

 www.cypress.com Document No. 001-40480 Rev. *E 1

AN2094
PSoC® 1 - Getting Started with GPIO

Author: Meenakshi Sundaram R
Associated Project: Yes

Associated Part Family: CY8C24x23A, CY8C24x94, CY8C21x34,
CY8C20x34, CY8C21x23, CY8C21x45, CY8C22x45, CY8C27x43, CY8C28xxx,

CY8C29x66, CY7C64215, CYWUSB6953
Software Version: PSoC® Designer™ 5.2 SP1

Related Application Notes: None

If you have a question, or need help with this application note, contact the author at
msur@cypress.com

AN2094 discusses general-purpose input and output (GPIO) relevant topics such as GPIO drive modes, shadow
registers, and GPIO interrupts to get started with PSoC 1 GPIOs. This document also provides few tips and briefs
of the other resources associated with PSoC 1 GPIOs.

Contents
Introduction ... 1
GPIO Drive modes .. 2

Device Editor Configuration .. 4
Code Level Configuration ... 4

Example 1: Detecting LED drive mode 5
Hardware Requisites .. 6
Test Procedure ... 6

Shadow Registers ... 7
Reading and Writing to a Port 7
Use of Shadow Registers ... 7

Example 2: Use of Shadow Registers 9
Hardware Requisites .. 9
Test Procedure ... 9

GPIO Interrupts ... 10
Do’s and Don’ts while Using Interrupts 11

Example 3: LED Toggling Using Interrupts 11
Hardware Requisites .. 11
Test Procedure ... 11

Other GPIO Resources and Tips 12
GPIO Global Select Register 12
Analog Mux (AMUX) Bus Control Register (MUX_CRx)13
Naming a Pin .. 13
Registers and their Associated Register Banks 14

Introduction
General-purpose input and output (GPIO) is a very critical
part of any microcontroller unit (MCU) as they form the
bridge between the external world and the MCU. The type
and nature of this external world bridge depends on the end
application. For instance, an ADC requires a GPIO to be an
analog pin whereas an I2C or SPI digital communication
block requires the same GPIO to be digital. In order to
properly setup this external world bridge, you need to know
not only the end application but also the GPIO system of the
MCU that is used. PSoC like any other controller has its own
GPIO system. This application note discusses the
application specific parameters of the GPIO system.
Detailed technical overview of the system can be found in
the respective device technical reference manual (TRM)
under General Purpose I/O chapter of PSoC Core section.

The topics discussed in this application note include:

 GPIO Drive modes: Covers usage of each mode and
dynamic reconfiguration of the drive modes in firmware
with an example.

 Shadow registers: Describes the significance and
usage of GPIO shadow registers with an example.

 GPIO Interrupts: covers GPIO interrupts in PSoC 1
with a simple LED toggle example using interrupts.

This document assumes that the reader is familiar with
PSoC Designer IDE.

http://www.cypress.com/
mailto:msur@cypress.com

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 2

GPIO Drive modes
PSoC 1 offers 8 drive modes, as described in Table 1, in which a GPIO pin can be configured. Figure 1 shows the GPIO cell
configuration for each of the drive modes. Figure 2 shows the GPIO cell inside PSoC 1. For complete detail on the GPIO cell
structure refer device specific TRM.

Table 1. Drive Mode Details

S.No Drive mode Description Application

1 High-Z

High impedance digital input mode. In this mode, the pin acts as
a digital input as there will not be any drives on the pin internally.
Writing either ‘1’ or ‘0’ in this mode from PSoC will not have any
effect.

Digital input interfacing a Strong drive
pin (Pin connected to VDD for ‘1’ and
GND for ‘0’)

2 High-Z analog

High impedance analog mode. In this mode, the pin acts as an
analog pin. Very similar to Digital High-Z except that in this mode
there will not be any digital buffer or Schmidt trigger (as shown in
Figure 2) to convert the signal to a ‘1’ or ‘0’ to be readable by
PSoC.

Analog input

3 Open drain-high
(ODH)

In this mode, writing a ‘1’ drives the pin to VDD while a ‘0’ is high-
impedance state.

To provide ODH interface. This mode
works in conjunction with a pull-down
resistor at the receiving end.

4 Open drain-low (ODL) In this mode, writing a ‘0’ drives the pin to GND while a ‘1’ is
high-impedance state. Also known as Open-Collector mode

To provide ODL or Open collector
interface. Example – I2C pins. This
mode works in conjunction with a pull-
up resistor at the receiving end.

