

Document No. 002-25469 Rev. ** 1

ECC Injection Tests in Traveo MCUs - KBA225469

This guide explains Error Correction Code (ECC) Injection Tests in Traveo MCUs.

In Traveo MCUs, there is built-in ECC logic that helps in detecting and correcting single-bit errors or in detecting 2- or multi-bit errors. This built-in ECC logic is
available within many peripheral memories of Traveo MCUs such as TCRAM, TCFLASH, VRAM, Work Flash, IRC Vector Address RAM, CAN FD RAM, and
SYSRAM.

When a product is deployed in the field, an error in these memories can happen due to Soft Errors. If the error results in a 1-bit flip of the memory, the hardware
by itself can correct this 1-bit flip when the affected memory is read. On the other hand, if the flips are in multiple bit locations, the hardware can trigger an Interrupt
intimating the user that a serious issue has occurred and suitable actions (for example, a Software Reset) should be done.

Traveo MCUs also provide necessary hardware and Test Registers (known as Injection Registers) that could simulate the data corruptions and check if the ECC
logic is able to detect or correct these errors. These tests can be performed as part of the functional safety module associated with the product design.

This guide focuses on the details of these Injection Registers and how they can be used to simulate the errors. The guide also provides sample code fragments
that can be used to test the ECC feature available within a peripheral memory.

Note that Green Hills Software (GHS) has been used for code development and testing of all codes provided in this guide.

1. ECC for TCFLASH

TCFLASH is capable of correcting 1-bit errors and detect up to 2-bit errors using 8-bit error correcting codes for every 64 bits in the memory. ECC is generated
upon write to the address in the TCFLASH and error correction/detection is performed upon read.

See the Platform manual TCFLASH chapter Section 3.8 for more details on ECC generation, Syndrome and ECC registers.

If ECC test functionality is enabled, upon detecting 1-bit errors, the TCFLASH corrects the bit and generates an interrupt. If errors are detected in two or more bits,
the TCFLASH cannot correct the error but can detect the 2-bit error. This causes bus error that in turn leads to Synchronous External Abort.

The Interrupt Vector map is shown below; IRQ No. 8 is used for TCFLASH 1-bit ECC correction interrupt. Note that the interrupt is generated upon detecting and
correcting 1-bit ECC error and TCFCFG_FSECIR. SECINT bit is set.

https://en.wikipedia.org/wiki/Soft_error
https://www.ghs.com/
http://www.cypress.com/file/219516/download

Document No. 002-25469 Rev. ** 2

Figure 1. TCFLASH ECC IRQ

To test the TCFLASH ECC functionality via AXI (Advanced eXtensible Interface), appropriate error injection registers need to be used. By enabling the error
injection feature, any read access to the TCFLASH memory location will result in an ECC error as the data bits read will be XORed with the ECC error injection
mask to flip the bit accordingly.

1.1 Registers Needed for TCFLASH ECC Tests

Table 1. TCFLASH ECC Registers

Abbreviated Register
Name

Register Name Register Details

TCFCFG_FCPROTKEY TCFLASH Configuration Protection Key
register

Protection key register to unlock write to TCFLASH
registers once

TCFCFG_FECCCTRL TCFLASH ECC Control register ECC control register to enable or disable ECC

TCFCFG_FDATEIR TCFLASH Data Bit Error-Injection register Error injection bit positions in 64- bit data

TCFCFG_FECCEIR TCFLASH ECC it Error Injection register Error injection bit positions in 8- bit ECC

TCFCFG_FSTAT TCFLASH Status register Status to indicate interrupt and mask

TCFCFG_FECCEAR TCFLASH ECC Error Address register Indicates ECC error address in case of 1-bit error

Document No. 002-25469 Rev. ** 3

Abbreviated Register
Name

Register Name Register Details

TCFCFG_FUCEAR TCFLASH Uncorrectable Error Address
register

Indicates the ECC error address location upon detecting 2-
bit non-correctable error

1.2 Sample Codes

1.2.1 1-bit ECC Error Injection with AXI Access

Consider the following function:

/*Testing ECC functionality with 1-bit Error Injection */

static void Test_Ecc_1bit(void)

{

 /* Unlock */

 TCFCFG_FCPROTKEY = 0xCF61F1A5;

 /* Inject Error (bit 0) in LS 32 bit */

 TCFCFG_FDATEIR_L = 0x01U;

 /* Unlock */

 TCFCFG_FCPROTKEY = 0xCF61F1A5;

 /* Inject Error in MS 32 bit (not set) */

 TCFCFG_FDATEIR_H = 0U;

 /* Unlock */

 TCFCFG_FCPROTKEY = 0xCF61F1A5;

 /* Enable 1-bit ECC detection Interrupt*/

 TCFCFG_FSECIR = 1U;

 /* Clear Cache */

 DSB();

 /* Read the location to inject error*/

Document No. 002-25469 Rev. ** 4

 Read_FG = *((uint32_t*)0x01B000FC);

}

Note that the byte setting TCFCFG_FDATEIR_L to 0x01 will inject an error into the 0th bit of the lower 32 bits of the data. This function enables the Interrupt
Service Routine (ISR) when a 1-bit ECC error is detected and corrected. The IRQ 8 is mapped to TCFLASH Single Bit Error occurrence and associated ISR can
be used to log any information about the ECC error. A sample code to handle this is shown below:

/* ISR for the 1-bit ECC detection and correction by TCFLASH via AXI access. */

 FN_IRQ_DEFINE_BEGIN(testecc, INTERRUPTS_IRQ_NUMBER_8)

{

/* 1-bit ECC error detected while accessing a location of TCFLASH via AXI

 Clear Interrupt source */

 TCFCFG_FCPROTKEY = 0xCF61F1A8;

 TCFCFG_FSECIR |= 0x10U;

}

FN_IRQ_DEFINE_END()

As shown in Figure 2, after executing read to a location in TCFLASH (via AXI), the single-bit ECC error is injected into the data field of that location and an ECC
error is detected, and corrected, the control goes to the ISR.

Document No. 002-25469 Rev. ** 5

Figure 2. TCFLASH 1-Bit ECC Code

Figure 3. TCFLASH 1-Bit Interrupt Handler

Document No. 002-25469 Rev. ** 6

The register values can also be monitored to check the ECC error address, ECC error detection interrupt, and the Syndrome value. In GHS, this can be done
using View > Registers option after entering Debug mode.

Figure 4. TCFLASH Error registers

From the value of the syndrome, it can be inferred that bit 0 is flipped and an error was detected during ECC check. Note that the 128-bit aligned address is
reported in the TCFCFG_FECCEAR register due to the properties of the cache.

