AN218107

Author: Takahiro Kuwano Associated Part Family: S25FL-L

AN218107 provides guidelines for migration from Cypress's S25FL-S to S25FL-L Serial NOR Flash Memory products. It describes the similarities and differences in specifications to facilitate this conversion.

Contents

1	Introduction						
2	Feat	ures Comparison	2				
3	Sect	ector Architecture					
4	Command Set Comparison						
	4.1	Identification Commands	8				
	4.2	Status and Configuration Registers	8				
	4.3	Read Latency	9				
	4.4	Extended Addressing	10				
	4.5	QPI Mode	12				
	4.6	Double Data Rate (DDR) Read Commands	12				
	4.7	Suspend and Resume	12				
	4.8	Software Reset	12				
5	Data	Protection	13				

CYPR

MREDDED IN TOMORROW

	5.1	Security Regions	13
	5.2	Deep Power Down	13
	5.3	Status Register Protect	13
	5.4	Flash Array Protection	13
6	Hard	dware Comparison	14
	6.1	Package Compatibility	14
	6.2	Versatile I/O Power Supply (V _{IO})	15
	6.3	Hold (HOLD#) / IO3	15
	6.4	DC Characteristics	15
	6.5	AC Characteristics	16
	6.6	Embedded Algorithms Performance	
7	Con	clusion	
8	Rela	ated Documents	18

1 Introduction

The S25FL-S family is a 3.0-V Flash memory device based on the 65-nm MirrorBit[®] process technology. The S25FL-L family is a 3.0-V, single-supply (no V_{IO} power supply), 4-KB uniform sector Flash memory device based on the 65-nm Floating Gate process technology. The S25FL-L family of Flash devices is the first Cypress product with uniform 4-KB sectors that also has performance and features that are comparable to the S25FL-S family of Flash devices. This document provides guidelines for migrating from the 128-Mbit and 256-Mbit densities of the S25FL-S and S25FL-L families by comparing and contrasting each feature in turn.

2 Features Comparison

The S25FL-L family is command-subset-compatible and footprint-compatible with the S25FL-S family. Table 1 summarizes the feature similarities and differences between 256-Mb and 128-Mb density devices from each family.

Feature/Parameter	S25FL256L S25FL128L	S25FL256S S25FL128S	S25FL127S
Technology Node	65-nm NOR Flash	65-nm NOR Flash	65-nm NOR Flash
Architecture	Floating Gate	MirrorBit [®]	MirrorBit [®]
Density	256 Mb (S25FL256L) 128 Mb (S25FL128L)	256 Mb (S25FL256S) 128 Mb (S25FL128S)	128 Mb
Bus Width	x1, x2, x4	x1, x2, x4	x1, x2, x4
Supply Voltage	2.7 V – 3.6 V	2.7 V - 3.6 V / $1.65 V - 3.6 V$ V _{IO}	2.7 V – 3.6 V
Normal Read Speed (SIO)	6.25 MB/s (50MHz)	6.25 MB/s (50 MHz)	6.25 MB/s (50 MHz)
Fast Read Speed (SIO)	16.6 MB/s (133 MHz)	16.6 MB/s (133 MHz)	13.5 MB/s (108 MHz)
Dual Read Speed (DIO)	33.3 MB/s (133 MHz)	26 MB/s (104 MHz)	27 MB/s (108 MHz)
Quad Read Speed (QIO)	66.6 MB/s (133 MHz)	52 MB/s (104 MHz)	54 MB/s (108 MHz)
Quad Read Speed (QIO - DDR)	66 MB/s (66 MHz)	80 MB/s (80 MHz)	-
Program Buffer Size	256B	512B or 256B	512B or 256B
Erase Sector Size	4 KB / 32 KB / 64 KB	256 KB or 64 KB	256 KB or 64 KB
Parameter Sector Size	-	4 KB	4 KB
Security Region / OTP	1024B	1024B	1024B
Data Protection	Legacy Block Protection Individual and Region Protection	Legacy Block Protection Advanced Sector Protection	Legacy Block Protection Advanced Sector Protection
Suspend / Resume	Erase / Program	Erase / Program	Erase / Program
Addressing	3 / 4 Byte	3 / 4 Byte + Bank	3 / 4 Byte + Bank
Hardware Reset	Yes	Yes	Yes
Operating Temperature	-40°C to +85°C -40°C to +105°C -40°C to +125°C	-40°C to +85°C -40°C to +105°C -40°C to +125°C	-40°C to +85°C -40°C to +105°C
Deep Power Down	Yes – 2 µA (typical)	No	No
ID and CFI	No	Yes	Yes
ID and SFDP	Yes	No	Yes
Packages	8-pin SOIC (208 mils) ¹ 16-pin SOIC (300 mils) ² 8-Contact WSON (5 \times 6 mm) ¹ 8-Contact WSON (6 \times 8 mm) ² 24-Ball FBGA (6 \times 8 mm)	16-pin SOIC (300 mils) 8-Contact WSON (6 × 8 mm) 24-Ball FBGA (6 × 8 mm)	8-pin SOIC (208 mils) 16-pin SOIC (300 mils) 8-Contact WSON (5 × 6 mm) 24-Ball FBGA (6 × 8 mm)

Table 1. Features Comparison

¹ S25FL128L only

² S25FL256L only

3 Sector Architecture

The S25FL-L family has a uniform sector architecture with 4-KB sectors, 32-KB half blocks, and 64-KB blocks. The S25FL-S family has two options for sector architecture depending on the Ordering Part Number (OPN). One is a hybrid sector size option with 64-KB sectors and 4-KB parameter sectors. Another option is uniform 256-KB sectors. Since the sector architectures are different, the S25FL-L and S25FL-S families offer different sector address maps. Table 2 and Table 3 show the sector address map comparison for S25FL256L and S25FL256S.