5 Strong In this mode, writing a ‘1’ drives the pin to VDD and a ‘0’ drives it
to GND. Digital Output pin.

6 Pull-down In this mode, writing a ‘1’ drives the pin to VDD and a ‘0’ drives it
to GND through a resistor (5.6 K approximately)

As an interface to ODH input or a
switch connected to VDD. Can be used
as an output to interface LEDs in
current sink mode.

7 Pull-up
In this mode, writing a ‘1’ drives the pin to VDD through a resistor
(5.6 K approximately) and a ‘0’ drives it to GND. For detail, refer
device datasheet.

As an interface to ODL input like tach
output from motors or a switch
connected to GND. Can be used as an
output to interface LEDs in current
source mode.

8 Strong Slow
This mode is similar to Strong mode but the slope of the output is
slightly controlled so that high harmonics are not present when
the output switches.

As a digital output with reduced
harmonic effect.

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 3

Figure 1. Drive Mode Configuration Details

Figure 2. GPIO Cell Structure in PSoC 1

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 4

GPIO configurations can be done in two ways. The first
method is defining the configuration as part of initialization
in PSoC Designer’s device editor. This method is useful
when the pin configuration is fixed all the time. The other
method is to configure the pin in firmware. This method
enables flexibility of configuring the GPIO during runtime.

Device Editor Configuration
I/O pins may be configured by using the Pinout View mode
of the Device Editor. Inside the Pinout View mode, a table
appears in the lower left corner of the PSoC Designer
interface. The table is shown in Figure 3.

The various fields shown in Figure 3 are described as
below:

1. The “Name” field shows the name of the pin. The user
can rename the pin to make its purpose more
obvious. Renaming the pin generates Macros for the
pin, such as Pin data register, Pin mask, and drive
mode registers in PSoCGPIOINT.inc and
PSoCGPIOINT.h files are explained later in the
section Naming a Pin.
Figure 3. PSoC Designer Pinout Window (“Drive” List)

2. The “Port” field shows the physical mapping of the

pin. This field is not editable.
The “Select” field configures some of the special
behaviors of pins, which are as follows:

a. AnalogInput: Only Port 0 and Port 2 have
additional analog input and analog output
options. AnalogInput gets analog signals from the
outside world and connects to the analog column
input MUX or to PSoC blocks directly. For
example, if you use an ADC, you must configure
at least one of the pins as AnalogInput to get
analog signals from the outside world.

b. AnalogOutputBuf: Only Port 0 has additional
analog output options.

c. Default: The global bus is not connected and the
drive strength is High-Z Analog.

d. StdCPU: Normal I/O through the port. This is
controlled by the CPU[1].

e. Global_IN, Global_OUT: Global inputs and
outputs provide capability to route clock and data
signals to the digital PSoC blocks. If you
configure a pin as a Global_IN (input) or
Global_OUT (output), then that pin can talk to the
digital blocks. For example, if the Global_IN is
selected, then this selection connects that
particular pin to the Global_INPUT bus. This bus
is then used as an input to the digital PSoC
blocks.

f. AnalogMuxInput[2]: Enables connection of the
pin to Analog mux bus, which can be routed to
various analog blocks inside PSoC.

g. Apart from the previously mentioned pin types,
there are pins that have special features, and are
listed. For example, P1[0] and P1[1] have XtalOut
and XtalIn, P1[4] has ExtSysClk, P1[5] and P1[7]
have I2C_SDA and I2C_SCL, and so on.

3. The “Drive” field sets the drive mode of the pin as
explained in Table 1 and Figure 1.

4. The “Interrupt” field in the Pin out window sets the
interrupt type of the pins. Pins may have rising edge,
falling edge or both interrupts. These are discussed in
the section GPIO Interrupts.

5. The “Initial Value” field in the Pin out window sets the
initial output value of the pin at startup. This value is
imposed by populating the pin’s data register during
the execution of automatically generated boot code,
and can be overridden by the user at runtime.

6. AnalogMUXBus[2]: Enables/Disables the connection
of pin to AMUX bus in Chip editor. For doing the same
in firmware refer section Analog Mux (AMUX) Bus
Control Register (MUX_CRx) on Page 13).

Code Level Configuration
Another method, as mentioned earlier, to configure I/O
pins is to directly modify the drive mode registers in the
firmware[3] using assembly or C language. This method
allows you to configure I/O ports dynamically during
program execution.