1.2.2 2-bit ECC Error Injection via AXI Access

Consider the following function:

/* Testing the ECC functionality of TCFLASH with 2-bit Error injection */

static void Test_Ecc_2bit(void)

{

 TCFCFG_FCPROTKEY = 0xCF61F1A5;/* Unlock */

 TCFCFG_FDATEIR_L = 0x03U; /* Inject Error in LS 32 bit */

 TCFCFG_FCPROTKEY = 0xCF61F1A5;/* Unlock */

 TCFCFG_FDATEIR_H = 0x00U; /* Inject Error in MS 32 bit */

 TCFCFG_FCPROTKEY = 0xCF61F1A5;/* Unlock */

 TCFCFG_FSECIR = 1U; /* Enable 1-bit ECC detection Interrupt*/

 /* Read the location to inject 2-bit error,

 Control would enter Data Abort handler*/

Document No. 002-25469 Rev. ** 7

 Read_FG = *((uint32_t*)0x01B000F0);

 }

Writing 0x03 to TCFCFG_FDATEIR_L injects 2-bit errors into the TCFALSH location. 2-bit ECC errors can be detected but cannot be corrected; this will result in a
bus error as shown in Figure 5:

Figure 5. TCFLASH 2-Bit ECC Code

Document No. 002-25469 Rev. ** 8

Figure 6. Data Abort for 2-Bit TCFLASH Error

Bus error results in Synchronous External Data Abort as shown below. The DFAR register holds the address, which when accessed, results in the abort.

Document No. 002-25469 Rev. ** 9

Figure 7. Registers During Abort Mode

The Syndrome indicates that the ECC error detected is a 2-bit error; the error can be detected but not corrected. Also, the ECC address is reported in
TCFCFG_FUCEAR.

Figure 8 TCFLASH Error registers during Abort

The reported value in TCFCFG_FECCEAR is 0x01b00e0 instead of 0x01b00f0 because of the memory region attribute of write-back cacheable for the TCFLASH
region. Because the cache lane is 32-byte aligned, wrap-around occurs as shown below while trying to access 0x01b000f0 as follows:

Access to 0x01b000f0 -> cache controller fetches from: 0x01b000f0, 0x01b000f8, 0x01b000e0, 0x01b000e8

Because TCFCFG_FECCEAR is updated with the 128 bit-aligned address that was last read, you can observe 0x01b000e0. If the memory region is made non-
cacheable, you would see the 128 bit-aligned read address, which in this case would be 0x01b000f0.

Note the following important points while performing TCFLASH ECC error injection:

 If ECC is enabled, error injection happens globally across the address range. i.e., errors are injected in any read location in TCFLASH via both AXI and
TCM space.

Document No. 002-25469 Rev. ** 10

 While testing TCFLASH ECC via AXI, it is recommended to place the test handler (ISR) in a RAM location or execute the handler via TCM space (disable
ECC checks in CPU). If not, it may trigger ECC error detection continuously in case of 1-bit ECC and may result in prefetch aborts in case of 2-bit ECC
because any read to the code region also gets injected with errors; the CPU prefetch unit will continue fetching code from flash memory that it wants to
execute.

You can also choose to inject errors into the ECC bits in the TCFLASH instead of data bits by writing to FECCEIR register.

See ARM manuals for details on ECC error checks in case of TCM access.

2. ECC for IRC Vector Address RAM

The interrupt controller block in Traveo MCU is equipped with an SRAM which has the ECC protection function. This SRAM holds the vector address of the
mapped interrupt vectors. If a 1-bit error (correctable) occurs in this SRAM memory, the IRCn_EEI:EEIS bit is set and an IRQ is generated if the IRQVAr register is
read by the CPU or from the IRQ processing stage.

If an error of 2 or more bits (uncorrectable) occurs, the IRCn_EEI:EENS bit is set and an NMI is generated if the IRQVAr register is read by the CPU. If the SRAM
read happens from the Interrupt Controller, a transition is made to the function pointer indicated by IRCn_IRQEEVA. Therefore, also make sure that a valid
address is set in IRCn_IRQEEVA.

Note that IRQ number and NMI number for single-bit error and multi-bit errors are respectively specified in the IRQ Map and NMI Map sections of the Series
Hardware Manual.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf

Document No. 002-25469 Rev. ** 11

Figure 9. IRQ for IRC Vector Address RAM Single-Bit Error

Document No. 002-25469 Rev. ** 12

Figure 10. NMI for IRC Vector Address RAM 2-Bit Error

Note that 1-bit errors are always corrected and sent to the master who accessed the SRAM holding the vector addresses. If you enable the 1-bit ECC error
interrupt, the interrupt handler (IRQ-16) would be called. To correct the error in SRAM, you can write back the vector address into the SRAM to force a
recalculation of the ECC by hardware. IRCn_EAN holds the relative address of the SRAM where the error occurred.

If a double-bit ECC error in the SRAM is detected by reading IRCn_IRQVAr by the CPU, a correct vector address must be written again in the relevant
IRCn_IRQVAr register with the corresponding NMI handler. Then, the error bit must be cleared by writing to IRCn_EEI:EENC.

If a double-bit ECC error in the SRAM is detected by reading IRCn_IRQVAr by the IRQ processing unit, the correct vector address must be rewritten to
IRCn_IRQVAr register corresponding to the IRQEEVA handler.

More details about these registers are covered in the subsequent sections.

2.1 ECC Test Function

The interrupt controller also has a function for generating pseudo ECC errors by corrupting the data read from SRAM. Using this function, you can check the
operation of the ECC error handler while developing applications. By setting the ECC error bit registers (IRCn_EEB0 to IRCn_EEB2), you can invert the data read
from the SRAM by using the bitwise operation. This test function can be enabled/disabled using the ECC test register (IRCn_ET).

2.1.1 Registers needed for ECC Tests for IRC Vector Address RAM

Document No. 002-25469 Rev. ** 13

Table 2. IRC Vector Address RAM ECC Registers

Abbreviated Register Name Register Name Register Details

IRCn_ET IRC ECC test register This register sets enable/disable of the test mode for the ECC protection function of the SRAM in the
interrupt controller.

IRCn_UNLOCK IRC Unlock Register This register controls the write lock for the interrupt controller to each register.

IRCn_EEB0 to IRCn_EEB1 IRC ECC error bit register These registers are used in ECC test mode. In the data read from the SRAM, you can spuriously
corrupt any of the bits in the data area.

IRCn_EEB2 IRC ECC error bit register This register is used in ECC test mode. In the data read from the SRAM, you can spuriously corrupt
any of the bits in the ECC parity area.

IRCn_IRQVAr IRC IRQ vector address register This register indicates the 32-bit vector address of individual IRQ channels. Before the corresponding
IRQ channel is enabled, the vector address should be initialized by software. The same type of register
is installed for each IRQ channel. The "r" in the abbreviated register name corresponds to the IRQ
channel number, r (0 to 511). This register is on SRAM of the interrupt controller.

IRCn_IRQEEVA IRC ECC error vector address register This register is used to perform correct error handling when SRAM holding the IRQ vector is read by
the IRQ processing block and a 2-bit ECC error is detected.

IRCn_EEI IRC ECC error interrupt register This register indicates the ECC error interrupt status. It also clears the interrupt. There are two types of
ECC error interrupt: NMI and IRQ.

IRCn_EAN IRC ECC address number register When a single-bit or double-bit ECC error occurs, this register indicates the SRAM address of the error.