					S25FL25	6S		
Address Range		S25FL256L		Hybrid 64	KB + 4 KB			
				CR1[2] = 0	CR1[2] = 1	Uniform 256 KB		
0000000h – 0000FFFh	Sector 0			Sector 0				
		Half Block 0						
0007000h – 0007FFFh	Sector 7		Block 0	Sector 7	Sector 0			
0008000h – 0008FFFh	Sector 8		DIUCK U	Sector 8	Secior U			
		Half Block 1						
000F000h - 000FFFFh	Sector 15			Sector 15				
0010000h – 0010FFFh	Sector 16			Sector 16				
		Half Block 2 Half Block 3	Block 1					
0017000h – 0017FFFh	Sector 23			Sector 23	- Sector 1	Sector 1	Sector 1	
0018000h – 0018FFFh	Sector 24			Sector 24				
001F000h - 001FFFFh	Sector 31			Sector 31		Sector 0		
0020000h – 0020FFFh	Sector 32	Half Block 4	– Block 2			Seciol		
0027000h – 0027FFFh	Sector 39			Sector 32	Sector 2			
0028000h – 0028FFFh	Sector 40		DIUCK 2	360101 32	Seciol 2			
		Half Block 5						
002F000h – 002FFFFh	Sector 47							
0030000h – 0030FFFh	Sector 48							
		Half Block 6						
0037000h – 0037FFFh	Sector 39		Block 3	Sector 33	Sector 3			
0038000h – 0038FFFh	Sector 40			Sector 33	Seciol 3			
		Half Block 7						
003F000h – 003FFFFh	Sector 63							

Table 2. Sector Address Map Comparison (Bottom 256 KB Address Range)

					S25FL256	s
Address Range		S25FL256L		Hybrid 64	KB + 4 KB	
				CR1[2] = 0	CR1[2] = 1	Uniform 256 KB
1FC0000h – 1FC0FFFh	Sector 8128					
		Half Block 1016				
1FC7000h – 1FC7FFFh	Sector 8135		Block 508	Sector 538	Sector 508	
1FC8000h – 1FC8FFFh	Sector 8136		DIUCK SUO	Seciol 556	Seciol 508	
		Half Block 1017				
1FCF000h – 1FCFFFFh	Sector 8143					
1FD0000h – 1FD0FFFh	Sector 8144					
		Half Block 1018	Block 509 S		Sector 509	
1FD7000h – 1FD7FFFh	Sector 8151			Sector 539		
1FD8000h – 1FD8FFFh	Sector 8152					
		Half Block 1019				
1FDF000h – 1FDFFFFh	Sector 8159					Sector 127
1FE0000h – 1FE0FFFh	Sector 8160				Sector 510	Sector 127
		Half Block 1020				
1FE7000h – 1FE7FFFh	Sector 8167		Block 510	Sector 540	Sector 517	
1FE8000h – 1FE8FFFh	Sector 8168		DIUCK STU	Seciol 540	Sector 518	
		Half Block 1021				
1FEF000h – 1FEFFFFh	Sector 8175				Sector 525	
1FF0000h – 1FF0FFFh	Sector 8176				Sector 526	
		Half Block 1022				
1FF7000h – 1FF7FFFh	Sector 8183	1	Diack 514	Contor E / 1	Sector 533	
1FF8000h – 1FF8FFFh	Sector 8184		Block 511	Sector 541	Sector 534	
		Half Block 1023				
1FFF000h – 1FFFFFFh	Sector 8191				Sector 541	

Table 3. Sector Address Map Comparison (Top 256 KB Address Range)

4 Command Set Comparison

Table 4 summarizes the commands supported for each device family. Subsequent sections discuss pertinent differences between the families.

Function	Command	Description	S25FL-L	S25FL-S
	RDID	Read ID (JEDEC Manufacturer ID)	9Fh	9Fh
	RSFDP	Read JEDEC Serial Flash Discoverable Parameters	5Ah	5Ah ¹
Read Device ID	RDQID	Read Quad ID	AFh	-
	RUID	Read Unique ID	4Bh	-
	READ_ID	Read Manufacturer and Device Identification	_	90h
	RES	Read Electronic Signature		ABh
	RDSR1	Read Status Register 1	05h	05h
	RDSR2	Read Status Register 2	07h	07h
	RDCR1	Read Configuration Register 1	35h	35h
	RDCR2	Read Configuration Register 2	15h	_
	RDCR3	Read Configuration Register 3	33h	-
	RDAR	Read Any Register	65h	-
	WRR	Write Register (Status-1 and Configuration-1,2,3)	01h	-
	WRR	Write Register (Status-1 and Configuration-1)	-	01h
	WRDI	Write Disable	04h	04h
	WREN	Write Enable for Non-volatile data change	06h	06h
	WRENV	Write Enable for Volatile Status and Configuration Registers	50h	-
	WRAR	Write Any Register	71h	_
	CLSR	Clear Status Register	30h	30h
Register Access	4BEN	Enter 4 Byte Address Mode	B7h	-
	4BEX	Exit 4 Byte Address Mode	E9h	-
	BRRD	Bank Register Read	-	16h
	BRWR	Bank Register Write	-	17h
	BRAC	Bank Register Access	-	B9h
	SBL	Set Burst Length	77h	-
	QPIEN	Enter QPI (Quad SPI 4-4-4)	38h	-
	QPIEX	Exit QPI (Quad SPI 4-4-4)	F5h	-
	DLPRD	Data Learning Pattern Read	41h	41h ²
	PDLRNV	Program NV Data Learning Register	43h	43h ²
	WDLRV	Write Volatile Data Learning Register	4Ah	4Ah ²
	ECCRD	ECC Read (4-Byte Address)	-	18h ²
	ABRD	AutoBoot Register Read	-	14h
	ABWR	AutoBoot Register Write	-	15h

