
www.cypress.com Document No. 001-38007 Rev. *H 1

AN2099

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP - Single-Pole Infinite Impulse
Response (IIR) Filters

Author: David Van Ess, Praveen Sekar
Associated Project: Yes

Associated Part Family: All PSoC
®

1, PSoC 3 and PSoC 5LP parts
Software Version: PSoC Creator™, PSoC Designer™

Related Application Notes: None

AN2099 describes a topology for a single-pole infinite impulse response (IIR) filter. It includes equations and software to
implement this topology; the associated example projects give the user access to filter routines in either assembly or C.

Introduction

In the real world analog signals are noisy; one example
might be the output voltage of a thermistor. It is often
undesirable to display or use this noisy data. The best way
to remove or “clean up” the noise is to apply a filter to the
signal. Ideally, the filter removes the noise and keeps the
signal of interest. Filters exist in the analog domain that
can be used to reduce noise. However, this results in extra
cost and power consumption of an analog filter. That is
where digital filters come in. IIR filters can be used to
approximate many common analog filters.

This application note derives the transfer function of a first
order IIR Low Pass and High Pass Filter. Based on these
transfer functions, the C and ASM code for a Low Pass
Filter are derived. Three example projects are provided
with this application note to provide hands-on examples of
how the filters work.

Infinite Impulse Response (IIR) Filters

An IIR filter is a recursive filter; that is, the output is used
to calculate future values. Theoretically, an impulse
injected into the input continues to flow through the signal
loop. It takes infinite time for the effect of the impulse to
die down completely.

The single-pole passive RC filter shown in Figure 1 has
the characteristics of an IIR filter. If you give an impulse
input, it takes an infinite time for the capacitor voltage to
go completely to zero.

We will build the topology of the single-pole IIR digital filter
from the single-pole passive RC filter shown in Figure 1.

Figure 1. Single-Pole Passive RC Filters

V(t)in V(t)lp

(a)

V(t)hp

In Figure 1, the low-pass filter output is available across
the capacitor and the high-pass filter output is available
across the resistor.

The output voltage, Vlp, at any instant is a function of the
current flowing into the capacitor which is a function of
Vin-Vlp. This represents a negative feedback.

To construct a negative feedback equivalent to the analog
RC filter in Figure 1, consider the following statements:

 At any instant, Vin-Vlp is divided by R to give a current,
which is then integrated to give Vlp.

 Vin-Vlp represents the high-pass filtered output.

Figure 2 shows the negative feedback topology equivalent
to that in Figure 1.

Figure 2. Negative Feedback Topology for Single-Pole RC
Filter

1
R

V(t)in

V(t)
lp

V(t)hp

1
sC

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 2

Equations 1 and 2 define its operation:

lpinhp VVV  Equation 1

sCR

V
V hp

lp 
Equation 2

Combining Equations 1 and 2 produces the transfer
functions in Equations 3 and 4:

sCR

sCR

V

V

in

hp




1
Equation 3

sCRV

V

in

lp




1

1 Equation 4

These are the standard transfer functions for high-pass
and low-pass filters. The roll-off frequency f0 is shown in
Equation 5:

CR
f

2

1
0 

Equation 5

The topology for a sampled system is constructed from the
topology in Figure 2 and is shown in Figure 3.

Figure 3 shows that the integrator is replaced with an
accumulator (summer), and the term CR is replaced by a
scaling factor. The z

-1
box represents a register that stores

the previous value of V(n)lp.

Figure 3. IIR Topology for Sampled Single-Pole RC Filters

Equations 6 and 7 define its operation:

1 zVVV lpinhp
Equation 6

1 zV
a

V
V lp

hp

lp
Equation 7

where z
-1

represents a unit sample delay. Replacing z
-1

with a unit sample delay gives the difference (see
Equations 8 and 9).

)1()( nVVnV lpinhp
Equation 8

)1(
)(

)( nV
a

nV
nV lp

hp

lp
Equation 9

Combining Equations 6 and 7, we get the transfer
functions in Equations 10 and 11.

)1(

)1(
1

1

aza

za

V

V

in

hp










Equation 10

)1(

1
1 azaV

V

in

lp





Equation 11

It can be shown that the roll-off frequency f0 for the digital
filter represented by Equations 6 and 7 can be
approximated by Equation 12. (See Appendix A)

a

f
f s

2
0 

Equation 12

Equation 12 is the same as Equation 5 with RC = a. The
roll-off frequency is dependent on the sample frequency fs,
but more importantly the attenuation value (a). Changing
the attenuation value easily changes the filter’s roll-off
frequency. If you increase the attenuation factor, you can
lower the filter cut-off frequency. However, this results in
an increased filter settling time.

