

CE218564 - Interfacing Quad-SPI Memory
with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 1

Objective

This example demonstrates Quad SPI interface with a serial Cypress FRAM using PSoC® 5LP.

Overview

The objective of this code example is to interface Cypress’ Quad-SPI F-RAM/nvSRAM/flash device with Cypress’ PSoC 5LP
controller. The code example has a Quad-SPIM User Component, designed specifically for Cypress Quad-SPI memories. The
User Component is configurable for different frequencies. The User Component is imported into the code example; the usage
of the supported APIs is shown in Application Programming Interface.

Requirements

Tool: PSoC Creator™ 4.1 See also Upgrade Information below.

Programming Language: C (GCC 5.4), ARM® Cortex®-M3 Assembler

Associated Parts: All PSoC 5LP parts

Related Hardware: CY8CKIT-001

Design

The code example implements the Quad-SPI User Component with APIs to access Cypress Quad-SPI memories. These APIs
include Quad-SPI memory read/writes and register read/write APIs.

Figure 1. Quad SPI Design Schematics

Design Considerations

The maximum possible serial clock frequency is 5 MHz.

Hardware Setup

A daughter board with memory must be mounted with the PSoC 5LP kit. Modify the pin out configuration for PSoC 5LP to
match with the daughter board.

http://www.cypress.com/
http://www.cypress.com/?rID=37464

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 2

Components/User Modules

Table 1 lists the PSoC Creator Components/PSoC Designer user modules used in this example, as well as the placement/
hardware resources used by each.

Table 1. List of PSoC Creator Components/PSoC Designer User Modules

Component or User Module Version Placement/HardwareResources

SPI Master 2.50 4 datapath cells, 52 macrocells, 1 control cell, and 2 interrupts

Control Register 1.80 1 control register

2:1 Multiplexer 1.10 2 multiplexers

Tri state buffer 1.10 4 tristate buffers

AND gate 1.00 2 AND gate

Parameter Settings

Double-click the Component to configure the quad serial peripheral interface (Quad SPI) Master Mode parameter.

Figure 2. QSPI User Module Configuration

Application Programming Interface

API routines allow you to configure the Component using software. The following table lists and describes the interface to each
function. The subsequent sections cover each function in more detail. By default, PSoC Creator assigns the instance name
"Quad_SPIM_1" to the first instance of a Component in a given design. You can rename the instance to any unique value that
follows the syntactic rules for identifiers. The instance name becomes the prefix of every global function name, variable, and
constant symbol. For readability, the instance name used in the following table is "Quad_SPIM".

API Description

Quad_SPIM_SPI_WRITE Memory write using SPI mode

Quad_SPIM_SPI_READ Memory read using SPI mode

Quad_SPIM_QPI_WRITE Memory write using Quad-SPI mode

Quad_SPIM_QPI_READ Memory read using Quad-SPI mode

Quad_SPIM_START Initializing routine for the Quad-SPIM Component

Quad_SPIM_SPI_Reg_write Write memory register using SPI mode

Quad_SPIM_SPI_Reg_Read Read memory register using SPI mode

Quad_SPIM_QPI_Reg_write Write memory register using QPI mode

Quad_SPIM_QPI_Reg_Read Read memory register using QPI mode

Quad_SPIM_Erase Erase the memory (applicable only for flash memories)

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 3

void Quad_SPIM_SPI_WRITE(uint32 Address, uint8 *DATA, uint8 data_count)

Description: Write data_count number of data into memory in SPI mode.

Parameters: uint32 Address: 32-bit memory address for write

 uint8 *DATA: Pointer to an array of data bytes to be written

 uint32 data_count: Number of data bytes to be written

Return: None

Side Effects: None

void Quad_SPIM_SPI_READ(uint32 Address, uint8 *DATA, uint8 data_count)

Description: Read total_data_count number of data from memory in SPI mode

Parameters: uint32 Address: 32-bit memory address for read

uint8 *DATA: Pointer to an array for storing data bytes

uint32 data_count: Number of data bytes to be read

Return: None

Side Effects: None

void Quad_SPIM_QPI_WRITE(uint32 Address, uint8 *DATA, uint8 data_count)

Description: Write data_count number of data into memory in Quad-SPI mode

Parameters: uint32 Address: 32-bit memory address for write

uint8 *DATA: Pointer to an array of data bytes to be written

uint32 data_count: Number of data bytes to be written

Return: None

Side Effects: None

void Quad_SPIM_QPI_READ(uint32 Address, uint8 *DATA, uint8 data_count)

Description: Read total_data_count number of data from memory in Quad-SPI mode

Parameters: uint32 Address: 32-bit memory address for read

uint8 *DATA: Pointer to an array for storing data bytes

uint32 data_count: Number of data bytes to be read

Return:

Usage:

void Quad_SPIM_SPI_START (void)

Description: Initialization routine for the Quad_SPIM Component. Initializes the SPI blocks and CS pins.