Table 4. Command Set Comparison

¹ S25FL127S only

² Not supported by S25FL127S

Function	Command	Description	S25FL-L	S25FL-S
	READ	Read	03h	03h
	4READ	Read (4-Byte Address)	13h	13h
	FAST_READ	Fast Read	0Bh	0Bh
	4FAST_READ	Fast Read (4-Byte Address)	0Ch	0Ch
	DDRFR	DDR Fast Read	_	$0Dh^{1}$
	4DDRFR	DDR Fast Read (4-Byte Address)	_	0Eh ¹
	DOR	Dual Output Read	3Bh	3Bh
	4DOR	Dual Output Read (4-Byte Address)	3Ch	3Ch
	QOR	Quad Output Read	6Bh	6Bh
Read Flash Array	4QOR	Quad Output Read (4-Byte Address)	6Ch	6Ch
	DIOR	Dual I/O Read	BBh	BBh
	4DIOR	Dual I/O Read (4-Byte Address)	BCh	BCh
	QIOR	Quad I/O Read	EBh	EBh
	4QIOR	Quad I/O Read (4-Byte Address)	ECh	ECh
	DDRDIOR	DDR Dual I/O Read	_	BDh ¹
	4DDRDIOR	DDR Dual I/O Read (4-Byte Address)	_	BEh ¹
	DDRQIOR	DDR Quad I/O Read	EDh	EDh ¹
	4DDRQIOR	DDR Quad I/O Read (4-Byte Address)	EEh	EEh ¹
	PP	Page Program	02h	02h
_	4PP	Page Program (4-Byte Address)	12h	12h
Program Flash Array	QPP	Quad Page Program	32h	32h / 38h
	4QPP	Quad Page Program (4-Byte Address)	34h	34h
	SE	Sector Erase	20h	_
	4SE	Sector Erase (4-Byte Address)	21h	_
	P4E	4-KB Parameter Sector Erase	-	20h
	4P4E	4-KB Parameter Sector Erase (4-Byte Address)	-	21h
	HBE	Half Block Erase	52h	_
, , ,	4HBE	Half Block Erase (4-Byte Address)	53h	_
Erase Flash Array	BE	Block Erase	D8h	_
	4BE	Block Erase (4-Byte Address)	DCh	_
	SE	64-KB or 256-KB Sector Erase	_	D8h
	4SE	64-KB or 256-KB Sector Erase (4-Byte Address)	_	DCh
	CE	Chip Erase / Bulk Erase	60h	60h
	CE	Chip Erase / Bulk Erase (alternate instruction)	C7h	C7h
	EPS	Erase / Program Suspend	75h	_
Erase / Program	EPR	Erase / Program Resume	7Ah	_
Suspend / Resume	ERSP	Erase Suspend	-	75h
	ERRS	Erase Resume	_	7Ah

¹ Not supported by S25FL127S

Function	Command	Description	S25FL-L	S25FL-S
	PGSP	Program Suspend	_	85h
	PGRS	Program Resume	-	8Ah
	SECRE	Security Region Erase	44h	_
	SECRP	Security Region Program	42h	_
Security Region Array	SECRR	Security Region Read	48h	_
indy	OTPP	Programs one byte of data in OTP memory space	_	42h
	OTPR	Read data in the OTP memory space	_	4Bh
	IBLRD	IBL Read	3Dh	-
	4IBLRD	IBL Read (4-Byte Address)	E0h	_
	IBL	IBL Lock	36h	-
	4IBL	IBL Lock (4-Byte Address)	E1h	-
	IBUL	IBL Unlock	39h	_
Array Protection	4IBUL	IBL Unlock (4-Byte Address)	E2h	_
	GBL	Global IBL Lock	7Eh	-
	GBUL	Global IBL Unlock	98h	-
	SPRP	Set Pointer Region Protection	FBh	-
	4SPRP	Set Pointer Region Protection (4-Byte Address)	E3h	_
	IRPRD	IRP Register Read	2Bh	_
	IRPP	IRP Register Program	2Fh	_
	PRRD	Protection Register Read	A7h	_
Individual and Region Protection	PRL	Protection Register Lock (NVLOCK Bit Write)	A6h	_
region rotection	PASSRD	Password Read	E7h	-
	PASSP	Password Program	E8h	-
	PASSU	Password Unlock	EAh	-
	DYBRD	DYB Read	_	E0h
	DYBWR	DYB Write	_	E1h
	PPBRD	PPB Read	_	E2h
	PPBP	PPB Program		E3h
	PPBE	PPB Erase		E4h
Advanced Sector	PLBRD	PPB Lock Bit Read		A7h
Protection	PLBWR	PPB Lock Bit Write	_	A6h
	ASPRD	ASP Read	_	2Bh
	ASPP	ASP Program	_	2Fh
	PASSRD	Password Read	_	E7h
	PASSP	Password Program		E8h
	PASSU	Password Unlock		E9h
	RSTEN	Software Reset Enable	66h	_
Reset	RST/RESET	Software Reset	99h	F0h
	MBR	Mode Bit Reset	FFh	FFh
Deep Power Down	DPD	Deep Power Down	B9h	

Function	Command	Description	S25FL-L	S25FL-S
	RES	Release from Deep Power Down / Device ID	ABh	-

4.1 Identification Commands

4.1.1 Read Identification (RDID 9Fh)

The S25FL-L family and the S25FL-S family both support the RDID (9Fh) command, which outputs manufacturer identification and device identification. The S25FL-S family also outputs the JEDEC Common Flash Interface (CFI) after three bytes of identification. Table 5 provides the comparison of the ID field definitions. The S25FL-L family does not have CFI tables.