There are three registers for each port that sets the drive
mode of every port pin. They are PRTxDM0, PRTxDM1,
and PRTxDM2 registers, where ‘x’ is the port number. One

1 Only in this mode CPU can control the pin's output state i.e.,
register write to the port data register will take effect on the pins.
2 Only available in CY8C21x34, 21x45, 22x45, 24x94, 28xxx
family of devices. Used in conjunction with AnalogMuxBus field
(available in the above mentioned devices)
3 If the pin configuration is fixed, then user authored code is not
required to configure the pins. PSoC Designer automatically
generates startup code to configure the pins according to the
settings in the Device Editor.

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 5

bit from these three registers each together configures a
particular pin. For example, bit0 of PRT0DM0, PRT0DM1,
and PRT0DM2 controls the P0[0] drive mode. The
configuration details are explained in Table 2.

Table 2. Drive Mode Register Values

PRTxDM2[n] PRTxDM1[n] PRTxDM0[n] Drive Mode

0 0 0 Resistive Pull-
down

0 0 1 Strong Drive

0 1 0 High
Impedance –
Digital

0 1 1 Resistive Pull-
up

1 0 0 Open Drain –
High

1 0 1 Slow Strong
drive

1 1 0 High
Impedance –
Analog

1 1 1 Open Drain -
Low

In Table 1, ‘x’ corresponds to the port number and ‘n’
corresponds to the bit in the drive mode register and the
port pin to be configured. For instance, to configure Port 0
Pin 1 as resistive pull-down, clear bit ‘1’ of PRT0DM0,
PRT0DM1, and PRT0DM2 registers. Refer technical
reference manual of the device for a more detailed
overview.

Important point to be noted is all the PRTxDM0 and
PRTxDM1 registers are in Register Bank 1 (refer TRM for
more details on register banks) where as all the PRTxDM2
registers are in Register bank 0. This knowledge is
required to use the drive mode registers in assembly,
where the user has to select the register bank before
accessing the registers, Code 1. In C, compiler takes care
of bank assignments based on the register used.

Code 1:
M8C_SetBank1
or reg[PRT2DM0], 0x20
and reg[PRT2DM1], ~0x20
M8C_SetBank0
and reg[PRT2DM2], ~0x20

In the assembly example Code 1, the first line is a call to
the M8C_SetBank1 macro, which switches the register
bank to ‘1’. This is done because PRT2DM0 and
PRT2DM1 are in register bank 1. Then using the “OR”
instruction and using a mask of 0x20, bit 5 of PRT2DM0
register is set. Then using “AND” instruction and a mask of
inverse of 0x20, bit 5 of the PRT2DM1 register is cleared.
Using M8C_SetBank0, it is switched back to register bank
‘0’, and using the “AND” instruction and a mask of inverse
of 0x20, bit 5 or the PRT2DM2 register is cleared. The
“OR” and “AND” instructions are read, modify, or write
instructions. The content of the register is first read, a
“OR” or “AND” operation is done on the value and then the
result is written back to the same register. With this
method, particular bits are modified without affecting the
others.

Code 2:
PRT2DM0 |= 0x20;
PRT2DM1 &= ~0x20
PRT2DM2 &= ~0x20;

In C, the code (Code 2) becomes much simpler as the
switching of the banks is taken care of by the C compiler.
The “bitwise AND” (&=) or the “bitwise OR” (|=) must be
used with the corresponding masks on the registers.

Example 1: Detecting LED drive
mode
In systems, LEDs are usually sinked through GPIOs to
turn them ON. In certain systems instead of sinking,
GPIOs source current to LEDs to turn them ON. Though
the LED implementation is known when designing the
system, there might be cases where you may want to
upgrade/update the design without changing the firmware
– say you included a sourcing GPIO LED design and
found that the GPIO is not capable of sourcing enough
current or you move to a LED with higher current rating
and change the design to LED sink mode but you want the
device to adjust itself depending on the mode the LEDs
are connected to the GPIOs. This example lets you add
that feature to your design, where you find out the mode in
which the LED is connected to a GPIO pin and then turn
ON/OFF the LED accordingly. The example utilizes the
dynamic drive mode reconfiguration capability of PSoC to
implement this. The following flow chart explains how LED
drive mode is detected internally.

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 6

Figure 4. Detecting LED Drive Mode Algorithm

Hardware Requisites

 CY3210 – PsoCEval1 with 28 Pin CY8C29466-24PXI
PDIP PSoC 1.