Note that IRCn_EEB0 to IRCn_EEB2 (n = 0) are the critical registers that need to be written to corrupt the data in the SRAM area of the interrupt controller.

The registers IRC0_EEB0 and IRC0_EEB2.EEBE correspond to the even vectors i.e., IRC0_IRQVA0, IRC0_IRQVA2, IRC0_IRQVA4, etc., and the registers
IRC0_EEB1 and IRC0_EEB2.EEBO correspond to the odd vectors i.e., IRC0_IRQVA1, IRC0_IRQVA3, IRC0_IRQVA5, etc.

Also note that only the lower eight bits of IRCn_EAN registers are significant; they hold a relative address only. IRCn_EAN.EAN represents the 8-byte offset of the
ECC error occurrence address from the SRAM base address (i.e., the address of IRCn_IRQVA0). Effectively, the absolute error occurrence address will be

 = (Addr of IRCn_IRQVA0) + (8 x IRCn_EAN.EAN)

Document No. 002-25469 Rev. ** 14

2.2 Sample Codes for ECC Injection Tests

2.2.1 2 Bit Error Injection and Handling NMI

Consider the following function:

void Test_ECC_2Bit(void)

{

 volatile uint32_t Read_Vector;

 /* Unlock Interrupt Controller */

 IRC0_UNLOCK = 0x17ACC911;

 /* Set Address to trigger ISR when read by Interrupt Controller */

 IRC0_IRQEEVA = (uint32_t)Test_ECC2Bit_Int_Controller;

 /* Enable the Self Test */

 IRC0_ET_ET = 1;

 /* Set Double Bit Error in Even Vector Address*/

 IRC0_EEB0_EEB = 0x0000000C;

 /* Read an Even Vector Address to trigger the IRQ */

 Read_Vector = (uint32_t)IRC0_IRQVA2;

 /* Lock Interrupt Controller */

 IRC0_UNLOCK = 0x17B10C11;

}

Document No. 002-25469 Rev. ** 15

Because you are setting two bits as ‘1’ in IRC0_EEB0_EEB, you are corrupting two bits of the SRAM memory. Now, a read to any of the even vector address by
the CPU (for example, IRC0_IRQVA2) would trigger NMI8.

If the operating system has initialized/mapped this NMI, it can be serviced using a similar function as shown below:

FN_NMI_DEFINE_BEGIN(ECC_2BitError_NMI, INTERRUPTS_NMI_NUMBER_8)

{

 /* 2 Bit ECC Detected, triggered the NMI */

 /* Add code to trigger Software Reset or required user action */

 /* Clear Hold Bit for NMI8 */

 IRC0_NMIHC = 0x08;

 /* Clear Error Bit */

 IRC0_EEI_EENC = 0x1;

}

As shown in Figure 11, you can see “ECC_2BitError_NMI” being hit after a read of IRC0_IRQVA2.

Document No. 002-25469 Rev. ** 16

Figure 11. IRC RAM 2 Bit Error and NMI Handler

2.2.2 1-Bit Error Injection and Handling IRQ

Consider the following function:

void Test_ECC_1Bit(void)

Document No. 002-25469 Rev. ** 17

{

 volatile uint32_t Read_Vector;

 /* Unlock Interrupt Controller */

 IRC0_UNLOCK = 0x17ACC911;

 /* Enable the Self Test */

 IRC0_ET_ET = 1;

 /* Set Single Bit Error in Even Vector Address*/

 IRC0_EEB0_EEB = 0x00000004;

 /* Read an Even Vector Address to trigger the IRQ */

 Read_Vector = (uint32_t)IRC0_IRQVA2;

 /* Lock Interrupt Controller */

 IRC0_UNLOCK = 0x17B10C11;

}

Because you are setting one bit as [1’ in IRC0_EEB0_EEB, you are corrupting one bit of the SRAM memory. Now, a read to any of the even vector address (for
example, IRC0_IRQVA2) would trigger IRQ16.

If the operating system has initialized/mapped this IRQ, it can be serviced using a similar function as shown below:

FN_IRQ_DEFINE_BEGIN(ECC_1BitError_IRQ, INTERRUPTS_IRQ_NUMBER_16)

{

 /* 1 Bit ECC Detected, triggered the IRQ */

Document No. 002-25469 Rev. ** 18

 IRC0_EEI_EEIC = 0x1;

 /* Clear Hold Bit for IRQ16 */

 IRC0_IRQHC = 0x00000010;

}

FN_IRQ_DEFINE_END()

As shown in Figure 12, you can see “ECC_1BitError_IRQ” being hit after a read of IRC0_IRQVA2.

Document No. 002-25469 Rev. ** 19

Figure 12. IRC RAM 1 Bit Error and IRQ Handler

3. ECC for VRAM

Video RAM (VRAM) is a 2-MB embedded SRAM, which is part of the Graphics Subsystem. The VRAM also has built-in ECC that can be enabled for various
VRAM sub-regions. Note that because this ECC region is shared with the user region, the memory size available for the user program shall reduce if ECC is
enabled. You can define the ECC-enabled area and ECC-disabled area as part of the VRAM configurations.

Single-bit and double-bit error detection triggers respective NMI, which can be handled in the user application.

Document No. 002-25469 Rev. ** 20

Figure 13 shows the NMIs for VRAM error detection:

Figure 13. NMI for VRAM ECC

A single-bit error in the VRAM triggers NMI 21 when the erroneous memory address is read in the application. You can read the vram_sberraddr_sn register
(where ‘n’ varies from 0 to 2) to know the VRAM address location that has experienced the bit flip.

A double-bit error in the VRAM triggers NMI 20 when the erroneous memory address is read in the application. NMI 20 is also triggered when the Graphics
Subsystem Memory Protection Unit and Bus Monitoring detect any error.

Document No. 002-25469 Rev. ** 21

NMIs should be handled in the user application to clear the interrupt and check the VRAM address where error has occurred. Single-bit errors are corrected by the
ECC block; however, it is the user’s responsibility to either reset the controller or rewrite the memory again in case of double-bit errors.

3.1 ECC Test Function

The VRAM also supports injecting pseudo ECC errors by corrupting the data read from the VRAM. The error can be injected using vram_errinj_ecc_sn_lo and
vram_errinj_ecc_sn_hi registers. By setting a bit in these registers, the respective bit is inverted in the data read from the VRAM.

3.1.1 Registers Needed for ECC Tests for VRAM

Table 3. VRAM ECC Registers

Abbreviated Register Name Register Name Register Details

vram_errinj_ecc_sn_lo vram_errinj_ecc_sn_lo (where ‘n’
varies from 0 to 2)

ECC error injection for Sn interface (check bits for lower 32 bits).

vram_errinj_ecc_sn_hi vram_errinj_ecc_sn_hi (where n
varies from 0 to 2)

ECC error injection for Sn interface (check bits for upper 32 bits).

vram_LockUnlock vram_LockUnlock Register to change the protection status of the address block 2.(Refer Table 2)

vram_LockStatus vram_LockStatus Updates the VRAM lock status, privilege status and freeze status.

vram_sram_select vram_sram_select Selects the ECC-protected region in units of 4 KB. A value of ‘0’ means there is no
protected region.