Parameters: None

Return Value: None

Side Effects: None

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 4

void Quad_SPIM_SPI_Reg_READ(uint8 opcode, uint8 *reg_value)

Description: Read register in SPI mode

Parameters: uint8 opcode: 8-bit opcode for the register read

 uint8 *reg_value: Pointer to the buffer for register read value

Return: None

Usage:

void Quad_SPIM_QPI_Reg_READ(uint8 opcode, uint8 *reg_value)

Description: Read status register in QPI mode

Parameters: uint8 opcode: 8-bit opcode for the register read

 uint8 *reg_value: Pointer to the buffer for register read value

Return: None

Usage:

void Quad_SPIM_SPI_Reg_WRITE(uint8 *reg_value, uint8 length)

Description: Write status register in SPI mode

Parameters: uint8 *reg_value: 8-bit data buffer

 uint8 length: number of register to write

Return: None

Usage:

void Quad_SPIM_QPI_Reg_WRITE(uint8 *reg_value, uint8 length)

Description: Write status register in QPI mode

Parameters: uint8 *reg_value: 8-bit data buffer

 uint8 length: number of registers to write

Return: None

Usage:

Operation

This section shows how to import the Quad SPI User Component into the code example and how to use its APIs.

Setup

The Quad_SPIM archive contains both the example project and Quad_SPIM Component.

1. Open PSoC Creator and open your design (workspace) as shown in Figure 3. Create a new project named ‘Design01’.

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 5

Figure 3. Create Project ‘Design01’

2. Right-click the project and open the Dependencies tab on the Workspace Explorer, and then bring QUAD_SPIM

Component into your design, as shown in Figure 4.

Figure 4. Open Dependencies Tab

3. Click on New Entry (User Dependencies) and then select CE218564_Quad_SPI.cyprj from the

CE218564_Quad_SPI.cydsn folder (see Figure 5). The QUAD_SPIM Component appears under default/QUAD_SPIM in

Component Catalog (see Figure 6).

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 6

Figure 5. Importing User Component

Figure 6. Quad_SPIM Component Under Component Catalog

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 7

4. Drag and drop the QUAD_SPIM Component onto TopDesign.cysch and assign Digital I/Os from the Ports and Pins

Component, Clock source etc. as shown in Figure 7.

Figure 7. Quad_SPIM Component Usage

5. Do the following to configure the Quad_SPIM Component:

a. Right-click the Quad_SPIM_1 Component in TopDesign.cysch and select Configure. Select Quad SPI Mode. This

project uses mode 0.

Figure 8. User Component Configuration

a. Assign appropriate input/output pins as per your design and build the project.

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 8

Figure 9. Pin Assignment

Exporting to Eclipse IDE

This section explains the steps necessary to build the exported project successfully on Eclipse IDE.

After exporting the project to Eclipse IDE, open it on Eclipse and exclude custom Component sources from build.

In Eclipse, right-click on the custom Components in the Eclipse > Resource Configurations > Exclude from build > Select
All, and then click OK. Refer to PSoC Creator Help for exporting PSoC projects to Eclipse IDE.

Figure 10: Exclude Custom Component (Quad_SPIM) in Eclipse

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 9

Figure 11. Exclude Custom Components for All Builds

Figure 12. Custom Components Excluded in Eclipse and Build the Project

Code Example

This section provides the sample code to access the Quad_SPI User Component APIs. The complete code can be found in
the main.c file of the code example. These examples use Quad_SPIM_1 as the Component instance..

// API Quad_SPIM_1_START initializes the Quad SPI user component

 Quad_SPIM_1_START()

// API Quad_SPIM_1_SPI_WRITE writes “Burst_Length” bytes from array “W_data” to

//memory location “Address 1” in SPI mode

Quad_SPIM_1_SPI_WRITE(Address1, W_data, Burst_Length);

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 10

// API Quad_SPIM_1_QPI_WRITE writes “Burst_Length” bytes from array “W_data” to

//memory location “Address 1” in QPI mode

Quad_SPIM_1_QPI_WRITE(Address1, W_data, Burst_Length);

// API Quad_SPIM_1_SPI_READ Reads “Burst_Length” bytes starting from location

//“Address1” in SPI mode

 Quad_SPIM_1_SPI_READ(Address1,R_data,Burst_Length);

// API Quad_SPIM_1_QPI_READ Reads “Burst_Length” bytes starting from location

//“Address1” in QPI mode

 Quad_SPIM_1_QPI_READ(Address1,R_data,Burst_Length,latency);

// API Quad_SPIM_1_SPI_Reg_Write Write the Registers in SPI mode. Example 1 gives

the code example for the updating the configuration register 2 (CR2) of S25FL128L

cypress Flash device to enable the QPI mode.

Example 1:

 //Reading Configuration register 2

Quad_SPIM_1_SPI_Reg_Read(CR2_Read, reg_value+2);

//Reading Configuration register 1

 Quad_SPIM_1_SPI_Reg_Read(CR1_Read, reg_value+1);

 //Reading status register 1

 Quad_SPIM_1_SPI_Reg_Read(SR1_Read, reg_value);

 //modifying the register content

 *(reg_value + 2) = *(reg_value + 2) | Enable_QPI;

 //Writting registers using the opcode WRR (0x01).