 Spare LED and 1 kΩ resistor – for checking LED sink
mode

 CY3217 – MiniProg1

 Connecting wires

Test Procedure
1. Insert CY8C29466-24PXI device into the 28 pin PDIP

socket provided in the CY3210 board
2. Program the device using MiniProg1 with

“AN2094_GPIO_DM_Reconfig.hex” available in the
root directory of AN2094_GPIO_DM_Reconfig project
attached with this application note

3. Connect P0_1 to SW and P0_0 to LED1 as shown in
Figure 5.

Figure 5. Wire Connections for Example 1

4. Connect character LCD to J9 header in CY3210

board
5. Remove JP3 in CY3210 kit for 5 V operation
6. Power the board using MiniProg1 or a 5 V DC

adapter.
7. LCD row 0 should display “LED ACT HI” and when

SW is pressed LED1 glows and LCD row 1 displays
“SW ON” as in Figure 6.

8. Similarly, if you wire up a spare LED in Sink mode via
a 1 kΩ resistor and connect it to P0_0, the LCD will
display “LED ACT LOW” and LED ON/OFF follows
SW ON/OFF.
Figure 6. Example 1 Output

http://www.cypress.com/
http://www.cypress.com/?rID=2541
http://www.cypress.com/?rID=37459

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 7

Shadow Registers
Reading and Writing to a Port
After configuring I/O ports, the PORT DATA registers are
used to write or read data. PORT DATA registers are 8
bits wide. The bytes show the value read from pins of a
particular port or the content of these registers is written
directly to the port.

Port 0 Data Register (PRT0DR, Address = Bank 0, 00h)

Port 1 Data Register (PRT1DR, Address = Bank 0, 04h)

Port 2 Data Register (PRT2DR, Address = Bank 0, 08h)

Port 3 Data Register (PRT3DR, Address = Bank 0, 0Ch)

Port 4 Data Register (PRT4DR, Address = Bank 0, 10h)

Port 5 Data Register (PRT5DR, Address = Bank 0, 14h)

Port 6 Data Register (PRT6DR, Address = Bank 0, 18h)

Port 7 Data Register (PRT7DR, Address = Bank 0, 1Ch)

To write to a particular port pin, use the corresponding
mask and bitwise “AND” or “OR” operation. For example,
to set and clear P0[0] (Code 3 for ASM and Code 4 for C) :

Code 3:
or reg[PRT0DR], 0x01 ; Set P0[0]
and reg[PRT0DR], ~0x01 ; Clear P0[0]

Code 4:
PRT0DR |= 0x01; // Set P0[0]
PRT0DR &= ~0x01; // Clear P0[0]

To read from a port pin, read the PRTxDR register and
use the corresponding bit mask. For example, to check the
status of P0[1] and update an LED on P0[0] (Code 5 and
Code 6):

Code 5:
mov A, reg[PRT0DR]
and A,0x02
jnz PinHigh
; Code to process Pin cleared state
or reg[PRT0DR], 0x01 ; Set P0[0]
PinHigh:
; Code to process Pin set state
and reg[PRT0DR], ~0x01 ; Clear P0[0]

Code 6:
if (PRT0DR & 0x02)
{
 // Code to process Pin Set state
 PRT0DR |= 0x01; // Set P0[0]
}
else
{
 // Code to process Pin cleared state
 PRT0DR &= ~0x01; // Clear P0[0]
}

Use of Shadow Registers
In many designs, same port can have an output pin (LED
pin) as well as an input pin (Switch input – pull-up/down
mode). In such designs, instruction that is used to update
the output pin might latch the input pin permanently to a ‘1’
or ‘0’.

For instance consider the following scenario; there is a
switch input on P0_1, which is configured in pull-down
mode (the switch is between VDD and the Pin). And there
is a LED output on P0_0, which follows the switch state on
P0_1 and the pin is configured as a strong drive (output
pin). Now let us assume the switch is pressed, so LED
needs to be turned ON. The read-modify-write instructions
shown in Code 6 will do the following:

1. Read – PRT0DR = x x x x x x 1 0 (Bit 0 = 0 LED
Off; Bit 1 = ‘1’ as Switch pressed)

2. Modify – (PRT0DR | 00000001) = x x x x x x 1 1

3. Write – PRT0DR = x x x x x x 1 1 (Bit 0 = 1 LED
ON; sets Bit 1 which connects the pin to VDD internally
as writing ‘1’ to the pin in Pull-down drive mode
connects it to VDD)

4. It will be observed that even after the switch is
released, LED never turns OFF because to the device
the switch is always ON (connected to VDD)
irrespective of the actual switch state outside. Further
switch presses will not be recognized by the device.

