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Objective 

This example demonstrates Quad SPI interface with a serial Cypress FRAM using PSoC® 5LP. 

 

Overview 

The objective of this code example is to interface Cypress’ Quad-SPI F-RAM/nvSRAM/flash device with Cypress’ PSoC 5LP 
controller. The code example has a Quad-SPIM User Component, designed specifically for Cypress Quad-SPI memories. The 
User Component is configurable for different frequencies. The User Component is imported into the code example; the usage 
of the supported APIs is shown in Application Programming Interface. 

Requirements 

Tool: PSoC Creator™ 4.1 See also Upgrade Information below. 

Programming Language: C (GCC 5.4), ARM® Cortex®-M3 Assembler 

Associated Parts: All PSoC 5LP parts 

Related Hardware: CY8CKIT-001 

Design 

The code example implements the Quad-SPI User Component with APIs to access Cypress Quad-SPI memories. These APIs 
include Quad-SPI memory read/writes and register read/write APIs. 

Figure 1. Quad SPI Design Schematics 

 

Design Considerations 

The maximum possible serial clock frequency is 5 MHz.  

Hardware Setup 

A daughter board with memory must be mounted with the PSoC 5LP kit. Modify the pin out configuration for PSoC 5LP to 
match with the daughter board.  
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Components/User Modules 

Table 1 lists the PSoC Creator Components/PSoC Designer user modules used in this example, as well as the placement/ 
hardware resources used by each. 

Table 1. List of PSoC Creator Components/PSoC Designer User Modules 

Component or User Module Version Placement/HardwareResources 

SPI Master 2.50 4 datapath cells, 52 macrocells, 1 control cell, and 2 interrupts 

Control Register 1.80 1 control register 

2:1 Multiplexer 1.10 2 multiplexers  

Tri state buffer 1.10 4 tristate buffers 

AND gate 1.00 2 AND gate 

Parameter Settings 

Double-click the Component to configure the quad serial peripheral interface (Quad SPI) Master Mode parameter.  

Figure 2. QSPI User Module Configuration 

 

Application Programming Interface 

API routines allow you to configure the Component using software. The following table lists and describes the interface to each 
function. The subsequent sections cover each function in more detail. By default, PSoC Creator assigns the instance name 
"Quad_SPIM_1" to the first instance of a Component in a given design. You can rename the instance to any unique value that 
follows the syntactic rules for identifiers. The instance name becomes the prefix of every global function name, variable, and 
constant symbol. For readability, the instance name used in the following table is "Quad_SPIM". 

API Description 

Quad_SPIM_SPI_WRITE Memory write using SPI mode 

Quad_SPIM_SPI_READ Memory read using SPI mode 

Quad_SPIM_QPI_WRITE Memory write using Quad-SPI mode 

Quad_SPIM_QPI_READ Memory read using Quad-SPI mode 

Quad_SPIM_START Initializing routine for the Quad-SPIM Component 

Quad_SPIM_SPI_Reg_write Write memory register using SPI mode 

Quad_SPIM_SPI_Reg_Read Read memory register using SPI mode 

Quad_SPIM_QPI_Reg_write Write memory register using QPI mode 

Quad_SPIM_QPI_Reg_Read Read memory register using QPI mode 

Quad_SPIM_Erase Erase the memory (applicable only for flash memories) 

http://www.cypress.com/
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void Quad_SPIM_SPI_WRITE(uint32 Address, uint8 *DATA, uint8 data_count) 

Description:  Write data_count number of data into memory in SPI mode. 

Parameters:  uint32 Address: 32-bit memory address for write 

   uint8 *DATA: Pointer to an array of data bytes to be written 

   uint32 data_count: Number of data bytes to be written 

Return:   None 

Side Effects:  None 

 

void Quad_SPIM_SPI_READ(uint32 Address, uint8 *DATA, uint8 data_count) 

Description:  Read total_data_count number of data from memory in SPI mode 

Parameters:  uint32 Address: 32-bit memory address for read 

uint8 *DATA: Pointer to an array for storing data bytes 

uint32 data_count: Number of data bytes to be read 

Return:  None 

Side Effects: None 

 

void Quad_SPIM_QPI_WRITE(uint32 Address, uint8 *DATA, uint8 data_count) 