 Quad_SPIM_1_SPI_Reg_WRITE(reg_value,3);

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 11

// API Quad_SPIM_1_QPI_Reg_Write Write the Registers in QPI mode. Example 2 gives

the code example for the updating the configuration register 2 (CR2) of S25FL128L

cypress Flash device to disable the QPI mode.

Example 2:

 //Reading Configuration register 2

Quad_SPIM_1_QPI_Reg_Read(CR2_Read, reg_value+2);

//Reading Configuration register 1

 Quad_SPIM_1_QPI_Reg_Read(CR1_Read, reg_value+1);

 //Reading status register 1

 Quad_SPIM_1_QPI_Reg_Read(SR1_Read, reg_value);

 //modifying the register content

 *(reg_value + 2) = *(reg_value + 2) | Enable_QPI;

 //Writting registers using the opcode WRR (0x01).

 Quad_SPIM_1_QPI_Reg_WRITE(reg_value,3);

// API Quad_SPIM_1_SPI_Reg_Read Read the Registers in SPI mode. Example 3 gives the

code example for the reading the status register 1 (SR1) of S25FL128L cypress Flash

device to check the status of BUSY bit.

Example 3:

//Reading Configuration register 2

Quad_SPIM_1_SPI_Reg_Read(CR2_Read, reg_value+2);

// API Quad_SPIM_1_QPI_Reg_Read Read the Registers in QPI mode. Example 4 gives the

code example for the reading the status register 1 (SR1) of S25FL128L cypress Flash

device to check the status of BUSY bit.

Example 4:

 //Reading Configuration register 2

Quad_SPIM_1_QPI_Reg_Read(CR2_Read, reg_value+2);

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 12

Related Documents

Application Notes

AN64574 Designing with Serial Peripheral
Interface (SPI) nvSRAM

This application note provides a few key design considerations and
firmware tips to guide the users designing with SPI nvSRAM.

AN218375 Designing with Cypress Quad
SPI (QSPI) F-RAM

This application note provides a few key design considerations and
firmware tips to guide the users designing with QSPI F-RAM

Device Documentation

PSoC 5LP Datasheets PSoC 5LP Technical Reference Manuals

http://www.cypress.com/
http://www.cypress.com/documentation/application-notes/an64574-designing-serial-peripheral-interface-spi-nvsram
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=107&id=4562&applicationID=0&l=0%20
http://www.cypress.com/?app=search&searchType=advanced&keyword=&rtID=117&id=4562&applicationID=0&l=0%20

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 13

Document History

Document Title: CE218564 - Interfacing Quad-SPI Memory with PSoC® 5LP

Document Number: 002-18564

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 5788082 VINI 08/09/2017 Initial release

http://www.cypress.com/

Interfacing Quad-SPI Memory with PSoC® 5LP

www.cypress.com Document No. 002-18564 Rev.** 14

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm

Automotive cypress.com/automotive

Clocks & Buffers cypress.com/clocks

Interface cypress.com/interface

Internet of Things cypress.com/iot

Memory cypress.com/memory

Microcontrollers cypress.com/mcu

PSoC cypress.com/psoc

Power Management ICs cypress.com/pmic

Touch Sensing cypress.com/touch

USB Controllers cypress.com/usb

Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs |
Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including
Spansion LLC (“Cypress”). This document, including any software or firmware included or referenced in this document (“Software”), is owned by
Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such
laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other
intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with
Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to
sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for
use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end
users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of
Cypress’s patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for
use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD
TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to
make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or
circuit described in this document. Any information provided in this document, including any sample design information or programming code, is
provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and
safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as
critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or
systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances
management, or other uses where the failure of the device or system could cause personal injury, death, or property damage (“Unintended Uses”). A
critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or
system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim,
damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and
against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of
Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are
trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit
cypress.com. Other names and brands may be claimed as property of their respective owners.

 Cypress Semiconductor
 198 Champion Court
 San Jose, CA 95134-1709

http://www.cypress.com/
http://www.cypress.com/?id=1062
http://www.cypress.com/products
http://www.cypress.com/products/32-bit-arm-cortex-mcus
http://www.cypress.com/applications/automotive-solutions
http://www.cypress.com/products/clocks-buffers
http://www.cypress.com/products/interface
http://www.cypress.com/internet-things-iot
http://www.cypress.com/products/memory-products
http://www.cypress.com/mcu
http://www.cypress.com/psoc/
http://www.cypress.com/products/power-management
http://www.cypress.com/products/touch-sensing
http://www.cypress.com/products/usb-controllers
http://www.cypress.com/products/wirelessrf
http://www.cypress.com/psoc
http://www.cypress.com/products/psoc-1
http://www.cypress.com/products/psoc-3
http://www.cypress.com/products/psoc-4
http://www.cypress.com/products/psoc-5lp
http://www.cypress.com/psoc6
http://www.cypress.com/cdc
http://www.cypress.com/forum
https://community.cypress.com/welcome
http://www.cypress.com/projects
http://www.cypress.com/video-library
http://www.cypress.com/blog
http://www.cypress.com/training
http://www.cypress.com/cdc/community-components
http://www.cypress.com/support
http://www.cypress.com/support