This field accepts the value greater than 511. Such a value means that whole of 2 MB are
protected region.

VRamInterruptEnable VRamInterruptEnable VRAM non-maskable interrupt enable register. Writing ‘1’ to a bit in this register enables
the VRAM interrupt. There are three LSb bits, each for VRAM Interrupt ECC 3DGC,
VRAM Interrupt ECC Disp and VRAM Interrupt ECC 2DGC Sys

VRamInterruptClear VRamInterruptClear VRAM non-maskable interrupt clear register. Writing ‘1’ to a bit in this register clears the
respective interrupt.

Here is the flow for performing the VRAM ECC test:

1. Unlock VRAM registers by writing 0x691DB936 to the vram_LockUnlock register. Wait until the unlock is successful by monitoring the vram_LockStatus
register.

2. Select the VRAM region for which ECC should be enabled, by using the vram_sram_select register.

3. Enable error injection by setting one/ two bits of vram_errinj_ecc_sn_lo and vram_errinj_ecc_sn_hi, for single/double bit error.

Document No. 002-25469 Rev. ** 22

4. Enable the VRAM interrupt by setting the respective bits of the VRamInterruptEnable register.

5. Lock VRAM registers by writing 0x5651f763 to the vram_LockUnlock register.

6. Write a dummy byte to the VRAM location and read it back.

7. Handle NMI 21/NMI 20 for clearing the interrupt for single bit/double bit error.

3.2 Sample Codes for ECC Injection Tests

3.2.1 1-Bit Error Injection and Handling NMI

The following code snippet injects one-bit error in a VRAM location:

static void ECC_Test()

{

/*Unlock the VRAM registers*/

GRPSUB_SUBC_VRAM_LOCKUNLOCK=0x691DB936;

while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1);

/*Write 512 to VRAM Select register to enable ECC for entire VRAM region*/

GRPSUB_SUBC_VRAM_SRAM_SELECT = 512;

/*Inject 1 bit error by setting one bit in error injection register. */

GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_LO_VRAM_ERRINJ_ECC_S0_LO = 0x000000001ul;

GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_HI_VRAM_ERRINJ_ECC_S0_HI = 0x00;

/*Enable VRAM interrupts for error detection*/

GRPSUB_SUBC_VRAMINTERRUPTENABLE = 1;

/*Lock the VRAM registers*/

GRPSUB_SUBC_VRAM_LOCKUNLOCK = 0x5651f763;

while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1);

Document No. 002-25469 Rev. ** 23

/*Write a dummy data to a VRAM address (0x50000000) */

((volatile uint32_t)0x50000000) = 0x25;

DSB ();

/*Read the VRAM address*/

Read_vram= *((volatile uint32_t*)0x50000000)-Read_vram;

}

As soon as the VRAM location is read, NMI 21 is triggered, which shall be handled in the user application. A sample code for handling this NMI is shown below:

FN_NMI_DEFINE_BEGIN(test_ECC, INTERRUPTS_NMI_NUMBER_21)

{

 /*unlock the key register for VRAM*/

 GRPSUB_SUBC_VRAM_LOCKUNLOCK=0x691DB936;

 while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1)

 {

 }

 /* clear the injected error*/

 GRPSUB_SUBC_VRamInterruptClear =0x7U;

 GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_LO_VRAM_ERRINJ_ECC_S0_LO = 0x00000000ul;

 GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_HI_VRAM_ERRINJ_ECC_S0_HI =0;

 /* lock configuration registers*/

 GRPSUB_SUBC_VRAM_LOCKUNLOCK =0x5651F763;

 while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1)

 {

Document No. 002-25469 Rev. ** 24

 }

 /*Clear hold bit for NMI21*/

 IRC0_NMIHC = 0x15U;

}

FN_NMI_DEFINE_END()

In the NMI handler, the error injection register is cleared to stop pseudo ECC errors and the NMI is cleared. For clearing error injection, follow the same flow as
that of enabling error injection. Instead of setting the bit, clear the bit in the error injection register.

In Figure 14 and Figure 15, you can observe that the NMI is triggered after a read is done to the VRAM address.

Figure 14. 1-Bit-Error Injection for VRAM

Document No. 002-25469 Rev. ** 25

Figure 15. NMI Handler for 1-bit VRAM Error

Once error injection and NMI are cleared, NMI is not again triggered until there is a bit flip in the VRAM memory.

3.2.2 2-Bit Error Injection and Handling NMI

The following code snippet enables two-bit error injection in VRAM memory:

static void ECC_Test()

{

/*Unlock the VRAM registers*/

GRPSUB_SUBC_VRAM_LOCKUNLOCK=0x691DB936;

while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1);

/*Write 512 to VRAM Select register to enable ECC for entire VRAM region*/

Document No. 002-25469 Rev. ** 26

GRPSUB_SUBC_VRAM_SRAM_SELECT = 512;

/*Inject 2-bit error by setting one bit in error injection register. */

GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_LO_VRAM_ERRINJ_ECC_S0_LO = 0x000000011ul;

GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_HI_VRAM_ERRINJ_ECC_S0_HI = 0x00;

/*Enable VRAM interrupts for error detection*/

GRPSUB_SUBC_VRAMINTERRUPTENABLE = 1;

/*Lock the VRAM registers*/

GRPSUB_SUBC_VRAM_LOCKUNLOCK = 0x5651f763;

while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1);

/*Write a dummy data to a VRAM address (0x50000000) */

((volatile uint32_t)0x50000000) = 0x25;

DSB();

/*Read the VRAM address*/

Read_vram= *((volatile uint32_t*)0x50000000)-Read_vram;

}

As soon as the VRAM location is read, NMI 20 is triggered, which shall be handled in the user application. A sample code for handling this NMI is shown below:

FN_NMI_DEFINE_BEGIN (test_ECC2bit, INTERRUPTS_NMI_NUMBER_20)

{

 GRPSUB_SUBC_VRAM_LOCKUNLOCK=0x691DB936;

 while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1)

 {

 }

Document No. 002-25469 Rev. ** 27

 /* clear the injected error*/

 GRPSUB_SUBC_VRamInterruptClear =0x7U;

 GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_LO_VRAM_ERRINJ_ECC_S0_LO = 0x00000000ul;

 GRPSUB_SUBC_VRAM_ERRINJ_ECC_S0_HI_VRAM_ERRINJ_ECC_S0_HI =0;

 /* lock configuration registers*/

 GRPSUB_SUBC_VRAM_LOCKUNLOCK =0x5651F763;

 while (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1)

 {

 }

 /*Clear hold bit for NMI20*/

 IRC0_NMIHC = 0x14U;

}

FN_NMI_DEFINE_END()

In the NMI handler, the error injection register is cleared to stop pseudo ECC errors and the NMI is cleared. For clearing the error injection register, follow the
same flow as that of enabling error injection. Instead of setting the bit, clear the bit in the error injection register.

In Figure 16 and Figure 17, you can observe that the NMI is triggered after a read is done to the VRAM address.

