

Application Note

SPI Slave interface Porting Guide for ATWINC1500

AN-XXXXXB

Prerequisites

 Hardware Prerequisites

 Atmel SAMD21 Xplained Evaluation Kit [1]

 Atmel WINC1500 board [2]

 Micro USB Cable (TypeA / MicroB)

 Build Prerequisites

 Atmel Studio 6 [3]

 WINC1500 software release

Introduction

This application note describes how to integrate the Atmel WINC1500 to

communicate with the Atmel MCU via SPI (Serial Peripheral Interface). This

application note also includes an appendix to work on SPI integration with Atmel

MCU.

XXXXA10/14

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 2 of 12

Table of Contents

Prerequisites ...1

Introduction ...1

1. Introduction ..3

2. SPI Slave Interface ..3

3. WINC1500 host interface driver ...5

3.1 Host driver configuration for SPI interface ... 5

3.2 Platform dependent driver.. 5

3.3 Bus wrapper APIs .. 5

4. Porting on SAMD21 Xplained board ..6

4.1 Writing nm_bus_wrapper.c file .. 6

4.2 Defining SPI wrapper functions ... 6

5. Conclusion ...9

6. Revision History ...9

7. Appendix A: Simple Example of ATWINC15009

8. Appendix B: References .. 11

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 3 of 12

1. Introduction

ATWINC1500 external interfaces include I2C slave for control, SPI slave and SDIO slave for control and data

transfer. This application note focuses on the SPI that operates as a SPI slave. The Appendix A shows how to

get simple example to study porting the SPI slave interface of WINC1500 with SAMD21 Xplained board. For

more information on WINC1500, see the WINC1500 datasheet [4].

2. SPI Slave Interface

ATWINC1500 provides a Serial Peripheral Interface (SPI) that can be used for control and for serial I/O of

802.11 data. The SPI slave pins are mapped as shown in Table 2-1. The RXD pin is same as Master Output,

Slave Input (MOSI), and the TXD pin is same as Master Input, Slave Output (MISO). The SPI slave is a full-

duplex slave synchronous serial interface that is available immediately following reset when pin 9

(SDIO_SPI_CFG) is tied to VDDIO.

Table 2-1 ATWINC1500 SPI Slave Interface Pin Mapping

Pin No. SPI function

9 CFG: Must be tied to VDDIO

16 SSN: Active Low Slave Select

18 SCK: Serial Clock

13 RXD: Serial Data Receive

17 TXD: Serial Data Transmit

When the SPI is not selected (SSN is high), the SPI will not interfere with data transfers between the serial-

master and other serial-slave devices. When the serial slave is not selected, its transmitted data output is

buffered, resulting in a high impedance driver onto the serial master receive line. The SPI slave interface

responds to a protocol that allows an external host to read or write any register in the chipset as well as

initiate DMA transfers.

The SPI Slave interface supports for standard modes as determined by the CPOL (Clock Polarity) and CPHA

(Clock Phase) configuration. These modes are illustrated in Table 2-2.

Table 2-2 SPI Slave Modes

Mode CPOL CPHA

0 0 0

1 0 1

2 1 0

3 1 1

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 4 of 12

The red lines in Figure 2-1 correspond to CPHA=0 and the blue lines correspond to CPHA=1. The Figure 2-2

shows ATWINC1500 SPI timing diagram.

Figure 2-1 SPI Slave Clock Polarity and Clock Phase Timing

Figure 2-2 ATWINC1500 SPI Timing Diagram

 For more information on WINC1500, refer to the application notes available from
Atmel SmartConnect website.

.

http://www.atmel.com/products/wireless/wifi/smart-connect.aspx

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 5 of 12

3. WINC1500 host interface driver

This section introduces WINC1500 host interface layer to communicate with a host MCU via serial interfaces

supported by WINC1500 software. The WINC1500 software architecture consists of three components, which

are IoT Application layer, WINC1500 firmware and WINC1500 ASIC driver. The WINC1500 ASIC part

includes the host interface layer to communicate with the host MCUs, for example, SAMD21 via SPI or I2C.