Description: Write data_count number of data into memory in Quad-SPI mode 

Parameters: uint32 Address: 32-bit memory address for write 

uint8 *DATA: Pointer to an array of data bytes to be written 

uint32 data_count: Number of data bytes to be written 

Return:  None 

Side Effects: None 

 

void Quad_SPIM_QPI_READ(uint32 Address, uint8 *DATA, uint8 data_count) 

Description: Read total_data_count number of data from memory in Quad-SPI mode 

Parameters: uint32 Address: 32-bit memory address for read 

uint8 *DATA: Pointer to an array for storing data bytes 

uint32 data_count: Number of data bytes to be read 

Return: 

Usage: 

 

void Quad_SPIM_SPI_START (void) 

Description:   Initialization routine for the Quad_SPIM Component. Initializes the SPI blocks and CS pins. 

Parameters:  None 

Return Value:   None 

Side Effects:   None 
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void Quad_SPIM_SPI_Reg_READ(uint8 opcode, uint8 *reg_value) 

Description: Read register in SPI mode 

Parameters: uint8 opcode: 8-bit opcode for the register read 

  uint8 *reg_value: Pointer to the buffer for register read value 

Return:  None 

Usage: 

 

void Quad_SPIM_QPI_Reg_READ(uint8 opcode, uint8 *reg_value) 

Description: Read status register in QPI mode 

Parameters: uint8 opcode: 8-bit opcode for the register read 

  uint8 *reg_value: Pointer to the buffer for register read value 

Return:  None 

Usage: 

 

void Quad_SPIM_SPI_Reg_WRITE(uint8 *reg_value, uint8 length) 

Description: Write status register in SPI mode 

Parameters: uint8 *reg_value: 8-bit data buffer 

  uint8 length: number of register to write  

Return:  None 

Usage:  

 

void Quad_SPIM_QPI_Reg_WRITE(uint8 *reg_value, uint8 length) 

Description: Write status register in QPI mode 

Parameters: uint8 *reg_value: 8-bit data buffer 

  uint8 length: number of registers to write  

Return:  None 

Usage:  

 

Operation 

This section shows how to import the Quad SPI User Component into the code example and how to use its APIs. 

Setup 

The Quad_SPIM archive contains both the example project and Quad_SPIM Component. 

1. Open PSoC Creator and open your design (workspace) as shown in Figure 3.  Create a new project named ‘Design01’. 

http://www.cypress.com/
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Figure 3. Create Project ‘Design01’ 

 

2. Right-click the project and open the Dependencies tab on the Workspace Explorer, and then bring QUAD_SPIM 

Component into your design, as shown in Figure 4.  

Figure 4. Open Dependencies Tab 

 

3. Click on New Entry (User Dependencies) and then select CE218564_Quad_SPI.cyprj from the 

CE218564_Quad_SPI.cydsn folder (see Figure 5). The QUAD_SPIM Component appears under default/QUAD_SPIM in 

Component Catalog (see Figure 6). 

http://www.cypress.com/
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Figure 5. Importing User Component 

 

Figure 6. Quad_SPIM Component Under Component Catalog 
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4. Drag and drop the QUAD_SPIM Component onto TopDesign.cysch and assign Digital I/Os from the Ports and Pins 

Component, Clock source etc. as shown in Figure 7. 

Figure 7. Quad_SPIM Component Usage 

 

5. Do the following to configure the Quad_SPIM Component: 

a. Right-click the Quad_SPIM_1 Component in TopDesign.cysch and select Configure. Select Quad SPI Mode. This 

project uses mode 0. 

Figure 8. User Component Configuration 

 

 

a. Assign appropriate input/output pins as per your design and build the project. 

http://www.cypress.com/
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Figure 9. Pin Assignment 

 

Exporting to Eclipse IDE 

This section explains the steps necessary to build the exported project successfully on Eclipse IDE.  

After exporting the project to Eclipse IDE, open it on Eclipse and exclude custom Component sources from build.  

In Eclipse, right-click on the custom Components in the Eclipse > Resource Configurations > Exclude from build > Select 
All, and then click OK. Refer to PSoC Creator Help for exporting PSoC projects to Eclipse IDE. 

Figure 10: Exclude Custom Component (Quad_SPIM) in Eclipse 
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Figure 11. Exclude Custom Components for All Builds 

 

Figure 12. Custom Components Excluded in Eclipse and Build the Project 

 

Code Example 

This section provides the sample code to access the Quad_SPI User Component APIs. The complete code can be found in 
the main.c file of the code example. These examples use Quad_SPIM_1 as the Component instance.. 