Document No. 002-25469 Rev. ** 28

Figure 16. 2-Bit Error Injection for VRAM

Document No. 002-25469 Rev. ** 29

Figure 17. NMI Handler for 2-bit VRAM Error

4. ECC for Work Flash

Work Flash adds an 8-bit error check code for every 64 bits, so that it can detect and correct 1-bit errors and detect 2-bit errors. The ECC feature can be turned
ON/OFF by configuring the ECCOFF bit in the WFCFG_ECR register.

1-bit error is correctable and triggers the interrupt IRQ 20. 2-bit error results in a bus error leading to a data abort.

Document No. 002-25469 Rev. ** 30

Figure 18. IRQ for 1-Bit Work Flash Error

Document No. 002-25469 Rev. ** 31

4.1 ECC Test Function

To test the ECC functionality, the ECC logic has a test function to insert an error into the data and ECC read from the flash memory.

4.2 ECC Error Injection Related Register Configuration

Table 4. Work Flash ECC Registers

AbbreviatedRegister
Name

Register Name Register Details

WFCFG_CPR Work Flash Configuration
Protection Key Register

Used to protect the following registers from unintended writing:
(WFCFG_CR),(WFCFG_ECR),(WFCFG_DBEIR), (WFCFG_EEIR).

WFCFG_ECR Work Flash ECC Control
Register

This register is used to control the operation of the ECC logic.

WFCFG_DBEIR Work Flash Data Bit Error
Injection Register

This register is used to perform an ECC logic operation test by injecting errors into the data bits read from
Flash memory.

WFCFG_EEIR Work Flash ECC Bit Error
Injection Register

This register is used to perform an ECC logic operation test by injecting errors into the ECC bits read from
Flash memory.

WFCFG_SECIR Work Flash SEC Interrupt
Register

This register contains the status flags, enable bits, and clear bits related to 1-bit error correction interrupts.

WFCFG_EEAR Work Flash ECC Error
Address Register

This register retains the address at which a 1-bit error was detected during reading. If the 1-bit error was
detected multiple times, the register retains the address at which the error was last detected.

WFCFG_UCEAR Work Flash Uncorrectable
Error Address Register

This register retains the address at which an uncorrectable error was detected during reading. If the
uncorrectable error was detected multiple times, the register retains the address at which the error was
last detected.

For performing the ECC Error injection tests, the following procedure is performed:

a) Unlock WFLASH ECC configuration interface.

b) Perform the required configuration.

c) Repeat a) and b) for the required registers.

d) Read the Work Flash memory.

Notice the error response corresponding to the configuration.

Document No. 002-25469 Rev. ** 32

4.3 1-Bit Error Injection and Handling IRQ

Consider the following lines of code:

void Test_WFLASH_ERRdata_1bit(void)

{

 if (WFCFG_ECR_ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled

 {

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_ECR_ECCOFF = 0x0;

 }

 WFCFG_SECIR_SECIE =1; // ECC interrupt enable

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_DBEIR_L=0x0001;

Document No. 002-25469 Rev. ** 33

 data_wflash_read_data = *((volatile uint32_t *)0x0E000000); // reading workflash location

}

In this example, Bit 0 is configured for data flipping. This will cause 1-bit error detection and correction and trigger the corresponding interrupt (IRQ 20). The
following is a sample interrupt handler:

/* ISR for the 1-bit ECC detection and correction by WFLASH */

 FN_IRQ_DEFINE_BEGIN(WFLASH_ECC_Test, INTERRUPTS_IRQ_NUMBER_20)

{

 WFLASH_Error_Address = WFCFG_EEAR; // read error address

 if(WFCFG_SECIR_SECINT == 1)// read error flag.

 WFCFG_SECIR_SECIC = 1;// Clear error flag.

}

FN_IRQ_DEFINE_END()

Figure 19 and Figure 20 show that the interrupt gets triggered after a Work Flash read.

Document No. 002-25469 Rev. ** 34

Figure 19. 1-Bit Work Flash Error Injection

Figure 20. IRQ Handler for 1-Bit Work Flash Error

Here is an example for 2-bit ECC data error for Work Flash:

Document No. 002-25469 Rev. ** 35

void Test_WFLASH_ERRdata_2bit(void)

{

 if(WFCFG_ECR_ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled

 {

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers.

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_ECR_ECCOFF = 0x0;

 }

 // Configure Double-Bit Error

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_DBEIR_L=0x0001; // Configure lower 32 bit of error injection register

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers

Document No. 002-25469 Rev. ** 36

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_DBEIR_H=0x0001; // Configure upper 32 bit of error injection register

 data_wflash_read_data = *((volatile uint32_t *)0x0E000000); // reading workflash location.

}

In this example, Bit 0 and Bit 32 are configured for data flipping. This will cause 2-bit error detection resulting in bus error leading to data abort.

A sample for reading the error status inside the data abort handler follows:

 if (WFCFG_BERR_DED ==1) // Check for 2 bit ECC error.

 {

WFLASH_Error_Address_2bit= WFCFG_UCEAR; // read error register.

 WFCFG_BERRCLR_DEDCLR =1; // clear error status.

 }

Figure 21 and Figure 22 show that the interrupt gets triggered after a Work Flash read.

Document No. 002-25469 Rev. ** 37

Figure 21. 2-Bit Work Flash Error Injection

Document No. 002-25469 Rev. ** 38

Figure 22. Data Abort for 2-Bit Work Flash Error

Because there is a data abort, you can observe the values in DFSR and DFAR registers for further analysis.

Document No. 002-25469 Rev. ** 39

Figure 23. DFSR Register Values During Data Abort

Table 5. DFSR Fault Status During Abort

Bits Description Value Inference

FS[4,3:0] DFSR - Fault Status 0b01000 Synchronous External Abort.

[31:0] DFAR 0xe0000000 Address where Work Flash is read.

An error can also be injected by the destruction of the ECC area. The following example codes can be used for that.

4.3.1 1-bit ECC Area Error in Work Flash

void Test_WFLASH_ERRECC_1bit(void)

{

 if(WFCFG_ECR_ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled

 {

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

Document No. 002-25469 Rev. ** 40

 WFCFG_ECR_ECCOFF = 0x0;

 }

 WFCFG_SECIR_SECIE =1; // ECC interrupt enable

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_EEIR=0x0008;

 data_wflash_read_data = *((volatile uint32_t *)0x0E000000); // reading workflash location

}

2-bit ECC area Error in Work Flash:

void Test_WFLASH_ERRECC_2bit(void)

{

 if(WFCFG_ECR_ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled

 {

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers.

Document No. 002-25469 Rev. ** 41

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_ECR_ECCOFF = 0x0;

 }

 // Configure Double-Bit Error

 WFCFG_CPR = WFLASH_KEY_UNLOCK; // Unlock WFLASH configuration registers

 while (WFCFG_CPR != 0xFFFFFFFF)

 {

 }

 WFCFG_EEIR=0x0003; // Configure lower 32 bit of error injection register

 data_wflash_read_data = *((volatile uint32_t *)0x0E000000); // reading workflash location.