3.1 Host driver configuration for SPI interface

For communicating with a host application CPU, USE_SPI macro should be defined for SPI interface. Find

USE_SPI macro in the driver source codes to see more information on the SPI uses. This macro can be

defined in the Atmel Studio compiler symbols.

3.2 Platform dependent driver

The WINC1500 driver consists of platform independent and dependent parts. The dependent part of

WINC1500 driver should be ported to specific platforms. The WINC1500 driver defines which functions should

be ported to communicate with a host CPU via SPI. The section 3.3 lists the declarations defined in

nm_bus_wrapper.h, which provides wrapper functions to specific platform.

 The nm_bus_wrapper.h is located in the /src/host_drv/bus_wrapper/include.

3.3 Bus wrapper APIs

This section describes host bus wrapper functions. The independent parts of WINC1500 driver call them in

proper time. For example, nm_bus_init will be called during driver initial stage. In similar, nm_bus_deinit will

be called when de-initializing the driver. The nm_bus_ioctl is called when the driver reads or writes the

control packets or 802.11 data.

nm_bus_init

Declaration

 sint8 nm_bus_init (void *)

Description

 Initialize the bus wrapper

Return

 M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure

nm_bus_deinit

Declaration

 sint8 nm_bus_deinit (void)

Description

 De-initialize the bus wrapper

Return

 ZERO in case of success and M2M_ERR_BUS_FAIL in case of failure

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 6 of 12

nm_bus_ioctl

Declaration

 sint8 nm_bus_ioctl (uint8 u8Cmd, void* pvParameter)

Description

 send/receive from the bus

Parameters

 U8Cmd: IOCTL command for the operation

 pvParameter: Arbitrary parameter depending on IOCTL

Return

 M2M_SUCCESS in case of success and M2M_ERR_BUS_FAIL in case of failure

The chapter 4 will show how to port the bus wrapper functions on the SAMD21 Xplained board.

4. Porting on SAMD21 Xplained board

This chapter describes how to port the WINC1500 SPI bus wrapper with SAMD21 Xplained board. For more

details on SAMD21, refer to SAMD21 Xplained Pro User Guide. See also SAM D MCUs for more information

on SAM D MCU series from Atmel. The Appendix A shows simple example from Atmel Studio reading chip id

with WINC1500. This example can be used to verify porting SPI slave bus wrapper is ok.

4.1 Writing nm_bus_wrapper.c file

The WINC1500 release package includes nm_bus_wrapper.h to declare which functions are required by the

driver, dependent part of the WINC1500 ASIC driver. The section 4.2 describes how to write the bus wrapper

C-file to define them declared in nm_bus_wrapper.h. It’s required to make new file to define declarations, for

example, nm_bus_wrapper_samd21.c file, which intentionally indicates it belongs to SAM D21 board. Make

sure new file should be included in compile lists.

4.2 Defining SPI wrapper functions

The following sample code snapshot shows how to initialize the SPI driver to provide the wrapper function,

nm_bus_init to WINC1500 ASIC driver. This function’s goal is to initialize the SPI driver of SAM D21. The

WINC1500 ASIC driver needs host interface layer to communicate with a host MCU so calls this function

during WINC1500 initial time. Then, the WINC1500 ASIC driver tries to read chip id to check if the SPI

communication has no problem.

sint8 nm_bus_init(void *pvInitValue)

{

 sint8 result = M2M_SUCCESS;

 /* Structure for SPI configuration. */

 struct spi_config config;

 struct spi_slave_inst_config slave_config;

 /* Select SPI slave CS pin. */

 /* This step will set the CS high */

 spi_slave_inst_get_config_defaults(&slave_config);

http://www.atmel.com/Images/Atmel-42220-SAMD21-Xplained-Pro_User-Guide.pdf
http://www.atmel.com/products/microcontrollers/arm/sam-d.aspx