Byte #	Description	S25FL256L S25FL128L	S25FL256S S25FL128S S25FL127S
1	Manufacturer ID for Cypress	01h	01h
2	Device ID – Memory Interface Type	60h	02h (256 Mb) 20h (128 Mb)
3	Device ID – Density and Features	19h (256 Mb) 18h (128 Mb)	19h (256 Mb) 18h (128 Mb)
4	ID-CFI Length	Undefined	4Dh
5	Sector Architecture	Undefined	00h (256-KB Sector) 01h (64-KB Sector)
6	Family ID	Undefined	80h
7 - 8	ASCII characters for Model	Undefined	xxh (Model Number)
9 -15	Reserved	Undefined	xxh
16 -	CFI	Undefined	xxh

Table 5. Read Identification (RDID 9Fh) Field Definitions

4.1.2 Read Quad Identification (RDQID AFh)

The S25FL-L family supports the RDQID (AFh) command, which provides the same information as the RDID (9Fh) command in QPI mode. The S25FL-S family does not support the RDQID command.

4.1.3 Read Serial Flash Discoverable Parameters (RSFDP 5Ah)

The S25FL-L family supports the RSFDP (5Ah) command, which outputs the Serial Flash Discoverable Parameters (SFDP). JEDEC (JEDEC-216B) defines the SFDP parameters and consists of a header table, which identifies the SFDP parameters. The S25FL127S device also supports SFDP; however, the number of parameter headers and parameter table contents are different from that of the S25FL-L family. For details regarding the SFDP byte contents, refer to the S25FL256L/S25FL128L and S25FL127S datasheets.

4.1.4 Unique Identification (RUID 4Bh)

The S25FL-L family provides a 64-bit unique number for each device via the RUID (4Bh) command. This can be an alternative feature to the Cypress Programmed Random Number supported by the S25FL-S family.

4.2 Status and Configuration Registers

The S25FL-L family and S25FL-S family both have Status and Configuration registers to report the status of device operations and to configure how the device operates. Table 6 summarizes the Status and Configuration Register Set comparison. The S25FL-L family has a nonvolatile and volatile version of each register. During Power-On Reset (POR), hardware reset, or software reset, the device copies the nonvolatile version of a register to the volatile version to provide the default state of the volatile register. For details regarding the nonvolatile and the volatile register functionalities, refer to the S25FL-L family datasheet.

Register Name	Register Features	S25FL-L	S25FL-S
Status Register 1	Reports ready/busy status and controls block protection functions	~	~
Status Register 2	Reports erase/program suspend status	~	~
Configuration Register 1	Controls certain interface and block protection functions	~	~
Configuration Register 2	Controls certain interface functions	~	
Configuration Register 3	Controls read commands burst wrap behavior and read latency	~	

Although the S25FL-L family and S25FL-S family both provide the same command codes for reading Status Register 1, 2, and Configuration Register 1, register bits assignments are different. Table 7 shows the at-a-glance comparison of status and configuration register bits assignments. Note that the functions of SR1V[6:5] are different between S25FL256L and the S25FL128L. For details of each status register bit, refer to the device-specific datasheet.

	Status Register 1			Status Register 2			Configuration Register 1	
Bits	S25FL256L	S25FL128L	S25FL-S	S25FL-L	S25FL256S S25FL128S	S25FL127S	S25FL-L	S25FL-S
7	SR	P0	SRWD	F	RFU	D8h_O	SUS	LC1
6	TBPROT	SEC	P_ERR	E_ERR	RFU	02h_O	CMP	LC0
5	BP3	TBPROT	E_ERR	P_ERR	RFU	IO3R_O	LB3	TBPROT
4	BP2		RFU		LB2	RFU		
3	BP1		RFU		LB1	BPNV		
2	BP0		RFU		LB0	TBPARM		
1	WEL		ES		QUAD			
0		WIP			PS		SRP1	FREEZE

Table 7. Status Register Bits Comparison

4.3 Read Latency

Some read commands require a read latency to allow time to access the Flash memory array. The read latency cycles are traditionally called dummy cycles. The number of dummy cycles can be configured in both the S25FL-L family (CR3[3:0]) and the S25FL-S family (CR1[7:6]); however, the strategy for the dummy cycles settings are different.

In the S25FL-L family, the 4-bit wide latency code bits for CR3[3:0] represents the exact number of dummy cycles (except 0000b, which represents 8 dummy cycles). In the S25FL-S family, the 2-bit wide latency code bits for CR1[7:6] represents the pointer to the pre-defined number of dummy cycles. Table 8 maps the latency code bits of both device families. Note that the maximum clock frequency supported per latency code bits setting is different in both device families.

For example, the S25FL-L family supports 65 MHz in QIOR with four dummy cycles, while the S25FL-S family supports 90 MHz. For details of the latency code bits including maximum clock frequency, refer to the device-specific datasheet.

S25FL-L	S25FL-S CR1[7:6]						
CR3[3:0]	FAST_READ	DOR	QOR	DIOR	QIOR	DDRQIOR	
0000 (8)	00 / 01 / 10	00 / 01 / 10	00 / 01 / 10	_	-	10	
0001 (1)	-	-	-	01	11	—	
0010 (2)	-	-	-	10	-	_	
0011 (3)	-	-	-	—	-	11	
0100 (4)	_	_	_	_	00 / 01	_	
0101 (5)	-	-	-	_	10	_	
0110 (6)	-	-	-	_	-	00	
0111 (7)	_	_	_	_	_	01	
1000 (8)	00 / 01 / 10	00 / 01 / 10	00 / 01 / 10	-	-	10	
1001 (9) ~ 1111 (15)	_	_	-	-	-	_	

Table 8. Latency Code Bits Map

4.4 Extended Addressing

The S25FL-L family and S25FL-S family both support 4-byte addresses to access devices with densities higher than 128 Mb (16 MB). Table 9 shows the options to enable the extended addressing supported by the S25FL-L family and S25FL-S family.