To overcome this scenario, a variable called shadow
register is used for every such ports (having input and
output combination). When using a shadow register, all
the writes to the pin happens through this variable and this
variable should be initialized in such a way that input pins
are maintained properly all the time. For instance, the
value for a pull-up or ODL input pin is set to ‘1’ in this
register and a pull-down or ODH input is set to ‘0’, so
whenever a read-modify-write happens on other output
pins the input pin states are preserved. Now a read-
modify-write depicted above becomes:

1. Read – Port_0_Data_Shade = x x x x x x 0 0 (Bit 0 =
0 LED off; Bit 1 = ‘0’ as initialized, this not the data
from the port directly)

2. Modify – (Port_0_Data_Shade | 00000001) = x x x x x
x 0 1

3. Write - Port_0_Data_Shade = x x x x x x 0 1

4. Write to Port – PRT0DR = Port_0_Data_Shade

So the same Code 6 with shadow registers becomes:

Code 7:
// Use ‘extern’ when using ShadowRegs UM
extern BYTE Port_0_Data_Shade;

// Using shadow variables in code
if(PRT0DR & 0x02)
{

Port_0_Data_Shade |= 0x01;

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 8

PRT0DR = Port_0_Data_Shade;
}

else
{

Port_0_Data_Shade &= ~0x01;
PRT0DR = Port_0_Data_Shade;

}

In this method, care should be taken to make sure all the
read-modify-write to the port happens through the shadow
register, also considering user module (UM) read/writes
like TX8SW, which switches the TX pin in software. In
order to make sure they happen through shadow registers

and are synchronized, the ShadowRegs UM available
under “Misc Digital” UM category can be used. By placing
this UM and assigning a port to it creates a variable called
Port_x_Data_SHADE in “PSoCConfig.asm” file in the
“Library source files” directory (Figure 7), where ‘x’ is the
port number. Now you can use this variable across files by
importing it using ‘extern BYTE Port_x_Data_SHADE’. By
doing read-write-modify through this variable in your code
will make sure that input pins do not get stuck and the port
data is synchronized across files (Code 7).

Figure 7. Shadow Variable Location in PSoC Designer

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 9

Example 2: Use of Shadow Registers
To demonstrate the importance and use of shadow
registers a simple setup using the CY3210-PSoCEval1
board is created as in Figure 9. In this example, there is a
provision in hardware to enable/disable shadow register
feature on power up. When P0_2 is connected to VDD
during power-up, shadow registers are disabled and when
it is connected to GND, shadow registers are enabled.
This example will demonstrate the scenario explained in
the section Use of Shadow Registers– where same port
has an input switch and output LED.

Hardware Requisites

 CY3210 – PSoCEval1 with 28 Pin CY8C29466-24PXI
PDIP PSoC 1

 CY3217 – MiniProg1

 Connecting wires

Test Procedure
1. Insert CY8C29466-24PXI device into the 28 pin PDIP

socket provided in the CY3210 board
2. Program the device using miniprog1 with

“AN2094_GPIO_with_ShadowRegs.hex” available in
the root directory of
AN2094_GPIO_with_ShadowRegs project attached
with this application note.

3. Connect character LCD to J9 header in CY3210
board

4. For testing the project without shadow variables,
connect P0_0 to LED1, P0_1 to SW and P0_2 to VDD,
Figure 8.
Figure 8. Pin Connections for Example 2 without
Shadow Registers

5. Remove JP3 in CY3210 kit for 5 V operation
6. Power the board using MiniProg1 or a 5 V DC

adapter.
7. Now press SW once and release, and you will

observe LCD row 1 displaying “SW ON” all the time
and LED1 will be ON. This is because there is no
shadow variable used Figure 9.

Figure 9. Example 2 Output without Shadow
Registers

8. Now power off the board, and Connect P0_2 to GND
Figure 10
Figure 10. Pin Connections for Example 2 with
Shadow Registers

9. Power ON the board.

10. LCD row 0 will display “Shadow - ON” and SW press
will work as expected Figure 11.

http://www.cypress.com/
http://www.cypress.com/?rID=2541
http://www.cypress.com/?rID=37459

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 10

Figure 11. Example 2 Output with Shadow Registers

GPIO Interrupts
Interrupts are another important part of the GPIO system,
especially when there is a need to process a digital signal
with priority. The interrupt system in PSoC is a vast topic,
to know about all the available interrupts in PSoC and their
priorities refer the respective device TRMs. This topic will
discuss the GPIO interrupts alone. Each GPIO pin in
PSoC can be configured to generate an interrupt on rising
edge, falling edge or change from previous read event.
This way of configuring the event, which triggers the GPIO
interrupt can be done in two different ways – one way is to
configure interrupts in the PinOut window (as explained in
Device Editor Configuration on page 4, point 4) and
another in firmware. The registers associated with
configuring and enabling GPIO interrupts are tabulated in
Table 3.