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 7 of 12

 slave_config.ss_pin = CONF_WIFI_M2M_SPI_CS_PIN;

 spi_attach_slave(&slave_inst, &slave_config);

 /* Configure the SPI master. */

 spi_get_config_defaults(&config);

 config.mux_setting = CONF_WIFI_M2M_SPI_SERCOM_MUX;

 config.pinmux_pad0 = CONF_WIFI_M2M_SPI_PINMUX_PAD0;

 config.pinmux_pad1 = CONF_WIFI_M2M_SPI_PINMUX_PAD1;

 config.pinmux_pad2 = CONF_WIFI_M2M_SPI_PINMUX_PAD2;

 config.pinmux_pad3 = CONF_WIFI_M2M_SPI_PINMUX_PAD3;

 config.master_slave_select_enable = false;

 config.mode_specific.master.baudrate = CONF_WIFI_M2M_SPI_BAUDRATE;

 if (spi_init(&master, CONF_WIFI_M2M_SPI_MODULE, &config) != STATUS_OK) {

 return M2M_ERR_BUS_FAIL;

 }

 /* Enable the SPI master. */

 spi_enable(&master);

 return result;

}

The nm_bus_ioctl is called when the WINC1500 ASIC driver reads or writes the data. In case of SPI interface,

only NM_BUS_IOCTL_RW command is used.

sint8 nm_bus_ioctl(uint8 u8Cmd, void* pvParameter)

{

 sint8 s8Ret = 0;

 switch(u8Cmd)

 {

 case NM_BUS_IOCTL_RW: {

 tstrNmSpiRw *pstrParam = (tstrNmSpiRw *)pvParameter;

 s8Ret = spi_rw(pstrParam->pu8InBuf, pstrParam->pu8OutBuf, pstrParam->u16Sz);

 }

 break;

 default:

 s8Ret = -1;

 M2M_ERR("invalide ioclt cmd\n");

 break;

 }

 return s8Ret;

}

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 8 of 12

As shown, spi_rw function is implemented to read or write data in the same file, nm_bus_wrapper_samd21.c

like the following.

static sint8 spi_rw(uint8* pu8Mosi, uint8* pu8Miso, uint16 u16Sz)

{

 uint8 u8Dummy = 0;

 uint8 u8SkipMosi = 0, u8SkipMiso = 0;

 uint16_t txd_data = 0;

 uint16_t rxd_data = 0;

 if (!pu8Mosi) {

 pu8Mosi = &u8Dummy;

 u8SkipMosi = 1;

 }

 else if(!pu8Miso) {

 pu8Miso = &u8Dummy;

 u8SkipMiso = 1;

 }

 else {

 return M2M_ERR_BUS_FAIL;

 }

 spi_select_slave(&master, &slave_inst, true);

 while (u16Sz) {

 txd_data = *pu8Mosi;

 while (!spi_is_ready_to_write(&master))

 ;

 while(spi_write(&master, txd_data) != STATUS_OK)

 ;

 /* Read SPI master data register. */

 while (!spi_is_ready_to_read(&master))

 ;

 while (spi_read(&master, &rxd_data) != STATUS_OK)

 ;

 *pu8Miso = rxd_data;

 u16Sz--;

 if (!u8SkipMiso)

 pu8Miso++;

 if (!u8SkipMosi)

 pu8Mosi++;

 }

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 9 of 12

 while (!spi_is_write_complete(&master))

 ;

 spi_select_slave(&master, &slave_inst, false);

 return M2M_SUCCESS;

}

 The wrapper function provides nm_bus_deinit as well. If required in specific platform, the function should also

be implemented in the wrapper file. If not required, just return zero like the following sample code.

sint8 nm_bus_deinit(void)

{

return 0;

}

5. Conclusion

This application note described how to port SPI interface of the Atmel WINC1500 wing board on the SAMD21

board. The sample codes can be downloaded from Atmel Studio. It will be very helpful to port SPI slave driver

in any MCUs. The Appendix A shows how to download WINC1500 examples from Atmel Studio. The simple

example is introduced to verify the SPI slave interface.