// API Quad_SPIM_1_START initializes the Quad SPI user component 

 Quad_SPIM_1_START() 

 

// API Quad_SPIM_1_SPI_WRITE writes “Burst_Length” bytes from array “W_data” to 

//memory location “Address 1” in SPI mode 

Quad_SPIM_1_SPI_WRITE(Address1, W_data, Burst_Length); 

 

http://www.cypress.com/
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// API Quad_SPIM_1_QPI_WRITE writes “Burst_Length” bytes from array “W_data” to 

//memory location “Address 1” in QPI mode  

Quad_SPIM_1_QPI_WRITE(Address1, W_data, Burst_Length); 

 

// API Quad_SPIM_1_SPI_READ Reads “Burst_Length” bytes starting from location 

//“Address1” in SPI mode  

    Quad_SPIM_1_SPI_READ(Address1,R_data,Burst_Length); 

 

// API Quad_SPIM_1_QPI_READ Reads “Burst_Length” bytes starting from location 

//“Address1” in QPI mode  

    Quad_SPIM_1_QPI_READ(Address1,R_data,Burst_Length,latency); 

 

// API Quad_SPIM_1_SPI_Reg_Write Write the Registers in SPI mode. Example 1 gives 

the code example for the updating the configuration register 2 (CR2) of S25FL128L 

cypress Flash device to enable the QPI mode.  

Example 1:  

 //Reading Configuration register 2 

Quad_SPIM_1_SPI_Reg_Read(CR2_Read, reg_value+2); 

 

//Reading Configuration register 1 

     Quad_SPIM_1_SPI_Reg_Read(CR1_Read, reg_value+1); 

 

 //Reading status register 1 

     Quad_SPIM_1_SPI_Reg_Read(SR1_Read, reg_value); 

 

 //modifying the register content 

     *(reg_value + 2) = *(reg_value + 2) | Enable_QPI; 

 

 //Writting registers using the opcode WRR (0x01).  

     Quad_SPIM_1_SPI_Reg_WRITE(reg_value,3); 
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// API Quad_SPIM_1_QPI_Reg_Write Write the Registers in QPI mode. Example 2 gives 

the code example for the updating the configuration register 2 (CR2) of S25FL128L 

cypress Flash device to disable the QPI mode.  

Example 2:  

 //Reading Configuration register 2 

Quad_SPIM_1_QPI_Reg_Read(CR2_Read, reg_value+2); 

 

//Reading Configuration register 1 

     Quad_SPIM_1_QPI_Reg_Read(CR1_Read, reg_value+1); 

 

 //Reading status register 1 

     Quad_SPIM_1_QPI_Reg_Read(SR1_Read, reg_value); 

 

 //modifying the register content 

     *(reg_value + 2) = *(reg_value + 2) | Enable_QPI; 

 

 //Writting registers using the opcode WRR (0x01).  

     Quad_SPIM_1_QPI_Reg_WRITE(reg_value,3); 

 

// API Quad_SPIM_1_SPI_Reg_Read Read the Registers in SPI mode. Example 3 gives the 

code example for the reading the status register 1 (SR1) of S25FL128L cypress Flash 

device to check the status of BUSY bit.  

Example 3:  

//Reading Configuration register 2 

Quad_SPIM_1_SPI_Reg_Read(CR2_Read, reg_value+2); 

 

// API Quad_SPIM_1_QPI_Reg_Read Read the Registers in QPI mode. Example 4 gives the 

code example for the reading the status register 1 (SR1) of S25FL128L cypress Flash 

device to check the status of BUSY bit. 

Example 4:  

 //Reading Configuration register 2 

Quad_SPIM_1_QPI_Reg_Read(CR2_Read, reg_value+2); 
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Related Documents 

Application Notes 

AN64574 Designing with Serial Peripheral 
Interface (SPI) nvSRAM 

This application note provides a few key design considerations and 
firmware tips to guide the users designing with SPI nvSRAM. 

AN218375 Designing with Cypress Quad 
SPI (QSPI) F-RAM 

This application note provides a few key design considerations and 
firmware tips to guide the users designing with QSPI F-RAM 

Device Documentation 

PSoC 5LP Datasheets PSoC 5LP Technical Reference Manuals 
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