Q. What is the procedure to add APIs to a component?
A. Following is the process for adding APIs to a component.

1. Right click on the component name in the Workspace explorer and select Add
Component Item.

& workspace 'USBUART_Library-000' [1 Projects]
£} | Project 'USBUART_Libran:
=1y USBUART Add Component Item...
=D &P j Import Component. ..
1 ECCinf Update Components
] FIFD.c

ﬂ FIFO.h Build USEUART _Library
€] USBUART — Clean USEUART Library

5] USBUART i) Clean and Build USBUART Library
c] USBUART

] UsBUART =S| Ceey cuic
] USBUART %

€] USBUART] Exclude

€] USBUART,
€] USBUART]
€] USBUART UnloadfReload Project
] USBUART Dependencies...

€] USBUART Build Crder...

] USBUART|
5153 Custom Archive Workspace/Project.. .

] USBUART Build Settings. ..
cﬂ USBUART Properties...
#] USBUART -
] USBUARTCantral.resy
#] USBUART Customizer cs
#] USBUARTParameters.cs

|2] USBUART .cysch

squauodwo]

s)nsay

Rename Fz

The Add Component Item dialog displays.

Add Component Item

Templates: [|E|
-

= Verilag File

APl

@ 8051 Keil Azsembly File
h] APl Header File ”:_"' GNU ARM dzzembly File
Q Realiew ARM assembly file

|

|Creates an empty AP C File. |

Generic Device Item name: untitled0l.c -+
Component name: component

Target

| | l Create Mew Vl l Cancel l

2. Select the icon for the component item you wish to add.
3. Select the Target option.

Note: You can specify whether the component item is for a generic device or a specific
family and/or device.

4. Type in the Iltem name.
5. Click Create New.

The component item displays in the Workspace Explorer. Depending on the target options
you specified, the component item may be located in a subdirectory.

6. Repeat the process to add more API files.

Is it necessary that a component should always have APIs to support its functionality?

Though it is not necessary, it is highly recommended to create APIs for the component. It has to
be written with respect to Instance name. Following are the recommended APIs for any
component:

"SINSTANCE_NAME"_Start()

*SINSTANCE_NAME"_Stop()

'SINSTANCE_NAME"_Sleep()

*SINSTANCE_NAME'_Wakeup()

*SINSTANCE_NAME"_SaveConfig ()

'SINSTANCE_NAME"_RestoreConfig()

"SINSTANCE_NAME"_Init()

*SINSTANCE_NAME"_Enable()

‘SINSTANCE_NAME"_SetPower() (If any Analog Block is being used in the
component)

© O NOUAEWNR

How different source files and components placed in the schematic are linked together?

The source files control the behavior of the components by calling APIs that regulate their
functioning. These APIs can enable or disable the components and cause differences in device
behavior. Here is a code snippet from a project source file which invokes a number of
component APls.

/* Initialization Code: */
CYGlobalIntEnable;

USBUART 1 Start (0, USBUART 1 5V _OPERATION);

while (!USBUART 1 bGetConfiguration());

USBUART 1 Initl();

/* Main Loop: */
for (;;)

Count = USBUART 1 bGetRxCount();
if (Count != 0)
Check for input data from PC */
{
USBUART 1 ReadAll (Buffer);
USBUART 1 Write(Buffer, Count);
data back to PC */
while (!USBUART 1 bTxIsReady()) {}
Tx to finish */
}
}

How to write Low Power APIs for any Custom component?

/*

/* Echo

/* Wait for

The low power APIs for a component are meant to keep the component configuration intact

while the PSoC 3/5 device goes to sleep mode. Also, sleep APIs should enable the user to keep

the component in sleep mode Following are the low power APIs for a component:

1. "$INSTANCE NAME _SaveConfig(): Save the component configuration to
retain the state across the low power state of PSoC 3/5 device. In particular, a backup
should be taken for those registers which do not retain the state across low power

modes.

2. "SINSTANCE NAME ' RestoreConfig(): Restore the component configurations

that was saved by the _SaveConfig API.

3. "SINSTANCE NAME ' Sleep(): Put the component in sleep and save the

configuration

4. "SINSTANCE NAME' WakeUp (): Restore the saved configuration and enable the

component.

You can refer to the Section 11.4 — Low Power Support of Component Author Guide which has a

detailed explanation of how these APls should be implemented.

How to access the APIs of the components which are used in designing the custom component?

To access the APIs of components which are used in designing the custom components;

following pattern should be observed:

"$INSTANCE_NAME'_<COMPONENT_NAME>_<API>();

where; <COMPONENT_NAME> is the name of component used in custom component

<API[> is the name of API.

For example, if a timer is used with instance name ‘Timer_1’ to design a customer component,
following call will start the timer:

“SINSTANCE_NAME"_Timer_1_Start();