Table 3. GPIO Interrupt Configuration Related Registers

Associated
Register

Description Values

PRTxIE Interrupt Enable
register for each port
‘x’. Setting or clearing
a bit in this register
enables/disables the
interrupt on that
particular pin.

1 – Enable
0 – Disable interrupt

PRTxIC0
and
PRTxIC1

Interrupt control
registers – used to set
the type of event that
triggers the interrupt.

Table 4

INT_MSK0 Interrupt enable mask
register 0

Bit 5 of the register is
Global GPIO interrupt
enable/disable bit.
INT_MSK0_GPIO
macro can be used as

Associated
Register

Description Values

a mask to
enable/disable the 5th
bit in the register.

INT_CLR0 Posted interrupt read
and clear register 0

Bit 5 of the register is
GPIO posted interrupt
bit. Writing a 0 to the
bit clears any posted
GPIO interrupts. If the
bit reads 1 then there
is a posted GPIO
interrupt or write a 1 to
post a GPIO interrupt
through Software[4]

Table 4. Interrupt Control Registers Setting

PRTxIC1
[n]

PRTxIC0
[n]

Interrupt
Type

Description

0 0 Disabled Interrupt disabled

0 1 Falling
Edge

Interrupt on 1 to 0
transition of the input
signal

1 0 Rising Edge Interrupt on 0 to 1
transition of the input
signal

1 1 Change
from Read

Change in pin’s
current state with
respect to last read
value of PRTxDR[n]

In Table 4, ‘x’ denotes the port number and ‘n’ denotes the
bit of the register/pin of the port to be configured.

While using GPIO interrupts, it should be kept in mind that
there is only one ISR associated with all the pin interrupts.
It is the responsibility of the user to check at the beginning
of the ISR, which pin caused the GPIO ISR. In the
example Code 8 and Code 9, interrupts on Pin 0 and Pin 1
are enabled. Pin 0 interrupt is configured as a falling edge
ISR whereas P0_1 is configured as ‘change from read’.
GPIO interrupt is enabled using “M8C_EnableIntMask”
macro and finally global interrupt is enabled. In the GPIO
ISR, there are ‘if’ control structures placed to check which
of the pin(s) caused this instance of the ISR and the data
is processed accordingly.

Code 8:
/* P0_0 configured as falling edge
interrupt */

4 Write 0 AND ENSWINT = 0 Clear posted interrupt if it exists.
Write 1 AND ENSWINT = 0 No effect.
Write 0 AND ENSWINT = 1 No effect.
Write 1 AND ENSWINT = 1 Post an interrupt for general purpose
inputs and outputs (pins).

ENSWINT bit is bit 7 of INT_MSK3 register.

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 11

PRT0IC0 |= 0x01;
PRT0IC1 &= ~0x01;

/* P0_1 configured as Change from Read
interrupt */
PRT0IC0 |= 0x02;
PRT0IC1 |= 0x02;

/* Enable P0_1 and P0_0 interrupts */
PRT0IE |= 0x03;

/* Enable GPIO interrupts */
M8C_EnableIntMask(INT_MSK0, INT_MSK0_GPIO);

/* Enable Global interrupts */
M8C_EnableGInt;

Code 9:
/* Function prototype for GPIO ISR */
#pragma interrupt_handler GPIO_ISR

/* GPIO ISR in C where GPIO interrupts are
processed */
void GPIO_ISR(void)
{
/* variable to have a copy of prev P0_1
value for change from read comparison */
static BYTE port0_prevValue;

/* Check if interrupt because of P0_0
falling edge:
First condition checks for P0_0 to be '0'
Second condition checks if there is change
in present and previous values */
if(((PRT0DR & 0x01) == 0) && ((PRT0DR ^
port0_prevValue) == 0x01))
{
/* Process P0_0 interrupt */
}

/* Check if interrupt because of P0_1
change from read */
if ((PRT0DR ^ port0_prevValue)==0x02)
{
/* Process P0_1 interrupt */
}

/* Store values of P0_0 and P0_1 for next
ISR */
port0_prevValue = PRT0DR & 0x03;
}

Do’s and Don’ts while Using Interrupts

 Global interrupt enable bit must be set using
“M8C_EnableGInt” macro

 Drive mode of the GPIO should not be set to high-
impedance analog or else interrupt will never occur for
that particular pin.

 When a GPIO interrupt is configured as ‘Change from
Read’, the Pin value should be read using PRTxDR
register for the next interrupt to occur. Only a change
in the last read value of PRTxDR and current Pin state
triggers this interrupt.

 The ISR function should be defined using “#pragma
interrupt_handler” (as shown in Code 9) directive for
the ISR to properly execute and return control.