Figure 4. Filter Cut-off Versus Attenuation Factor

Filter Settling Time

Settling time in a low-pass filter is the time taken by the
output to reach a certain percentage of a step input.

For the analog RC low-pass filter shown in Figure 1, the
output for a step input will be an exponential rise defined
by Equation 11.

)1(RC
t

inout eVV


 Equation 13

For Vin = 1 V, R = 1 k, and C = 10 uF, the filter settling
(Vout Vs time) for a unit step input is shown by the blue line
in Figure 5.

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 3

Figure 5. Analog LPF Unit Step Response

To find the time taken by the filter to reach 99.9% of the
input, we substitute, Vout = 0.999; Vin = 1; R = 1 k;
C = 10 uF in Equation 13.

0.999 = (1 – e
-100t

) or

t = 0.7 s

0.7 seconds are necessary to reach 99.9% of the step
input. This time depends on the choice of R and C.

Similar to the analog low-pass filter output, the digital
low-pass filter output also takes a finite time to reach
within a certain percentage of its input. In this case, the
settling time is determined by the attenuation factor, a.

It can be shown (see Appendix B) that for a unit step input,
the amplitude of the nth sample output, s[n], is given by
Equation 14.

 
n

a
ns 










1
11

Equation 14

Equation 14 is the digital equivalent of Equation 13 with
Vin = 1. Figure 6 plots s[n] (the unit step response) Vs n
(the number of samples) for an attenuation factor of 8. The
red line shows the input and the blue line shows the filter
output.

Figure 6. Digital LPF Unit Step Response

To calculate the number (n) of samples required for the
output to reach 99.9% of the input, you must substitute
s[n] = 0.999 in Equation 14 and compute n.

n











8

1
11999.0 or

52~n

It takes 52 samples for the filter to reach 99.9% of the
input voltage. If you filter an ADC output using this LPF
(a = 8) and if the ADC sample rate is 52 sps, it takes
approximately a second for the filter to reach 99.9% of the
ADC input voltage.

The filter settling time is also specified in terms of number
of bits.

The settling time for the filter output to reach n-bit
accuracy is the time taken by the filter to settle to within

(
n2

1
1) * input voltage.

Table 1 shows the settling time for 10, 12, and 16-bit
accuracies.

For 10-bit accuracy, the output should reach within 0.1%
of the input value; For 12-bit accuracy, the output should
reach within 0.025% of the input value, and for 16-bit
accuracy, the output should reach within 0.0015% of the
input value. For a 1-V input, the filter achieves 10-bit
accuracy at 999.03 mV, 12-bit accuracy at 999.75 mV,
and 16-bit accuracy at 999.985 mV.

Table 1. Filter Settling Times

Attenuation
Factor, a

10-bit
Accuracy

12-bit
Accuracy

16-bit
Accuracy

1 0 0 0

2 10 12 16

4 25 29 39

8 52 63 84

16 108 129 173

32 219 262 350

64 441 527 706

128 885 1058 1417

256 1765 2120 2838

How to Implement an IIR LPF

To implement the low-pass and high-pass filters shown in
Figure 3, we can directly use Equations 8 and 9. The
steps are as follows:

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 4

1. Using your sample frequency (fs) and the roll-off
frequency that you want to use (f0), find the necessary
divisor (a) using Equation 12.

2. Subtract the old Vlp from Vin. This is the new Vhp.

3. Divide Vhp by a.

4. Add the value generated in step 3 to the old Vlp. This
is the new Vlp. Note that only Vlp needs to be saved
for the calculation of the next values.

Step 3 requires you to perform a division (involves floating
point arithmetic) by the attenuation factor (a), which can
take any real value greater than unity. If you choose the
attenuation factor carefully, you can perform the division
with just shifts and add. Let us limit the attenuation factor
to this set of values:










1

256
,.....,

253

256
,

254

256
,

255

256
a Equation 15

For example, if the attenuation factor is 256/99, Equation 9
becomes:

256

99
*))1()(()1()( nVnVnVnV lpinlplp

Equation 16

256

1

128

1

8

1

4

1

256

1

256

2

256

32

256

64

256

99


This can be easily done by a combination of shifts and
adds, as shown by the C code snippet (Code 1). The
variable ‘filt’ denotes the low-pass filter output and the
variable ‘input’ denotes the low-pass filter input.