Table 9.	Extended	Addressing	Options
----------	----------	------------	---------

Option	S25FL-L	S25FL-S
4-Byte Address Commands	Supported	Supported
Extended Address Mode	Supported	Supported
Bank Address Register	Not Supported	Supported

4.4.1 4-Byte Address Commands

The S25FL-L family and S25FL-S family both support commands that always require 4-byte addresses. Table 10 lists all 4-byte commands supported by the S25FL-L family and S25FL-S family.

Table 10. 4-I	Syte Address	Commands
---------------	--------------	----------

Function	Command	Description	S25FL-L	S25FL-S
	4READ	Read (4-Byte Address)	13h	13h
	4FAST_READ	Fast Read (4-Byte Address)	0Ch	0Ch
	4DDRFR	DDR Fast Read (4-Byte Address)	-	0Eh ¹
	4DOR	Dual Output Read (4-Byte Address)	3Ch	3Ch
Read Flash Array	4QOR	Quad Output Read (4-Byte Address)	6Ch	6Ch
	4DIOR	Dual I/O Read (4-Byte Address)	BCh	BCh
	4QIOR	Quad I/O Read (4-Byte Address)	ECh	ECh
	4DDRDIOR	DDR Dual I/O Read (4-Byte Address)	-	BEh ²
	4DDRQIOR	DDR Quad I/O Read (4-Byte Address)	EEh	EEh ²
Program Flash Array	4PP	Page Program (4-Byte Address)	12h	12h

¹ Not Supported by S25FL127S

Function	Command	Description	S25FL-L	S25FL-S
	4QPP	Quad Page Program (4-Byte Address)	34h	34h
	4SE	Sector Erase (4-Byte Address)	21h	-
	4P4E	4-KB Parameter Sector Erase (4-Byte Address)	-	21h
Erase Flash Array	4HBE	Half Block Erase (4-Byte Address)	53h	-
	4BE	Block Erase (4-Byte Address)	DCh	-
	4SE	64-KB or 256-KB Sector Erase (4-Byte Address)	_	DCh
	4IBLRD	IBL Read (4-Byte Address)	E0h	-
Arroy Brotaction	4IBL	IBL Lock (4-Byte Address)	E1h	-
Array Protection	4IBUL	IBL Unlock (4-Byte Address)	E2h	-
	4SPRP	Set Pointer Region Protection (4-Byte Address)	E3h	-
	DYBRD	DYB Read	-	E0h
Advanced Sector Protection	DYBWR	DYB Write	-	E1h
Auvanceu Secior Protection	PPBRD	PPB Read	-	E2h
	PPBP	PPB Program	—	E3h

4.4.2 Extended Address Mode

The S25FL-L family and S25FL-S family both provide a configuration bit that, when enabled, changes all 3-byte address commands to expect a 4-byte address. Most 3-byte address commands are legacy SPI commands. In the S25FL-L family, the Address Length Status (ADS) CR2V[0] bit controls the expected address length for all legacy commands. When the ADS set to '1', legacy commands are changed to require a 4-byte for address field. The 4BEN (B7h) command directory sets this bit to '1' and the 4BEX (E9h) command clears this bit to '0'. In the S25FL-S family, the Extended Address (EXTADD) BAR[7] bit controls the expected address length for all legacy commands. Table 11 lists all the commands requiring 4-byte addressing when the device has the Extended Address Mode enabled.

Function	Command	Description	S25FL-L	S25FL-S
Read Device ID	RSFDP	Read JEDEC Serial Flash Discoverable Parameters	5Ah	5Ah ¹
	READ	Read	03h	03h
	FAST_READ	Fast Read	0Bh	0Bh
	DDRFR	DDR Fast Read	_	0Dh ²
	DOR	Dual Output Read	3Bh	3Bh
Read Flash Array	QOR	Quad Output Read	6Bh	6Bh
	DIOR	Dual I/O Read	BBh	BBh
	QIOR	Quad I/O Read	EBh	EBh
	DDRDIOR	DDR Dual I/O Read	_	BDh ²
	DDRQIOR	DDR Quad I/O Read	EDh	EDh ²

Table 11. Extended Address Mode with 3-Byte Address Commands

¹ S25FL127S only

Program Flash Array

Erase Flash Array

² Not Supported by S25FL127S

PP

QPP

SE

Page Program

Sector Erase

Quad Page Program

02h

32h / 38h

_

02h

32h

20h

Function	Command	Description	S25FL-L	S25FL-S
	P4E	4-KB Parameter Sector Erase	-	20h
	HBE	Half Block Erase	52h	-
	BE	Block Erase	D8h	-
	SE	64-KB or 256 KB Sector Erase	-	D8h
	SECRE	Security Region Erase	44h	-
Security Region Array	SECRP	Security Region Program	42h	-
	SECRR	Security Region Read	48h	-
	IBLRD	IBL Read	3Dh	-
	IBL	IBL Lock	36h	-
Array Protection	IBUL	IBL Unlock	39h	-
Anay Flotection	GBL	Global IBL Lock	7Eh	-
	GBUL	Global IBL Unlock	98h	-
	SPRP	Set Pointer Region Protection	FBh	_

4.4.3 Bank Address Register

The S25FL-S family has a Bank Address Register (BAR), which supplies the high-order bits of the address when legacy 3-byte address commands are in use. The S25FL-L family does not support this option.

4.5 QPI Mode

Legacy SPI commands always send the instruction one-bit wide (serial I/O) on the SI (IO0) signal. The S25FL-L family also supports the QPI mode in which all transfers between the host system and memory are four bits wide on IO0 to IO3, including all instructions. The S25FL-S family does not support QPI mode. For details of the QPI mode, refer to the S25FL-L family datasheet.

4.6 Double Data Rate (DDR) Read Commands

The S25FL-L family and the S25FL-S family, except S25FL127S, support Double Data Rate (DDR) commands. The S25FL-S family, except S25FL127S, supports DDR Single I/O, Dual I/O, and Quad I/O read commands but the S25FL-L family only supports the DDR Quad I/O Read command.