}

5. ECC for TCMRAM

 Cortex-R5F - the CPU core in Traveo MCU has a provision for an ECC check for the TCM RAM. It supports 1-bit error correction and 2-bit error detection.

 Because the following access to uninitialized area of the TCRAM causes an ECC error, 32-bit initialization is necessary before using it.

a. 8- or 16-bit write access.

b. Read access.

Document No. 002-25469 Rev. ** 42

 The Cortex-R5F performs an ECC check for the TCRAM in units of 32 bits.

 For 32- or 64-bit write operation, it adds ECC to data and then writes it to the TCRAM.

 For 8- or 16-bit write operation, it performs Read-Modify-Write access so that the correct ECC can be generated. An ECC check is also performed during
the read operation in case of Read-Modify-Write access.

 TCRAM has provision to insert an error in the data read from the TCRAM so that the 32-bit ECC function of the Cortex-R5F can be tested. ECC error
generation can be either by data area destruction or ECC area destruction.

5.1 Configuration of Error Correction

TCRAM 1-bit error correction can be enabled or disabled by using c15, Secondary Auxiliary Control Register.

Figure 24. c15 Auxiliary Control Register bit arrangements

BTCMECC Correction for internal ECC logic on BTCM ports

0 = Enabled. This is the reset value.

1 = Disabled.

When ECC error correction is disabled, an abort is generated.

Document No. 002-25469 Rev. ** 43

5.2 TCMRAM ECC Behavior

The following table indicates the behavior on ECC error detection for different configurations and errors.

Table 6. TCMRAM ECC Error Detection for Different Configurations and Errors

S.No

C15, Secondary

Auxiliary Control
register- bit
BTCMECC

1-bit
Error

2-bit
Error

Access
TCM/
AXI Error path Error Status Register

Error
Address

Register

1 Enabled Yes TCM Corrected CFLR CFLR

2 Enabled Yes TCM Data Abort DFSR - Synchronous ECC error DFAR

3 Disabled Yes TCM Data Abort
CFLR
DFSR - Synchronous ECC error

CFLR

DFAR

4 Disabled Yes TCM Data Abort DFSR - Synchronous ECC error DFAR

5 Enabled Yes AXI Corrected CFLR CFLR

6 Enabled Yes AXI Data Abort DFSR - Synchronous external abort DFAR

7 Disabled Yes AXI Corrected CFLR CFLR

8 Disabled Yes AXI Data Abort DFSR - Synchronous external abort DFAR

5.3 Correctable Fault Location Register - TCM, Bit Assignments

Figure 25. CFLR Register Bit Arrangements

[25:24] Side Indicates the source of the error:

0b01 = ATCM

0b10 = BTCM

Document No. 002-25469 Rev. ** 44

[22:3] Address

Indicates the bits [22:3] of the address in the TCM where the error occurred. Address [22:3].

[1:0] Type Indicates the type of access that caused the error:

0b00 = Instruction

0b01 = Data

0b10 = AXI Slave

Whenever a correctable error occurs in TCM RAM region, the following values are read from CFLR.

Side – It will be always 2 (indicating BTCM where TCRAM is connected)

Type –

 “0b01” – On access via TCM interface

 “0b10” – On access via AXI interface

5.4 ECC Error Injection Related Register Configuration

Table 7. TCMRAM ECC Registers

Abbreviated

Register Name

Register Name Register Details

TRCFGn_TCMCFG0 TCRAM IF Configuration

Register 0

This register has seven bits for ERRECC data for the BTCM port, two bits for setting the number of
waits, and the LOCKSTATUS bit that indicates the locked state or unlocked state of the TCRAM IF
configuration register.

TRCFGn_TCMCFG1 TCRAM IF Configuration

Register 1

This register is used to insert an error in data read from the TCRAM for testing the ECC function of
the Cortex-R5F BTCM port.

TRCFGn_TCMUNLOCK TCRAM IF Unlock Register This register locks or unlocks write access to the TCRAM interface registers. Writing the correct
unlock value (0xACC55ECC) to this register enables write access to the registers. After setting
registers, writing the correct lock value (0x5ECCB10C) to this register disables write access to the
registers.

Document No. 002-25469 Rev. ** 45

Do the following to perform the ECC Error injection tests:

1. Unlock the TCRAM interface.

2. Perform the required configuration.

3. Lock the TCRAM interface.

4. Read the TCRAM memory.

5. Observe the error response corresponding to the configuration.

5.5 Sample Codes for ECC Injection Tests

Note the following important points before doing the TCMRAM ECC Injection tests:

 Stack and debugger memory might have been allocated in TCRAM. In such cases, when the error injection feature is configured for TCRAM, reads from
stack or debugger memory can affect the address read from CFLR because CFLR retains the address where the last correctable error was detected.

 If cache is enabled during tests through the AXI interface, it can also affect the reported error address.

5.5.1 1-bit ECC Data Error

Consider the following function:

void Test_TCRAM_ERRdata_1bit(void)

{

 uint32_t test_read_data =0;

 data_tcram_read_data[10] = 10; // writing to an address in TCRAM.

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_UNLOCK; // Unlock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 1)

 {

Document No. 002-25469 Rev. ** 46

 }

 TRCFG0_TCMCFG1_ERRBIT=0x0008; // Configure Single-Bit Data Error

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_LOCK; // Lock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 0)

 {

 }

 test_read_data = data_tcram_read_data[10]; // read TCRAM data

}

In this example, Bit 3 is configured for data flipping.

data_tcram_read_data array is placed in the TCRAM TCM region.

The expected result is that the single-bit error is corrected and the corresponding address is reported in the CFLR register.

Figure 26 and Figure 27 show the value of the CFLR register after the TCRAM is read:

Document No. 002-25469 Rev. ** 47

Figure 26. TCMRAM 1-Bit Error Injection

Document No. 002-25469 Rev. ** 48

Figure 27. CFLR Register Value

The value of CFLR is 0x2000029.

Table 8. Decoding of CFLR

Bits Description Value Inference

[31:0] CFLR 0x2000029

[25:24] Side 0b10 BTCM - source of error

[22:3] Address [22:3] 0x05 Address [20:0] - 0x28. Bits {2:0] is considered as 0.

[1:0] Type 0b01 Data

The address of the data_tcram_read_data[10] register is 0x00000028. This matches with the CFLR address field.

Document No. 002-25469 Rev. ** 49

Figure 28. TCMRAM Data in Memory View of Debugger

Figure 29 indicates the data read from the memory. The corrected data is the same as what was written before is read back.

data_tcram_read_data[10] = 10; // writing to an address in TCRAM.

Document No. 002-25469 Rev. ** 50

Figure 29. Correct TCMRAM Data

5.5.2 2-bit ECC Data Error

Consider the following function:

void Test_TCRAM_ERRdata_2bit(void)

{

 uint32_t test_read_data =0;

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_UNLOCK; // Unlock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 1)

 {

 }

 TRCFG0_TCMCFG1_ERRBIT=0x0003; // Configure Double-Bit Data Error

Document No. 002-25469 Rev. ** 51

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_LOCK; // Lock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 0)

 {

 }

 test_read_data = data_tcram_read_data[10]; // read TCRAM data

}

In this example, bits 0 and 1 are configured for data flipping, which corresponds to 2-bit error injection.