Code 1

filt = filt + ((input-filt) >> 2) + ((input-
filt) >> 3) + ((input-filt) >> 7) + ((input-
filt) >> 8);

Similarly, any attenuation factor in the set can be
implemented with just shifts and additions.

The negative side of limiting the attenuation factor in this
way is that you may not have enough choices when the
attenuation factor gets higher. For example, if you want an
attenuation factor of 145, you must use 128 or 256. But if
you want an attenuation factor of 6.5, you can choose a
value very close to it, 6.5 which is 256/39. But, this should
not be a serious problem because higher attenuation
factors are generally not desired due to their higher
settling times.

For most practical purposes, you might require an
attenuation factor in the range of 4 to 64 and can easily
match it to one of the available values.

Binary Weighted IIR Filters

If the value of the attenuation factor, a, is a power of 2, it is
much easier to implement the filter. All that is required is
one shift and one addition. If the attenuation factor is 2^i,
the filtering can be done very easily using the following
line of code.

filt = filt + (input-filt) >> i;

This executes much faster and takes less code space as
well. In most cases, digital filtering is done to reduce the
noise, where the requirement to implement the actual
cut-off frequency is not stringent. Binary-weighted IIR
filters can be used in those cases.

Single-pole IIR Filter versus Moving
Average FIR Filter

A moving average filter is also commonly used for
reducing noise in the digital output. A moving average filter
is implemented by simply taking the average of the last N
samples as defined by Equation 17. The higher the value
of N, the lower is the filter cut-off.

N

Nxnxnxnx
ny

]1[....]2[]1[][
][




Equation 17

The pros and cons of the moving average filter and the
single-pole IIR filter are as follows.

 A single-pole IIR filter is easy to implement and
requires a storage space of just one memory element
to store the past output. However, the settling time
increases as the attenuation factor increases and the
filter takes infinite samples to settle to the input value.

 A moving average FIR filter is relatively complex to
implement and requires a storage space of N
elements, where N is the number of samples
averaged. The filter takes just N samples to settle to
the input value.

 A moving average filter with N elements has a
frequency response roll-off comparable to an IIR filter
with attenuation factor, a = N/2. Or, in other words,
the roll-off of a 32-tap moving average filter can be
matched by an IIR filter with an attenuation factor of
just 16. Figure 7 shows the frequency response
performance of a 32-element moving average filter
and a single-pole IIR filter of attenuation factor, 16.

However, if you compare time responses, you can
see that it takes 108 samples (Table 1) for the IIR
filter to settle to 99.9% of the input while the moving
average FIR takes just 32 samples to settle to 100%
of the input signal.

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 5

Table 2. Single-Pole IIR Versus Moving Average FIR

Single-pole IIR Moving Average FIR

Defining
parameter

Attenuation
factor, a

Number of samples
averaged, N

Firmware
implementation

Easy Relatively complex

Memory
storage
required

Single-pole IIR Moving Average FIR

Settling time Infinite N

Figure 7. Frequency Responses of Moving Average and
Single-Pole IIR filters

Associated Projects

This application note includes four projects:

 IIR_Filter_PSoC3_5 - PSoC Creator workspace
containing two projects, one for PSoC 3 (IIR_PSoC3)
and one for PSoC5 (IIR_PSoC5)

 AN2099_asm - PSoC designer project for PSoC 1 in
assembly

 AN2099_C -PSoC designer project for PSoC 1 in C.

PSoC 3 Filter Implementation

The PSoC Creator project, IIR_PSoC3, performs low-pass
filtering on the 20-bit delta sigma ADC output and displays
the filtered and unfiltered value on the LCD.

The filter routine takes the filter input as an argument and
returns the filtered output after low-pass filtering the input
data with an attenuation factor of 16.

Code 2

int32 LowPassFilter(int32 input)
{
int32 k;
input <<= 8;

filt = filt + ((input-filt) >> 4);
k = (filt>>8) + ((filt & 0x00000080) >> 7);
return k;

}

In this code, the statement

filt = filt + ((input-filt) >> 4);

performs the filtering with an attenuation factor of 16. The
attenuation factor can be easily changed to the required
value by replacing this line of code with a code similar to
Code 1 (code 1 implements an attenuation factor of 2.56)

The variable ‘input’ is the input to the low-pass filter. The
variable ‘filt’ is a long int variable that accumulates the
filter running sum.

