
Creating and Modifying
User Modules
And other Unnatural Acts

Dave Van Ess
Principal Applications Engineer

2

Objectives
Objective:
• Introductive the fundamental components of a PSoC

User Module.

• Show how XML is used to describe the
intraconnection of the PSoC recourses.

• Create an improved UM (timer16X)using the old UM
(timer16) as a template.

3

User Modules
A User Module is:
• The information required to connect PSoC blocks.

• Software (API) to control it

• A Datasheet

• An Icon

4

User Modules
User Module
• At its most basic form is a directory and an XML file with the

same name.
• The same name must also appear as the NAME attribute in the

<PSOC_USER_MODULE> element in the UM XML file.

• If done correctly the UM is added to the active UM library.

• Other files exist in the User Module directory, but their naming is
controlled by attributes within the UM XML file.

• The other files which are relevant to the UM
• *.ico – User Module icon
• *.htm – User Module data sheet
• *.emf – User Module block diagram

5

User Modules
User Module Directory
• All UMs located at C:\Program Files\Cypress

MicroSystems\PSoC Designer\Data\Stdum

6

User Modules
User Module Directory
• All device descriptions located at C:\Program

Files\Cypress MicroSystems\PSoC Designer\Data
• Think of each as a dictionary of acceptable register and bit field

values for each particular device.

7

User Modules
Making New User Modules:
• Building a UM from scratch is extremely difficult to do.

• It is far easier to start with a copy of an established UM and
modify it to meet your needs.

• Information from several different UMs can be combined to
produce a new UM.

• The counter8 XML and the DAC6 XML could be combined to
produce a waveform generator UM.

• Think of it as gene splicing.

8

User Modules
Project Goal
Build an improved Timer16

• The upper digital block of the present Timer16 has a parameter
selection to interrupt on:
• Capture
• Terminal Count
• Compare True

• The goal is to create a new UM (timer16X) that:
• Generates a Terminal Count interrupt for the upper digital block.

• Generates a Capture interrupt for the lower digital block.

9

User Modules
Step 1
• Make a copy of

Timer16.
• Rename it Timer16X
• Open it

Icon
Base XML

Interrupt template
Datasheet

10

User Modules
Step 2
• Open Timer16.xml

• Use your preferred text editor
• Change USER_MODULE_NAME

to TimerX.
• Might as well change the

FILENAME: while you’re here.
• Its only a comment but it can’t

hurt.

• Close the file and reopen with
Internet Explorer.

• Should open with no problems.
• This checking process will be

done frequently.
• Lets call it CRET

Close, Reopen with Explorer to Test

11

User Modules
Step 3
• Open Timer16.ico
• Alter Icon

12

User Modules
Sanity Check!
Open a 27x project with Designer
• Verify that UM is present.
• Verify that it places.

For many UMs this is all the XML
changes that are required.
• For UMs that have significant changes

in software but no hardware changes.

• This is your chance to change the APIs
of your favorite UM to the way that you
(and God) think they should be, while
leaving the base UM hardware
configuration alone!

13

User Modules
Open CY8C27
Open Tmr1627.xml
XML has 4 main sections
• SHAPE

• For bit fields are set that don’t
change.

• PARAMETER_LIST
• For bit fields are set by user

selection.
• API_REGISTER_ALIS_LIST

• Allows appropriate names of
registers.

• API_FILE LIST
• Lists the API files to be

generated.

14

User Modules
API_REGISTER_ALIAS_LIST
• Allows you to define register names.

15

User Modules
API_FILE
• Allow you to define name and location of all API files.

• Is possible to add multiple assembly files
• Add C routines.

16

User Modules
To modify this UM
• Lower Block must be set to also be an interrupt source in the

SHAPE section.

• The parameter used to select interrupt type must be removed
from the PARAMETER_LIST area.

• Bit Values must be added to the SHAPE section to set the
interrupt type to:
• Terminal Count for the Upper Block
• Capture for the Lower Block

17

User Modules
Step 4
This user module will not work for
25x and 26x family of parts. So
• Open Timer16X.xml

Remove
<MULTI_CHIP_ARCH_MODULE NAME = "Tmr1626" PATH = "\CY8C26" >

<PSOC_DEVICE_SPEC_LIST>
<PSOC_DEVICE_SPEC NAME = "CY8C25000" />
<PSOC_DEVICE_SPEC NAME = "CY8C26000" />

</PSOC_DEVICE_SPEC_LIST>
</MULTI_CHIP_ARCH_MODULE>

CRET
• The CY8C26 directory is no

longer needed.
• Remove it!