4.7 Suspend and Resume

The S25FL-L family and S25FL-S family both support Erase/Program suspend and resume. The S25FL-S family has dedicated suspend and resume commands for each erase and program; however, in the S25FL-L family, common commands are used for erase and program. Table 12 compares the suspend and resume commands.

Function	S25FL-L	S25FL-S
Erase Suspend	EPS 75h	ERSP 75h
Program Suspend	EF3 750	PGSP 85h
Erase Resume	FPR 7Ah	ERRS 7Ah
Program Resume		PGRS 8Ah

Table 12. Suspend and Resume Commands

4.8 Software Reset

The S25FL-L family and S25FL-S family both support Software Reset commands that restore the device to its initial power up state; however, the command code and its impact are different between two device families. For details of the Software Reset, refer to the datasheets.

5 Data Protection

5.1 Security Regions

The S25FL-L family and S25FL-S family both have a 1024-byte address space that is separated from the main Flash array, referred to as the "Security Regions" by the S25FL-L family and the "Secure Silicon Region (OTP)" by the S25FL-S family. Table 13 shows the feature/parameter comparison between the Security Regions and the Secure Silicon Region. The S25FL-L family does not have a Cypress Programmed Random Number in the Security Region, but it has the RUID (4Bh) command that provides a similar functionality.

Feature/Parameter	S25FL-L	S25FL-S
Array Size	1024 Bytes (256 Byte x 4 Regions)	1024 Bytes (32 Byte x 32 Regions)
Read Array Command	SECRR (48h)	OTPR (4Bh)
Program Array Command	SECRP (42h)	OTPP (42h)
Erase Array Command	SECRE (44h)	Not Supported
Password Protection	Supported	Not Supported
Lock Method	LB3, LB2, LB1, LB0 (CR1NV[5:2]) NVLOCK (PR[0])	Lock Bytes in Region 0 FREEZE (CR1[0])
Cypress Programmed Random Number	Not Supported	Programmed in Region 0

T 1 1 40	• •	D ·	• ·
Table 13.	Security	Regions	Comparison

5.2 Deep Power Down

The S25FL-L family supports the Deep Power Down (DPD) command that offers an alternative means of data protection. During DPD, the device ignores all commands, except for the Release from Deep Power Down (RES ABh) command and hardware reset. The S25FL-S family does not support this feature.

5.3 Status Register Protect

The S25FL-L family and S25FL-S family both have a legacy status register protection method via bit 7 in the Status Register (SRP0 in the S25FL-L and SRWD in the S25FL-S). The S25FL-L family has an additional SRP1 bit in the Configuration Register 1. The SRP1 adds more flexible and secure functionality to the status register protection.

5.4 Flash Array Protection

The S25FL-L family and S25FL-S family both have some Flash array protection methods. Subsequent sections summarize the similarities and differences of the device families.

5.4.1 Legacy Block Protection

The S25FL-L family and S25FL-S family both have the Legacy Block Protection that can protect an address range of the main Flash array from program and erase operations. The S25FL-L family provides more flexibility for the array protection map by additional Status and Configuration Register bits. Table 14 shows the related Status and Configuration Register bits to the Block Protection method of each device family. Note that in the S25FL-L family, Legacy Block Protection is mutually exclusive with the Individual Block Lock (IBL) protection mechanism. The Write Protect Selection (WPS) bit (CR2V[2]) is used for selecting one of the two protection mechanisms.

Function	S25FL-L	S25FL-S
Block Protection Bit (BPx)	SR1V[5:2] (S25FL256L) SR1V[4:2] (S25FL128L)	SR1[4:2]
Top or Bottom Protection (TBPROT)	SR1V[6]	TBPROT (CR1[5])
Complement Protection (CMP)	CR1V[6]	-
Sector / Block Protect (SEC)	SR1V[6]	-
Write Protect Selection (WPS)	CR2V[2]	-

Table 14. Block Protection Register Bits

5.4.2 Individual and Region Protection (IRP) / Advanced Sector Protection (ASP)

The S25FL-L family and S25FL-S family both have a set of protection methods, referred to as the "Individual and Region Protection (IRP)" by the S25FL-L family and the "Advanced Sector Protection (ASP)" by the S25FL-S family. The IRP and ASP both provide volatile and nonvolatile sector, block, or region protection methods but the actual functionalities are different. Table 15 summarizes a comparison of IRP and ASP features. For details of the IRP and ASP, refer to the datasheets.

Feature	Parameter	S25FL-L	S25FL-S
	Feature Name	Individual Block Lock (IBL)	Dynamic Protection Bits (DYB)
	Protection Granularity	Sector or Block	Sector
Volatile Protection	Related Commands	IBLRD (3Dh) / 4IBLRD (E0h) IBL (36h) / 4IBL (E1h) IBUL (36h) / 4IBUL (E2h) GBL (7Eh) GBUL (98h)	DYBRD (E0h) DYBWR (E1h)
	Related Register Bits	WPS (CR2V[2]) IBLLBB (IRP[4])	-
	Feature Name	Pointer Region Protection (PRP)	Persistent Protection Bits (PPB)
	Protection Granularity	Sector or Block Region	Sector
Non-volatile Protection	Related Commands	SPRP (FBh) / 4SPRP (E3h) IRPRD (2Bh) IRPP (2Fh) PRRD (A7h) PRL (A6h) PASSRD (E7h) PASSP (E8h) PASSU (Eah)	PPBRD (E2h) PPBP (E3h) PPBE (E4h) PLBRD (A7h) PLBWR (A6h) ASPRD (2Bh) ASPP (2Fh) PASSRD (E7h) PASSP (E8h) PASSU (E9h)
	Related Register Bits	PWDMLB (IRP[2]) PSLMLB (IRP[1]) PERMLB (IRP[0]) NVLOCK (PR[0])	PWDMLB (ASPR[2]) PSTMLB (ASPR[1])

Table 1	5. IRP	and ASP	Features	Comparison
1 4010 1	0.1111		i outaroo	Companioon

6 Hardware Comparison

6.1 Package Compatibility

Table 16 shows the supported packages in the S25FL-L family and S25FL-S family. S25FL128L does not support 16pin SOIC (300 mil) and 8-contact WSON (6 x 8 mm) packages, while S25FL128S and/or S25FL127S support them.