 The ISR function defined in C or ASM should be
placed in the ‘boot.tpl’ file at the GPIO ISR location
provided with an ‘ljmp’ instruction as shown in
Figure 13.

Example 3: LED Toggling Using
Interrupts
To demonstrate the use of GPIO interrupts a simple LED
toggle algorithm is implemented in this example. Rising
edge interrupt is enabled on the pin which is connected to
a switch. In the ISR, a simple LED toggling is done. An
oscilloscope can be connected on the LED pin along with
a square wave signal input to the switch pin; it can be
observed that the frequency of the signal at the LED pin
will be half of the frequency given to the switch pin.

Hardware Requisites

 CY3210 – PsoCEval1 with 28 Pin CY8C29466-24PXI
PDIP PSoC 1.

 CY3217 – MiniProg1

 Connecting wires

Test Procedure
1. Insert CY8C29466-24PXI device into the 28 pin PDIP

socket provided in the CY3210 board
2. Program the device using MiniProg1 with

“AN2094_GPIO_Interrupt_Usage.hex” available in the
root directory of AN2094_GPIO_Interrupt_Usage
project attached with this application note.

3. For testing the project, connect P0_0 to LED1, P0_1
to SW as in Figure 5.

4. Remove JP3 in CY3210 kit for 5 V operation
5. Power the board using MiniProg1 or a 5 V DC

adapter.
6. Press SW and see LED1 toggling on each press.
7. Instead of a switch, a square wave signal[5] can also

be connected to the P0_1 and it can be observed that
the signal on P0_0 is half the frequency of the input
signal at P0_1, Figure 12.

5 The maximum frequency of the input signal depends on the
CPU clock, GPIO interrupt latency and GPIO pin capacitance.

http://www.cypress.com/
http://www.cypress.com/?rID=2541
http://www.cypress.com/?rID=37459

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 12

Figure 12. Example 3 Output

Figure 13. GPIO ISR Location in 'boot.tpl'

Other GPIO Resources and Tips
GPIO Global Select Register
The PRTxGS register decides if a GPIO pin is under the
control of the CPU or is connected to the Global In or
Global Out bus. When the bit corresponding to the pin in
PRTxGS register is cleared, the pin can be controlled by
the CPU by writing to the PRTxDR register. When the bit
in PRTxGS register is set and the drive mode of the pin is

set to high impedance (analog or digital), it is routed to
Global In bus, which serves as inputs to various digital
blocks available. If the bit is set and when the drive mode
is other than high impedance, the connection to Global
Out bus is enabled, which connects outputs from various
digital blocks and comparators. Refer this section for
setting the global select register in device editor.

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 13

Analog Mux (AMUX) Bus Control Register
(MUX_CRx)[6]
MUX_CRx register enables/disables connection of a GPIO
pin to the internal analog mux bus. This analog mux bus is
then available as input to various analog blocks inside
PSoC. For instance, setting the bit '0' of MUX_CR1
connects P1_0 to AMuX bus. Refer respective device
TRM for more details on the AMUX settings and routing.

Naming a Pin
Each pin can have a unique name, which can be assigned
as explained in Device Editor Configuration. By giving a
name to a pin, PSoC Designer will automatically generate
macros for all the registers associated with pin in the
PSoCGPIOINT.h for C files and PSoCGPIOINT.asm for
ASM files easy access. The macro list includes macros
for:

 Port data register (PRTxDR)

 Port Drive mode registers (PRTxDMy)

 Port interrupt enable register (PRTxIE)

 Port interrupt setup registers (PRTxICy)

 Port global select register (PRTxGS)

 Pin Mask

6 Only available in CY8C21x34, 21x45, 22x45, 24x94, 28xxx
family of devices.

Table 5 gives an overview of the macros generated in
‘PSoCGPIOINT.h’ file for use in C files and
‘PSoCGPIOINT.inc’ for use in ASM files. These macros
can be directly used in any function to access that pin
related settings and information.

Table 5. Macros Associated with a Named Pin

Pin Name LED_1

Port data register LED_1_Data_ADDR

Port drive mode 0 register LED_1_DriveMode_0_ADDR

Port drive mode 1 register LED_1_DriveMode_1_ADDR

Port drive mode 2 register LED_1_DriveMode_2_ADDR

Port Global Select register LED_1_GlobalSelect_ADDR

Port interrupt enable register LED_1_IntEn_ADDR

Port interrupt control 0 register LED_1_IntCtrl_0_ADDR

Port interrupt control 1 register LED_1_IntCtrl_1_ADDR

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 14

Figure 14. Pin Related Macros

Registers and their Associated Register
Banks
There are two banks available in the PSoC 1 register map.
So it is required for the user to know and understand
which bank each register belongs, for him to modify or
read its content in assembly. In C code, compiler takes
care of the register bank settings. To change the register
bank to bank 0 in ASM, M8C_SetBank0 macro can be
used. Similarly for bank 1 you can use M8C_SetBank1
macro. Table 6 provides the register bank details for each
of the GPIO register discussed in this application note.