18

User Modules
Step 5 Add Interrupt

• Open Tmr1627.xml
• Use interrupt code from

TIMER16_MSB block to add an
interrupt to Timer16LSB block.
• Name this new interrupt source

_CaptureISR

CRET

19

User Modules
Sanity Check!
Open a 27x project with
Designer
• Place Timer16X

• Generate application.

• Go to application editor
• Open boot.asm

• Verify that the new interrupt vector
has been added.

20

User Modules
Step 6 Remove Interrupt Type Parameter

• Open Tmr1627.xml
• Remove the InterruptType parameter.

• Save removed portion in a temporary
file.

• For ClockSync parameter
• Change order from 8 to 7

• For TC_Width parameter
• Change order to from 9 to 8
CRET

21

User Modules
Step 7 Add Interrupts to SHAPE

Open temporary file.
• The REGISTER_NAME,

BITFIELD, and VALUE for each
type of interrupt can be used to
define the personalize the
requires registers.

22

User Modules
Step 7b Add Interrupts to SHAPE

• Open Tmr1627.XML

For TIMER16_LSB
• Add “InterruptType” bit field to the

“DIG_BasicFunction” register.
• Set its value to “TerminalCount”

• Add CONTROL_0 register
• Add “CaptureInt” bit field to it.

• Set its value to “Capture”.

23

User Modules
Step 7c Add Interrupts to SHAPE

For TIMER16_MSB
• Add “InterruptType” bit field to the

“DIG_BasicFunction” register.
• Set its value to “TerminalCount”

• Add CONTROL_0 register
• Add “CaptureInt” bit field to it.

• Set its value to “Normal Mode”.

CRET

All XML changes are done!

24

User Modules
To modify software for this UM
• A new interrupt handler must be added for the new interrupt.

• API must be changed to pass the intended interrupt to enable or
disable type .

• An new interrupt mask must be generated for this interrupt.
• For both C (.h) and assembly (.inc)

• Placement file must be change for 29x parts so both interrupt
masks are always in the same interrupt register.

25

User Modules
Step 8 Add interrupt handler.

• Back up a directory

• Open Timer16INT.asm
• Duplicate the _ISR function and

rename to _CaptureISR
• Add export for new Label

26

User Modules

Step 9 Change APIs

• Open CY8C27
• Open Tmr1627.asm
Both APIs are macros. These will both
changed when Tmr1627.inc is changed.

Although not needed for this particular
example. This step is still shown. Many
UMs you develop will require some
assembly code alteration.

27

User Modules
Step 10 Alter include file.

• Open Tmr1627.inc
• Duplicate the _INT_ MASK

declaration and change for new
_CaptureINT_MASK declaration.

• Change enable and disable
interrupt macros to use A as the
enabling and disabling mask.

28

User Modules
Step 11 Alter .h file.

• Open Tmr1627.h
• Change EnableInt and

DisableInt function
prototypes to require a BYTE
argument.

• Duplicate the _INT_ MASK
#define and change for new
_CaptureINT_MASK define

29

User Modules
Step 12
Alter 29x placement file

Placement files list all legal
placements for a particular chip
family.
Only the 29x family allows the
placement so the each block has a
different interrupt register. DCB13 DBB20

• Open Tmr1627CY8C2900.plc
• Remove

RESOURCE_PLACEMENT_INDEX=“7”

• Renumber all following indexes.

30

User Modules
Final Step.

• Start up Designer for a 29x part

• Verify the correct placement combinations.

• Generate application

• Verify that API compile correctly

31

Summary
• Each User Module is a combination of information on the

intraconnections of PSoC resources, the software to
control it, an icon, and a data sheet.

• It is possible to generate new or modify existing ones

• Different UMs can be combined to produce a new UM

• New UMs can be old ones with no change to the
hardware. Only changes to the your custom APIs.

32

Questions

	Creating and Modifying User ModulesAnd other Unnatural Acts
	Objectives
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	User Modules
	Summary