6. Revision History

Doc. Rev. Date Comments

XXXXXA 10/2015 Initial document release

7. Appendix A: Simple Example of ATWINC1500

This appendix shows how to refer to the WINC1500 examples from Atmel Studio. The Atmel Studio is

essential to work on WINC1500 with SAM D21 board. Download and install Atmel Studio [3]. Then, refer to

the Atmel Studio online help [5] for more instructions.

The followings describe how to find WINC1500 examples in Atmel Studio.

- Launch the Atmel Studio

- Click Tools menu and select Extension Manager

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 10 of 12

Figure 7-1 Atmel Studio Selecting Extension Manager

- Search WINC1500 in Extension Manager and install WINC1500.

Figure 7-2 Extension Manager WINC1500

- Click File menu and select New Example Project.

- Then install SAMD21_XPLAINED_PRO_WINC1500_CHIPINFO_EXAMPLE.

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 11 of 12

Figure 7-3 New Example Project from ASF or Extension

This install will make new project in specified location for simple example to read the chip id. If the SPI slave

interface is not working, it fails to read the chip id. For more information on this example, refer to the Atmel

gallery [6].

The simple example has nm_bus_wrapper_samd21.c file in the /src/winc/bus_wrapper/source. This file is

made to port the SPI slave interface driver for WINC1500 ASIC driver. This file contains three

implementations for nm_bus_init, nm_bus_ioctl and nm_bus_deinit as explained in this application note.

The main function has very simple implementation. After calling m2m_wifi_init, print the chip id to check if

the bus interface has no problem.

8. Appendix B: References

[1] SAM D21 Xplained Pro Evaluation Kit

[2] ATWINC1500

[3] Atmel Studio

[4] WINC1500 datasheet

[5] Atmel Studio online help

[6] Atmel Gallery for WINC1500

http://www.atmel.com/tools/atsamd21-xpro.aspx?tab=overview
http://www.atmel.com/devices/atwinc1500.aspx
http://www.atmel.com/microsite/atmel_studio6/default.aspx
http://www.atmel.com/images/atmel-42353-smartconnect-winc1500_datasheet.pdf
http://www.atmel.com/webdoc/atmelstudio/index.html
https://gallery.atmel.com/Products/Details/17cdbcd4-e410-4587-8129-e85d1c92627c?

Porting Guide for ATWINC1500

SPI Slave interface: XXXXA10/14

Page 12 of 12

Atmel Corporation

1600 Technology Drive

San Jose, CA 95110

USA

Tel: (+1)(408) 441-0311

Fax: (+1)(408) 487-2600

www.atmel.com

Atmel Asia Limited

Unit 01-5 & 16, 19F

BEA Tower, Millennium City
5

418 Kwun Tong Road

Kwun Tong, Kowloon

HONG KONG

Tel: (+852) 2245-6100

Fax: (+852) 2722-1369

Atmel Munich GmbH

Business Campus

Parkring 4

D-85748 Garching b. Munich

GERMANY

Tel: (+49) 89-31970-0

Fax: (+49) 89-3194621

Atmel Japan G.K.

16F Shin-Osaki Kangyo
Bldg.

1-6-4 Osaki, Shinagawa-
ku

Tokyo 141-0032

JAPAN

Tel: (+81)(3) 6417-
0300

Fax: (+81)(3) 6417-
0370

© 2012 Atmel Corporation. All rights reserved. / Rev.: XXXXA10/14

Atmel
®
, Atmel logo and combinations thereof, Enabling Unlimited Possibilities

®
, and others are registered trademarks or

trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the
sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON
THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO
EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR
INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS
DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves
the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make
any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are
not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or
warranted for use as components in applications intended to support or sustain life.

http://www.atmel.com/