To avoid any loss of precision due to right shifts, we left
shift the input variable. The input is left-shifted by 8 so that
we can perform a right shift of 8 (maximum right shift for
a = 256) without losing precision. For this reason, the
variable filter should at least be 8 bits wider than the input.
The variable ‘filter’ is declared a long int variable while the
‘input’ is declared an int variable. This left-shift by 8 is
compensated by performing a right-shift by 8 before
returning the LPF output. This is done by the following
statement.

k = (filt>>8) + ((filt & 0x00000080) >> 7);

While right-shifting, perform rounding-off instead of
truncation. The additive term ((filt & 0x00000080) >>

7) checks the Most Significant bit (bit 8) of the bits shifted
out and performs the round-off before shifting the 8 bits
out.

PSoC 4 and PSoC 5LP Filter
Implementation

In PSoC 4 and PSoC 5LP, the filtering can be done much
faster due to the availability of a single-cycle multiply
instruction in ARM cortex M0 and M3. In PSoC 4 and
PSoC 5LP, the filter routine for a low-pass filter (a =
256/17) looks like this:

Code 3

int32 LowPassFilter(int32 input)
{
int32 k;
input <<= 8;
filt = filt + (((input-filt) >> 8) * 17);
k = (filt>>8) + ((filt & 0x00000080) >> 7);
return k;

}

The third statement performs the filtering. As you can see,
the division by 256 is done by right-shifting by 8 and the
multiplication is performed directly (without shift and add).
It is very easy to change the attenuation factor to any
value in Equation 15 by directly changing the value 17 to

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 6

the required value. Note that the division is performed
before the multiplication so that the variable filt stays
within the int32 limit.

If you program the PSoC Creator project in a PSoC 5LP
chip, you can see that the filtered value is comparatively
more stable than the raw ADC output. Try changing the
attenuation factor (a), and notice the change in settling
time and stability of the filtered output.

The PSoC 4 project is designed to work on the CY8CKIT-
042. This kit does not have an LCD. Thus the data is
output via UART on P4.1 (Pin 9 of J10). Connect this pin
to Pin 9 of J11 (the 12-pin header next to the USB
connector).

Plug a USB cable between your computer and the
CY8CKIT-042. Next, open the Cypress Bridge Control
Panel. In the Connected I2C/SPI/RX8 Ports: dialog, you
should see a COM port that corresponds to the CY8CKIT-
042 (for example COM8). Click on this COM port.

Next, click the Tools menu option and select Protocol
Configuration. Configure it to match Figure 8.

Figure 8 : RX8 Protocol Configuration

After you have configured the protocol, go to the Chart
Menu and select Variable Settings. Configure it to match
Figure 9.

Figure 9: Variable settings for COM Port

Now go to back to the editor and type the following
command:

rx8 [h=aa] @2RawData @1RawData @0RawData
@2FilData @1FilData @0FilData [t=55]

Hit the Repeat button and then move to the Chart tab. You
should now be able to see a graph of the data. You can
move the input voltage around to see how the filtered and
raw data change.

Filter Feedforward

Filter feedforward eliminates the filter for a fast changing
input. If the input changes from 0 V to 5 V, the filter takes
108 iterations (attenuation factor = 16) to reach 4.995 V.
This delay can be reduced by including a feedforward term
to Code 3. Code 4 modifies Code 3 to include the
feedforward term.

Code 4

int32 LowPassFilter(int32 input)
{
int32 k;
int32 feedforward = (int32)100 * 256;
input <<= 8;

if ((input > (filt + feedforward)) || (input <
(filt - feedforward)))
{

filt = input;
}
else
{

filt = filt + ((input - filt) >> 4);
}
k = (filt>>8) + ((filt & 0x00000080) >> 7);
return k;

}

In Code 4, the ‘if else’ structure ensures that the filter is
not applied when the input value exceeds the current filter
value by more than 100. The feedforward term is
multiplied by 256 to bring it in the same order as the input
(the input is multiplied by 256 inside the filter code). If
there is a sudden change in input, say, from 0 V to 5 V (0
counts to 2^19 counts), the filter will not be applied and the
filtered value will reach the input value instantaneously.
The input will be filtered only when the input change is <
100 counts. To ensure that noise is filtered, the
feedforward coefficient should be higher than the peak-to-
peak noise.

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 7

PSoC 1 Filter Implementation

The two PSoC 1 based projects provide both low-pass
and high-pass filter functions written in assembly. The
functions have been written in assembly in PSoC 1
because the PSoC 1 CPU is low MIPS compared to that of
PSoC 3 and PSoC 5LP. The functions can be found in the
file IIRFilters.asm in the PSoC Designer project. One
project has the main file written in assembly and the other
project has the main file in C.

