
// generate an interrupt on conversion complete, and to use right-justified
// output mode. Enables ADC end of conversion interrupt. Leaves ADC disabled.
//
void ADC_Init (void)
{
 ADC0CN = 0x04; // ADC disabled; normal tracking
 // mode; ADC conversions are initiated
 // on overflow of Timer3; ADC data is
 // right-justified
 REF0CN = 0x07; // enable temp sensor, on-chip VREF,
 // and VREF output buffer
 AMX0SL = 0x0f; // Select TEMP sens as ADC mux output
 ADC0CF = 0x61; // ADC conversion clock = sysclk/8

 EIE2 |= 0x02; // enable ADC interrupts
}

//---
// TIMER3_Init
//---
//
// Configure Timer3 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.
//
void TIMER3_Init (int counts)
{
 TMR3CN = 0x02; // Stop Timer3; Clear TF3;
 // use SYSCLK as timebase
 TMR3RL = -counts; // Init reload values
 TMR3 = 0xffff; // set to reload immediately
 EIE2 &= ~0x01; // disable Timer3 interrupts
 TMR3CN |= 0x04; // start Timer3
}

//---
// Interrupt Service Routines
//---

//---
// ADC_ISR

AN118

Rev. 1.3 19

//---
//
// ADC end-of-conversion ISR
// Here we take the ADC sample, add it to a running total <accumulator>, and
// decrement our local decimation counter <int_dec>. When <int_dec> reaches
// zero, we calculate the new value of the global variable <result>,
// which stores the accumulated ADC result.
//
void ADC_isr (void) interrupt 15
{
 static unsigned int_dec=256; // integrate/decimate counter
 // we post a new result when
 // int_dec = 0
 static long accumulator=0L; // heres where we integrate the
 // ADC samples

 ADCINT = 0; // clear ADC conversion complete
 // indicator

accumulator += ADC0; // read ADC value and add to running
 // total
 int_dec--; // update decimation counter

 if (int_dec == 0) { // if zero, then decimate
 int_dec = 256; // reset counter
 result = accumulator >> 4; // Shift to perform the divide operation
 accumulator = 0L; // dump accumulator
 }
}

AN118

20 Rev. 1.3

References
[1] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing, New Jersey: Prentice Hall, 1999 ed.

[2] J. Lis, Noise Histogram Analysis, Cirrus Logic Application Note AN37

[3] J.C. Candy and G.C. Temes, Oversampling Methods for A/D and D/A Conversion, IEEE Transactions
on Circuits and Systems, June 1987 (Beginning discussion on the effects of oversampling on in-band
noise).

AN118

Rev. 1.3 21

NOTES:

AN118

22 Rev. 1.3

CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.

Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analog-
intensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.

Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warran-
ty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intend-
ed to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.

https://www.silabs.com/support/pages/contacttechnicalsupport.aspx

	1. Introduction
	2. Key Points
	2.1. Sources of Data Converter Noise

	Increasing the Resolution of an ADC Measurement
	Calculating the Oversampling Requirements To Increase Resolution
	Calculating the Oversampling Requirements To Increase SNR
	When Oversampling and Averaging Will Work

	Example
	Resolution Improvement
	12-bit Temperature Resolution
	16-Bit Temperature Resolution
	Reduced Throughput

	Summary

	Appendix A - Theory of Noise and Oversampling
	How Oversampling and Averaging Improves Performance
	How Oversampling Affects In-Band Noise
	The Relationship Between Oversampling and Increased Resolution
	Noise Analysis

	Calculating Signal To Noise Ratio
	Averaging To Increase the Effective Resolution of a dc Measurement
	Applications Measuring a Static Voltage
	Oversampling and Averaging as an Interpolative Filter

	Appendix B - When Oversampling and Averaging Will Work
	Noise Requirements For Effective Oversampling
	Histogram Analysis

	Appendix C - Example Code
	References