Table 6. GPIO Related Registers and their Register Banks

Register Register bank

PRTxDR 0

PRTxDM0 1

PRTxDM1 1

PRTxDM2 0

PRTxIE 0

PRTxGS 0

PRTxIC0 1

PRTxIC1 1

INT_MSK0 0

INT_CLR0 0

MUX_CRx 1

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 15

Document History
Document Title: AN2094 - PSoC® 1 – Getting Started with GPIO

Document Number: 001-40480

Revision ECN Orig. of
Change

Submission
Date

Description of Change

** 1532004 SFV 11/13/2007 Recatalogued application note.

*A 1778285 SFV 12/18/2007 Associated Project files zipped with source document.

*B 2188526 MAXK 06/05/2008 Corrected Table 1. Drive Mode Configuration. (project files zipped with source
files)

*C 3181445 MAXK 02/24/2011 Adapted example project to operate on CY3210-EVAL1 board.
Updated firmware for PSoC Designer 5.1 SP1.
General information and readability updates.
Template changes.

*D 3283657 MAXK 06/15/2011 No Technical updates. Document title updated.

*E 3665015 MSUR 07/03/2012 Changed title to Getting started with GPIO.
Covered relevant topics to get started with GPIOs.
Updated the associated project and template.
Complete rewrite.

http://www.cypress.com/

PSoC® 1 – Getting Started with GPIO

 www.cypress.com Document No. 001-40480 Rev. *E 16

Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.

Products
Automotive cypress.com/go/automotive

Clocks & Buffers cypress.com/go/clocks

Interface cypress.com/go/interface

Lighting & Power Control cypress.com/go/powerpsoc
cypress.com/go/plc

Memory cypress.com/go/memory

Optical Navigation Sensors cypress.com/go/ons

PSoC cypress.com/go/psoc

Touch Sensing cypress.com/go/touch

USB Controllers cypress.com/go/usb

Wireless/RF cypress.com/go/wireless

PSoC® Solutions
psoc.cypress.com/solutions

PSoC 1 | PSoC 3 | PSoC 5

Cypress Developer Community
Community | Forums | Blogs | Video | Training

Technical Support

cypress.com/go/support

PSoC 1 is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.

Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709

Phone : 408-943-2600
Fax : 408-943-4730
Website : www.cypress.com

© Cypress Semiconductor Corporation, 2007-2012. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/
http://www.cypress.com/go/locations
http://www.cypress.com/go/products
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=1936
http://www.cypress.com/?id=24
http://www.cypress.com/?id=1933
http://www.cypress.com/?id=1933
http://www.cypress.com/go/powerpsoc
http://www.cypress.com/go/plc
http://www.cypress.com/?id=64
http://www.cypress.com/go/ons
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1932
http://www.cypress.com/?id=167
http://www.cypress.com/products/?gid=14
http://www.cypress.com/?id=10
http://www.cypress.com/?id=1353
http://www.cypress.com/?id=1573
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2232
http://www.cypress.com/?id=2233
http://www.cypress.com/?id=2203&source=home_support
http://www.cypress.com/?id=2203
http://www.cypress.com/?app=forum
http://www.cypress.com/?id=2200
http://www.cypress.com/?id=2660
http://www.cypress.com/?id=1162
http://www.cypress.com/go/support
http://www.cypress.com/

	Introduction
	GPIO Drive modes
	Device Editor Configuration
	Code Level Configuration

	Example 1: Detecting LED drive mode
	Hardware Requisites
	Test Procedure

	Shadow Registers
	Reading and Writing to a Port
	Use of Shadow Registers

	Example 2: Use of Shadow Registers
	Hardware Requisites
	Test Procedure

	GPIO Interrupts
	Do’s and Don’ts while Using Interrupts

	Example 3: LED Toggling Using Interrupts
	Hardware Requisites
	Test Procedure

	Other GPIO Resources and Tips
	GPIO Global Select Register
	Analog Mux (AMUX) Bus Control Register (MUX_CRx)[]
	Naming a Pin
	Registers and their Associated Register Banks

	Document History
	Worldwide Sales and Design Support
	Products
	PSoC® Solutions