Both projects are similar to the PSoC Creator project in
that they take the ADC input and show both the ADC
output and low-pass filtered output in an LCD.

IIR High-Pass Filter – PSoC 1

The iSimpleHighPassFilter function in the file
IIRFilters.asm implements a high-pass filter with an
attenuation factor of 256. Equation 18 defines the roll-off
frequency. An attenuation of 256 is selected because it
can easily be implemented with a byte shift.

16082562
0

ss ff
f 


Equation 18

For a sample rate of 5 ksps, the roll-off frequency is
3.1 Hz.

The function takes a 16-bit signed input and, using the old
Vlp, calculates the next value. The new 16-bit Vhp is
returned. This function assumes that 16-bit data is input
through the X (MSByte) and A (LSByte) registers. The
output is a 16-bit high-pass value returned through the X
and A registers. Code 5 shows the function.

This function is not called in the project. Only the
iSimpleLowPassFilter function is called. But if needed, you
can call this function in your project the same way the
iSimpleLowPassFilter function is called.

Code 4

area bss(RAM)
iVlp: BLK 3
;[iVlp] = MSByte
;[iVlp + 1] = LSByte
;[iVlp + 2] = Residue

area text(ROM,REL)
export SimpleHighPassFilter
export _SimpleHighPassFilter
;;----------------------------------
;; SimpleHighPassFilter:
;;
;; Take input and output new
;; highpassvalue
;; INPUTS: X,A Vin
;; OUTPUTS: X,A Vhp
;;----------------------------------
SimpleHighPassFilter:

_SimpleHighPassFilter:
sub A,[iVlp+1]
swap A,X
sbb A,[iVlp]
;Vhp now in A,X
cmp A,128 ;test if Vhp is neg
swap A,X
if1: jc elseif1 ;(if neg)

add [iVlp+2],A
swap X,A
adc [iVlp+1],A
swap A,X
adc [iVlp],ffh ;extended neg sign
ret

elseif1:;(pos)
add [iVlp+2],A
swap X,A
adc [iVlp+1],A
swap A,X
adc [iVlp],0 ;extended pos sign
ret

endif1:
;-----------------------------------

An initialization function is required to set the initial value
for Vlp. Code 6 shows this function:

Code 5

;;----------------------------------
;; SimpleHighPassInit:
;;
;; Initializes the Vlp value
;; INPUTS: X,A Init Value
;; OUTPUTS: None.
;;----------------------------------
SimpleHighPassInit:
_SimpleHighPassInit:

mov [iVlp],X
mov [iVlp + 1],A
mov [iVlp + 2],0

ret
;;----------------------------------

IIR Low Pass Filter – PSoC 1

The iSimpleLowPassFilter function implements a low-pass
filter with attenuation factor 256/12. The cut-off frequency
is given by Equation 19. To change the attenuation, you
have to change the SHIFT ACCUM sequence in the
assembly code.

1342562

12*
0

ss ff
f 


Equation 19

Code 7 is the function that takes a 16-bit signed input and,
using the old Vlp, calculates the next value. The new 16-bit
Vlp is returned:

Code 6

macro SHIFT
asr [TempReg]
rrc [TempReg + 1]
rrc [TempReg + 2]

endm

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 8

macro ACCUM
mov A,[TempReg + 2]
add [iVlp1 + 2],A
mov A,[TempReg + 1]
adc [iVlp1 + 1],A
mov A,[TempReg]
adc [iVlp1],A

endm

export iSimpleLowPassFilter
export _iSimpleLowPassFilter
;;----------------------------------
;; iSimpleLowPassFilter:
;;
;; Take input and output new
;; higpassvalue
;; INPUTS: X,A Vin
;; OUTPUTS: X,A Vhp
;;----------------------------------
iSimpleLowPassFilter:
_iSimpleLowPassFilter:

push A
mov A,0
sub A,[iVlp1+2]
mov [TempReg + 2],A
pop A
sbb A,[iVlp1+1]
mov [TempReg + 1],A
mov A,X
sbb A,[iVlp1]
mov [TempReg],A

SHIFT
SHIFT
SHIFT
SHIFT
SHIFT
ACCUM ;32
SHIFT
ACCUM ;64

mov A,[iVlp1 + 2]

add A,128
mov X,[iVlp1]
mov A,[iVlp1 + 1]
adc A,0
swap X,A
adc A,0

swap X,A
ret
;-----------------------------------

This function also requires an initialization function. It is
shown in Code 7:

Code 7

export SimpleLowPassInit
export _SimpleLowPassInit
;;----------------------------------
;; SimpleLowPassInit:
;;
;; Initializes the Vlp value
;; INPUTS: X,A Init Value
;; OUTPUTS: None.