Pookogo Nomo	256 Mb		128 Mb			
Package Name	S25FL256L	S25FL256S	S25FL128L	S25FL128S	S25FL127S	
8-pin SOIC (208 mil)			✓		✓	
16-pin SOIC (300 mil)	✓	✓		√	√	
8-Contact WSON (5 × 6 mm)			✓		✓	
8-Contact WSON (6 \times 8 mm)	✓	\checkmark		\checkmark		
5 x 5 ball FBGA (6 \times 8 mm)	~	\checkmark	\checkmark	\checkmark	\checkmark	
4 x 6 ball FBGA (6 \times 8 mm)	✓	✓	✓	✓	✓	

Table 16. Package Compatibility

6.2 Versatile I/O Power Supply (V_{IO})

The S25FL-S family supports the Versatile I/O (V_{IO}) supply that is the voltage source for all device input receivers and output drivers. The S25FL-L family is a single-supply-voltage device that does not support the Versatile I/O (V_{IO}).

6.3 Hold (HOLD#) / IO3

The S25FL-S family supports serial communications hold (stop) through the HOLD# pin. HOLD# is a multiplexed pin; during Quad communication, it becomes IO3. The S25FL-L family does not support the hold functionality; instead, RESET# replaces HOLD# and acts as a hardware reset when CS# is HIGH. RESET# is also multiplexed with IO3 for Quad mode.

6.4 DC Characteristics

Table 17 shows a comparison of the DC parameters for S25FL256/128L and S25FL256/128S in the industrial plus (-40 °C to +105 °C) temperature range. For details and parameters at other temperature ranges, refer to the datasheets.

0. make at	Parameter Operating	S25FL256L / S25FL128L			S25FL256S / S25FL128S			Unit
Symbol	(–40 °C to +105 °C)	Min	Typical	Мах	Min	Typical	Max	Unit
V _{DD} (min)	V _{DD} (minimum operation voltage)	2.7	_	_	2.7	-	_	V
V _{DD} (cut-off)	V _{DD} (Cut off where reinitialization is needed)	2.4	_	_	2.4	-	_	V
V _{DD} (low)	V _{DD} (low voltage for initialization to occur)	1.0	-	_	1.6	-	-	V
V _{IL}	Input Low Voltage	-0.5	-	$0.3 \text{ x V}_{\text{DD}}$	-0.5	-	0.2 x V _{IO}	V
V _{IH}	Input High Voltage	$0.7 \text{ x V}_{\text{DD}}$	-	V _{DD} + 0.4	0.7 x V _{IO}	-	V _{IO} +0.4	V
V _{OL}	Output Low Voltage	-	-	0.2		-	0.15 x V _{IO}	V
V _{OH}	Output High Voltage	V _{DD} - 0.2	-		0.85 x V _{IO}	-		V
lu	Input Leakage Current	-	-	±4	-	-	±4	μA
I _{LO}	Output Leakage Current	_	_	±4	-	_	±4	μA
	Active Power Supply Current (READ) – Serial SDR@133 MHz	_	30	40	_	_	35	mA
I _{CC1}	Active Power Supply Current (READ) – Quad DDR@66 MHz	-	30	40	-	-	75	mA
I _{CC2}	Active Power Supply Current (Page Program)	-	40	60	_	-	100	mA
I _{CC3}	Active Power Supply Current (WRR or WRAR)	_	40	60	_	_	100	mA
I _{CC4}	Active Power Supply Current (SE)	-	40	60	-	-	100	mA
I _{CC5}	Active Power Supply Current (HBE, BE)	-	40	60	-	_	100	mA
1	Standby Current (SPI, DIO, QIO)	_	20	45	_	70	300	μA
I _{SB}	Standby Current (QPI)	_	60	110	_	-	_	μA
I _{DPD}	Deep Power Down Current	_	2	30	-	-	_	μA
IPOR	Power On Reset Current	_	15	30	-	_	-	mA

Table 17	DC Parameters	Comparison
		Companson

6.5 AC Characteristics

Table 18 and Table 19 show a comparison of the SDR/DDR AC parameters for S25FL256/128L and S25FL256/128S in the industrial plus (-40 °C to +105 °C) temperature range. For details and parameters at other temperature ranges, refer to the datasheets.