The data_tcram_read_data array is placed in the TCRAM TCM region. The expected result is that the double-bit error is detected and will result in a bus

error leading to a data abort.

Following screenshots show program flow, DFSR and DFAR registers after TCRAM is read.

Document No. 002-25469 Rev. ** 52

Figure 30. TCMRAM 2-bit Error Injection

Data execution has been caught by vector catch. The address 0xFFFF0010 indicates that data abort has occurred.

Figure 31. Data Abort During 2-bit TCMRAM Error

You can observe the values in DFSR and DFAR registers for additional analysis:

Document No. 002-25469 Rev. ** 53

Figure 32. DFSR and DFAR During Abort

Table 9 DFSR and DFAR Inferences

Bits Description Value Inference

FS[4,3:0] DFSR - Fault Status 0b11001 Synchronous ECC Error

[31:0] DFAR 0x00000028 Address where TCRAM is read

[20] [23:22]

ADFSR –

SideExt [20]
Side [23:22] 0b10 BTCM - source of error

An error can also be injected by the destruction of ECC area. The gollowing example codes can be used for that.

5.5.3 1-bit ECC Area Error

void Test_TCRAM_ERRECC_1bit(void)

{

 uint32_t test_read_data =0;

Document No. 002-25469 Rev. ** 54

 data_tcram_read_data[10] = 10; // writing to an address in TCRAM.

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_UNLOCK; // Unlock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 1)

 {

 }

 TRCFG0_TCMCFG0_ERRECC=0x0008; // Configure Single-bit ECC area Error

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_LOCK; // Lock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 0)

 {

 }

 test_read_data = data_tcram_read_data[10]; // read TCRAM data

}

5.5.4 2-bit ECC Area Error

void Test_TCRAM_ERRECC_2bit(void)

{

 uint32_t test_read_data =0;

Document No. 002-25469 Rev. ** 55

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_UNLOCK; // Unlock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 1)

 {

 }

 TRCFG0_TCMCFG0_ERRECC=0x0003; // Configure Double-bit ECC area Error

 TRCFG0_TCMUNLOCK = TCMRAM_KEY_LOCK; // Lock TCMRAM configuration registers

 while (TRCFG0_TCMCFG0_LOCKSTATUS == 0)

 {

 }

 test_read_data = data_tcram_read_data[10]; // read TCRAM data

}

6. ECC for SYSRAM and Back-Up RAM

Like the ECC features discussed so far, System RAM (SYSRAM) and Backup RAM also have ECC support and ECC error injection features. The following
examples illustrate these.

6.1 Sample Codes for ECC Injection Tests in SYSRAM

Ensure that the variable data_sysram_read_data is placed in the System RAM area.

Document No. 002-25469 Rev. ** 56

6.1.1 1-bit ECC Data Error

void Test_SYSRAM_ERRdata_1bit(void)

{

 uint32_t test_read_data =0;

 SRCFG_KEY_UNLOCK = SYSRAM_KEY_UNLOCK; // Unlock SYRAM configuration registers

 while (SRCFG_CFG0_LOCK_STATUS == 1)

 {

 }

 if(SRCFG_ECCE_ECCEN != 1) //Enable ECC if not enabled. This bit can be modified only once in software

 {

 SRCFG_ECCE_ECCEN = 1;

 }

 SRCFG_INTE_SEC_INT_EN =1; // Enable ECC interrupt

 SRCFG_CFG1_ERRBIT=0x0001; // Configure Single-Bit Error

 SRCFG_KEY_UNLOCK = SYSRAM_KEY_LOCK; // Lock configuration registers

 while (SRCFG_CFG0_LOCK_STATUS == 0)

 {

 }

Document No. 002-25469 Rev. ** 57

 test_read_data = data_sysram_read_data[10]; // read SYSRAM data

}

In this example, Bit 0 is configured for data flipping. This will cause 1-bit error detection and correction and will trigger the corresponding interrupt. The following is
a sample interrupt handler for the same.

/* ISR for the 1-bit ECC detection and correction by SYSRAM */

 FN_IRQ_DEFINE_BEGIN (SYSRAM_ECC_Test, INTERRUPTS_IRQ_NUMBER_14)

{

 SRCFG_KEY_UNLOCK = SYSRAM_KEY_UNLOCK;

 while (SRCFG_CFG0_LOCK_STATUS == 1)

 {

 }

 SYSRAM_Error_Address = SRCFG_ERRADR; // read Single bit error address

 if(SRCFG_ERRFLG_SECFLG == 1)// read error flag.

 SRCFG_ERRFLG_SECCLR = 1;// Clear error flag.

 SRCFG_KEY_UNLOCK = SYSRAM_KEY_LOCK; // Lock configuration registers

 while (SRCFG_CFG0_LOCK_STATUS == 0)

 {

 }

Document No. 002-25469 Rev. ** 58

}

FN_IRQ_DEFINE_END ()

6.1.2 2-bit ECC Data Error

void Test_SYSRAM_ERRdata_2bit(void)

{

 uint32_t test_read_data =0;

 SRCFG_KEY_UNLOCK = SYSRAM_KEY_UNLOCK; // Unlock SYSRAM configuration registers

 while (SRCFG_CFG0_LOCK_STATUS == 1)

 {

 }

 if(SRCFG_ECCE_ECCEN != 1) //Enable ECC if not enabled. This bit can be modified only once in software

 {

 SRCFG_ECCE_ECCEN = 1;

 }

 SRCFG_CFG1_ERRBIT=0x0003; // Configure Double-Bit Error

 SRCFG_KEY_UNLOCK = SYSRAM_KEY_LOCK; // Lock configuration registers

 while (SRCFG_CFG0_LOCK_STATUS == 0)

 {

Document No. 002-25469 Rev. ** 59

 }

 test_read_data = data_sysram_read_data[10]; // read SYSRAM data

}

In this example, Bit 0 and Bit 1 are configured for data flipping. This will cause 2-bit error detection resulting in a bus error leading to a data abort.

An error can also be injected by the destruction of ECC area.

6.2 Backup Ram (BURAM)

6.2.1 1-bit ECC Error

void Test_BURAM_ERR_1bit(void)

{

 BURIF_UNLOCK = BURAM_KEY_UNLOCK;// Unlock BURAM configuration registers

 while (BURIF_STATUS_LOCKSTATUS == 1)

 {

 }

 BURIF_EECSR_SEIE=0x1; //Enable Single-Bit Error Interrupt

 BURIF_EFEAR_ERR_ADDR = 0x20; // Configure the address offset for ECC error

Document No. 002-25469 Rev. ** 60

 BURIF_EFECR_0_EI = 0x1; // Configure Single-Bit Error

 BURIF_EFECR_1_EY = 0x1; // Configure byte where error is to be introduced

 BURIF_EFECR_2_FERR =1; // ECC psuedo error generation enable. Error gets inserted during the enabling of this

configuration

 BURIF_UNLOCK = BURAM_KEY_LOCK; // Lock configuration registers

 while (BURIF_STATUS_LOCKSTATUS == 0)

 {

 }

}

In this example, Bit 0 and Byte 0 are configured for pseudo ECC error. This will cause 1-bit error detection and correction and will trigger the corresponding
interrupt. The following is a sample interrupt handler for the same.