;;----------------------------------
SimpleLowPassInit:
_SimpleLowPassInit:

mov [iVlp1],X
mov [iVlp1 + 1],A
mov [iVlp1 + 2],0

ret
;;----------------------------------

Summary

Single-pole IIR filters are useful for removing noise from
useful signals. Four projects have been presented that can
easily be tailored to your filtering requirements.

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 9

Appendix A

The actual cut-off frequency for the single-pole low-pass
filter can be derived from Equation 20

)1(

1
1 azaV

V

in

lp





Equation 20

Substituting z
-1

= e
-jw

, we get,

)1(

1

aeaV

V
jw

in

lp






)1)(sin(cos

1

awjwaV

V

in

lp




The magnitude of the transfer function is given by
Equation 21

 22)sin)1(()cos)1((

1

wawaaV

V

in

lp




Equation 21

 waaaV

V

in

lp

cos)1(1(221(

1
2 



At the cut-off frequency (w = w0),

in

lp

V

V
=

2

1

 0
2 cos)1(1(221(

1

2

1

waaa 


or











 

)1(2

1
1cos

2
1

0
aa

f
f s


Equation 22

Equation 21 gives the actual expression for the cut-off
frequency for the single-pole low-pass IIR filter. However,
for a >8 (filter attenuation factors commonly used are
between 8 and 64), Equation 21 can be approximated by
Equation 23:

a

f
f s

2
0  Equation 23

Table 3 shows the difference between the two cut-off
frequencies (Equations 12 and 21) at different values of
attenuation factor at a sample frequency of 10 kHz.

Table 3. Cut-off Frequency Approximation Error

a
Cut-off Calculated
using Equation 12

Actual Cut-off
(Equation 21)

2 795.7747155 1150.267281

4 397.8873577 461.0511704

8 198.9436789 212.8383013

16 99.47183943 102.7519182

32 49.73591972 50.53386767

64 24.86795986 25.0648066

128 12.43397993 12.48286862

256 6.216989965 6.229172189

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 10

Appendix B

The settling time of the single-pole digital IIR filter can be
derived from Equation 11, which is re-written below

)1(

1
1 


 azaV

V

in

lp

Equation 24

If you rearrange Equation 24, you get Equation 25, which
is the frequency response of a digital low-pass filter with
attenuation factor, a.

 






















a
z

a
zH

1
11

11

1

Equation 25

If you take inverse z-transform, you get the impulse
response of the filter (h[n]).

 
n

aa
nh 



















1
1

1

Equation 26

Summation of the impulse response over 0 to n samples
gives the unit step response (s[n]).

   


















n n

aa
ns

0

1
1

1

Equation 27

Simplifying Equation 27, we get Equation 28

 
n

a
ns 










1
11

Equation 28

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 11

Document History

Document Title: PSoC
®

1, PSoC 3, PSoC 4, and PSoC 5LP - Single-Pole Infinite Impulse Response (IIR) Filters – AN2099

Document Number: 001-38007

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1520284 DWV 10/01/2007 Old application note updated to CY web.

*A 2711571 YARA 05/27/2009 Added CY8C29x66, CY8C27x43, CY8C24x23A, CY8C24x94, CY8C21xxx, and
CY8C20xxx part families.

Updated Software version to PD 5.0.

*B 3248285 DSG 05/04/2011 Added section Implementation in C

*C 3394927 PFZ 10/12/2011 Major rewrite of the document

*D 3457966 PFZ 12/09/2011 Template Update

Updated project for PSoC Creator 2.0

*E 3492061 PFZ 01/11/2012 Fixed Table 2.

*F 3806325 RRSH 11/27/2012 Updated for PSoC 5LP.

*G 4202704 TDU 11/26/2013 Added PSoC 4 Project.

Fixed Equation 14.

Corrected equation reference in Appendix B.

*H 4373327 TDU 05/08/2014 No Change

PSoC® 1, PSoC 3, PSoC 4, and PSoC 5LP – Single-Pole Infinite Impulse Response (IIR) Filters

www.cypress.com Document No. 001-38007 Rev. *H 12

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions

psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5LP

Cypress Developer Community

Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