Ormulaul	Parameter	S25FL256L / S2	5FL128L	S25FL256S /	1 Junit	
Symbol	(–40 °C to +105 °C)	Min	Max	Min	Max	Unit
F _{SCK, R}	SCK Clock Frequency for READ and 4READ instructions	_	50	_	50	MHz
F _{SCK, C}	SCK Clock Frequency for dual and quad commands	-	133	_	104	MHz
P _{SCK}	SCK Clock Period	1/ F _{SCK}	-	1/ F _{scк}	-	ns
t _{wH} , t _{CH}	Clock HIGH Time	50% Р _{SCK} ±5%	-	45% Р _{SCK}	-	ns
t _{wL} , t _{CL}	Clock LOW Time	50% Р _{SCK} ±5%	_	45% Р _{SCK}	_	V/ns
t _{CRT} , t _{CLCH}	Clock Rise Time (slew rate)	0.1	_	0.1	_	V/ns
t _{CFT} , t _{CHCL}	Clock Fall Time (slew rate)	0.1	_	0.1	_	ns
	CS# HIGH Time (Any Read Instructions)	20	_	10	-	ns
t _{CS}	CS# HIGH Time (All other Non-Read instructions)	50	_	50	-	ns
t _{CSS}	CS# Active Setup Time (relative to SCK)	3	_	3	_	ns
t _{CSH}	CS# Active Hold Time (relative to SCK)	5	_	3	3000	ns
t _{su}	Data in Setup Time	3	_	2	_	ns
t _{HD}	Data in Hold Time	2	_	2	_	ns
t _V	Clock LOW to Output Valid	-	8	-	8	ns
t _{HO}	Output Hold Time	1	-	2	_	ns
t _{DIS}	Output Disable Time	-	8	-	8	ns
t _{WPS}	WP# Setup Time	20	-	20	-	ns
t _{WPH}	WP# Hold Time	100	-	100	_	μs
t _{DP}	CS# HIGH to Deep Power Down Mode	_	3	-	_	μs
t _{RES}	CS# HIGH to Release from Deep Power Down Mode	-	5	_	-	μs
t _{QEN}	QIO or QPI Enter mode, time needed to issue next command	_	1.5	_	_	μs
t _{QEXN}	QIO or QPI Exit mode, time needed to issue next command	-	1	_	_	μs

Table 18. SDR AC Characteristics Compariso	on
--	----

O multi al	Parameter	S25FL256L/	S25FL128L	S25FL256S	L la M	
Symbol	(–40 °C to +105 °C)	Min	Max	Min	Мах	Unit
F _{SCK, R}	SCK Clock Frequency for DDR READ instructions	-	66	_	80	MHz
P _{SCK, R}	SCK Clock Period for DDR READ instruction	1/ F _{scк}	-	12.5	-	ns
t _{wH} , t _{CH}	Clock HIGH Time	50% Р _{SCK} -5%	-	45% Р _{SCK}	-	ns
t _{WL} , t _{CL}	Clock LOW Time	50% Р _{SCK} -5%	-	45% Р _{SCK}	-	V/ns
t _{CRT}	Clock Rise Time (slew rate)	1.5	-	-	-	V/ns
t _{CFT}	Clock Fall Time (slew rate)	1.5	-	-	-	ns
	CS# HIGH Time (Any Read Instructions)	20	_	10	-	ns
t _{cs}	CS# HIGH Time (All other Non-Read instructions)	50	_	-	-	ns
t _{CSS}	CS# Active Setup Time (relative to SCK)	3	_	3	_	ns
t _{CSH}	CS# Active Hold Time (relative to SCK)	_	_	3	_	ns
t _{su}	Data in Setup Time	3	_	1.5	3000	ns
t _{HD}	Data in Hold Time	2	_	1.5	_	ns
t _V	Clock LOW to Output Valid	_	8	_	6.5	ns
t _{HO}	Output Hold Time	1	_	1.5	_	ns
t _{DIS}	Output Disable Time	- 8		-	8	ns
t _{LZ}	Clock to Output Low Impedance	_	-	0	8	ns
t_{O_skew}	First IO to last IO data valid time	_	600	-	600	ps

Table 19. DDR AC Characteristics Comparison

6.6 Embedded Algorithms Performance

Table 20 shows a comparison of the program and erase performance for S25FL256/128L and S25FL256/128S. For details of program and Erase performance, refer to the datasheets.

Symbol	Parameter	S25FI	L256L / S25	FL128L	S25FI	L256S / S25F	FL128S	Unit
Symbol	Parameter	Min	Typical	Мах	Min	Typical	Max	Unit
tw	Non-volatile Register Write Time	-	145	750	-	140	500	ms
t _{PP}	Page Programming (256 Bytes)	-	300	1200	-	250	750	μs
t _{BP1}	Byte Programming (First Byte)	-	50	60	-	-	-	μs
t _{BP2}	Additional Byte Programming (After First Byte)	-	6	20	-	-	-	μs
t _{SE}	Sector Erase Time (4-KB physical sectors)	-	50	200	-	130	650	ms
t _{HBE}	Half Block Erase Time (32-KB physical sectors)	-	190	363	_	-	-	ms
t _{BE}	t _{BE} Block Erase Time (64-KB physical sectors)		270	725	_	130	650	ms
+	Chip Erase Time (256 Mb)	_	140	360	-	66	330	S
t _{CE}	Chip Erase Time (128 Mb)	-	70	180	-	33	165	S

Table 20. Program and Erase Pe	erformance Comparison
--------------------------------	-----------------------

7 Conclusion

The S25FL-L family is serial and multi-I/O command-subset- and footprint-compatible with the S25FL-S family. Migration from the S25FL-S family to the S25FL-L family requires some modifications to accommodate the sector architecture, register set, and data protection methods offered by the S25FL-L family.

8 Related Documents

Table 21. Cypress SPI NOR Flash Product Specific Datasheets

Product Family	Spec Number	Document Title
FL-S Family	001-98283	S25FL128S, S25FL256S 128 Mbit and 256 Mbit 3.0V SPI Flash Memory
TE-S Family	001-98282	S25FL127S 128 Mbit (16 Mbyte) 3.0V SPI Flash Memory
FL-L Family	002-00124	S25FL256L 256 Mbit, S25FL128L 128 Mbit SPI Flash Memory

Document History

Document Title: AN218107 - Migration from S25FL-S to S25FL-L Serial NOR Flash Memory

Document Number: 002-18107

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	5558266	TKUW	12/19/2016	New application note.
*A	5639512	TKUW	06/14/2017	Added Read Latency
				Added Package Compatibility
				Updated template

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

Cypress Semiconductor 198 Champion Court San Jose, CA 95134-1709

© Cypress Semiconductor Corporation, 2016-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under these claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.