/* ISR for the 1-bit ECC detection and correction by BURAM */

 FN_IRQ_DEFINE_BEGIN(BURAM_ECC_Test, INTERRUPTS_IRQ_NUMBER_15)

{

 BURIF_UNLOCK = BURAM_KEY_UNLOCK;

 while (BURIF_STATUS_LOCKSTATUS == 1)

 {

 }

Document No. 002-25469 Rev. ** 61

 BURAM_Error_Address = BURIF_SEEAR_ERR_ADDR; // read error address

 if(BURIF_EECSR_SEI == 1)// read error flag.

 BURIF_EECSR_SEI = 0;// Clear error flag.

 BURIF_UNLOCK = BURAM_KEY_LOCK; // Lock configuration registers

 while (BURIF_STATUS_LOCKSTATUS == 0)

 {

 }

}

FN_IRQ_DEFINE_END()

6.2.2 2-bit ECC Error

void Test_BURAM_ERR_2bit(void)

{

 BURIF_UNLOCK = BURAM_KEY_UNLOCK;// Unlock BURAM configuration registers

 while (BURIF_STATUS_LOCKSTATUS == 1)

 {

 }

Document No. 002-25469 Rev. ** 62

 BURIF_EECSR_DEIE=0x1; //Enable Configure Double-Bit Error

 BURIF_EFEAR_ERR_ADDR = 0x20; // Configure the address offset for ECC error

 BURIF_EFECR_0_EI = 0x3; // Configure Double-Bit Error

 BURIF_EFECR_1_EY = 0x1; // Configure byte where error is to be introduced

 BURIF_EFECR_2_FERR =1; // ECC psuedo error generation enable. Error gets inserted during the enabling of this

configuration

 BURIF_UNLOCK = BURAM_KEY_LOCK; // Lock configuration registers

 while (BURIF_STATUS_LOCKSTATUS == 0)

 {

 }

}

In this example, Bit 0, Bit 1, and Byte 0 are configured for pseudo ECC error. This will cause 2-bit error detection and will trigger the corresponding NMI. The
following is a sample NMI handler for the same.

/* NMI for the 2-bit ECC detection by BURAM */

 FN_NMI_DEFINE_BEGIN(BURAM_ECC_Test_2bit, INTERRUPTS_NMI_NUMBER_11)

{

Document No. 002-25469 Rev. ** 63

 BURIF_UNLOCK = BURAM_KEY_UNLOCK;

 while (BURIF_STATUS_LOCKSTATUS == 1)

 {

 }

 BURAM_Error_Address_2bit = BURIF_DEEAR; // read error address

 if(BURIF_EECSR_DEI == 1)// read error flag.

 BURIF_EECSR_DEI = 0;// Clear error flag.

 BURIF_UNLOCK = BURAM_KEY_LOCK; // Lock configuration registers

 while (BURIF_STATUS_LOCKSTATUS == 0)

 {

 }

}

FN_NMI_DEFINE_END()

Document No. 002-25469 Rev. ** 64

7. Summary

This guide covered the ECC injection tests available in various Traveo memories. The hardware ECC logic itself can be enabled or disabled for these memories.
Similarly, there are registers that would control the Interrupt generation in case of errors on these memories. Table 10 and Table 11provide a summary of this.

Table 10. Summary of ECC for Vvarious Memories in Traveo

Memory ECC Logic (Default
Control)

1-bit error interrupt default
(When ECC logic is enabled, 1-bit errors are
automatically corrected. Interrupt generation

is optional setting for the user)

2-bit error interrupt/abort default

TCFLASH -
AXI

Enabled
(TCFCFGn_FECCCTRL)

Disabled (TCFCFG_FSECIR) Enabled (abort) (always enabled when ECC logic is
enabled)

TCFLASH -
TCM

Enabled (Cortex-R5 ACTLR
register)

Disabled (no specific interrupt flag, Cortex-R5
measurement counters can be used to trigger
an event)

Enabled (abort) (always enabled when ECC logic is
enabled)

WORKFLASH Enabled (WFCFG_ECR) Disabled (WFCFG_SECIR) Enabled (abort) (always enabled when ECC logic is
enabled)

TCMRAM Enabled (Cortex-R5 ACTLR
register)

Disabled (no specific interrupt flag, Cortex-R5
measurement counters can be used to trigger
an event)

Enabled (abort) (always enabled when ECC logic is
enabled)

SYSRAM Enabled (SRCFG_ECCE) Disabled (SRCFG_INTE) Enabled (abort) (always enabled when ECC logic is
enabled)

Back-Up RAM Enabled (BURIF_EDPCR) Disabled (BURIF_EECSR) Disabled (interrupt) (BURIF_EECSR)

IRC Vector
Address RAM

Enabled (always) Enabled (Proper mapping of IRQ handler is up-
to user)

Enabled (Proper mapping of NMI handler is up-to user)

VRAM Disabled (Specify the sub-
sections of the VRAM using
VRAM_SRAM_SELECT)

Disabled

(VRAMINTERRUPTENABLE)

Disabled

(VRAMINTERRUPTENABLE)

Table 11. Summary of ECC for various memories in Traveo

Memory ECC Scheme Enabled by
Default

Configurable Failure Handling Single-Bit Error Failure Handling Double-Bit Error

TCRAM (through BTCM) 32-bit ECC Yes Yes ABORT (configurable) ABORT

Document No. 002-25469 Rev. ** 65

TCRAM (through BTCM) 32-bit ECC Yes Yes CFLR Bus error response

System RAM 32-bit ECC Yes Yes IRQ Bus error response

Backup RAM 8-bit ECC Yes Yes IRQ NMI

IRC vector RAM 32-bit ECC Yes No IRQ NMI

CAN RAM 32-bit ECC Yes Yes IRQ NMI and Bus error response

Video RAM 8-bit ECC No Yes NMI Bus error response

TCFLASH (through ATCM) 64-bit ECC Yes Yes ABORT (configurable) ABORT

TCFLASH (through AXI) 64-bit ECC Yes Yes IRQ Bus error response

WORKFLASH 32-bit ECC Yes Yes IRQ Bus error response

8. References

 S6J3200 Series 32-bit Microcontroller Traveo™ Family

 32-bit Microcontroller Traveo™ Family S6J3200 Series Hardware Manual

 Traveo™ Family 32-Bit Microcontroller Platform Part Hardware Manual

 Cortex™ -R5 and Cortex-R5F Revision: r1p1 Technical Reference Manual

http://www.cypress.com/documentation/datasheets/s6j3200-series-32-bit-microcontroller-traveo-family
http://www.cypress.com/documentation/technical-reference-manuals/32-bit-microcontroller-traveo-family-s6j3200-series
http://www.cypress.com/documentation/technical-reference-manuals/traveo-family-32-bit-microcontroller-platform-part
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf

