o CYPRESS

e - EMBEDDED IN TOMORROW

ECC Injection Tests in Traveo MCUs - KBA225469

This guide explains Error Correction Code (ECC) Injection Tests in Traveo MCUSs.

In Traveo MCUSs, there is built-in ECC logic that helps in detecting and correcting single-bit errors or in detecting 2- or multi-bit errors. This built-in ECC logic is
available within many peripheral memories of Traveo MCUs such as TCRAM, TCFLASH, VRAM, Work Flash, IRC Vector Address RAM, CAN FD RAM, and
SYSRAM.

When a product is deployed in the field, an error in these memories can happen due to Soft Errors. If the error results in a 1-bit flip of the memory, the hardware
by itself can correct this 1-bit flip when the affected memory is read. On the other hand, if the flips are in multiple bit locations, the hardware can trigger an Interrupt
intimating the user that a serious issue has occurred and suitable actions (for example, a Software Reset) should be done.

Traveo MCUSs also provide necessary hardware and Test Registers (known as Injection Registers) that could simulate the data corruptions and check if the ECC
logic is able to detect or correct these errors. These tests can be performed as part of the functional safety module associated with the product design.

This guide focuses on the details of these Injection Registers and how they can be used to simulate the errors. The guide also provides sample code fragments
that can be used to test the ECC feature available within a peripheral memory.

Note that _Green Hills Software (GHS) has been used for code development and testing of all codes provided in this guide.

1. ECC for TCFLASH

TCFLASH is capable of correcting 1-bit errors and detect up to 2-bit errors using 8-bit error correcting codes for every 64 bits in the memory. ECC is generated
upon write to the address in the TCFLASH and error correction/detection is performed upon read.

See the Platform manual TCELASH chapter Section 3.8 for more details on ECC generation, Syndrome and ECC registers.

If ECC test functionality is enabled, upon detecting 1-bit errors, the TCFLASH corrects the bit and generates an interrupt. If errors are detected in two or more bits,
the TCFLASH cannot correct the error but can detect the 2-bit error. This causes bus error that in turn leads to Synchronous External Abort.

The Interrupt Vector map is shown below; IRQ No. 8 is used for TCFLASH 1-bit ECC correction interrupt. Note that the interrupt is generated upon detecting and
correcting 1-bit ECC error and TCFCFG_FSECIR. SECINT bit is set.

Document No. 002-25469 Rev. ** 1

https://en.wikipedia.org/wiki/Soft_error
https://www.ghs.com/
http://www.cypress.com/file/219516/download

o CYPRESS

= EMBEDDED IN TOMORROW"™

Figure 1. TCFLASH ECC IRQ

1. IRQ Map

This section shows list of interrupt vector
This list shows the assignment of interrupt vectors/interrupt control registers

Vector of not-implemented function s notl supported. See the chapter of function list

IRQ No. Detail IRQ Priority Register Vector Address Register

0 Reserved

System Control Status IRCO_IRQPLO - IRQPLY IRCO_IRQVA1

2 HW-WDT Pre.warning IRCO_IRQPLO - IRQPL2 IRCO_IRQVA2

3 SW-WODT Pre-waming IRCO_IRQPLO : IRQPL3 IRCO_IRQVA3
4107 Reserved

I 8 TCFLASH RDY, Hang up, Single Bit Error IRCO_IRQPLZ ' IRQPLS IRCO_IRQVAS I

) eseres

To test the TCFLASH ECC functionality via AXI (Advanced eXtensible Interface), appropriate error injection registers need to be used. By enabling the error
injection feature, any read access to the TCFLASH memory location will result in an ECC error as the data bits read will be XORed with the ECC error injection
mask to flip the bit accordingly.

1.1 Registers Needed for TCFLASH ECC Tests

Table 1. TCFLASH ECC Registers

Abbreviated Register Register Name Register Details
Name
TCFCFG_FCPROTKEY TCI_:LASH Configuration Protection Key Pro_tection key register to unlock write to TCFLASH
register registers once
TCFCFG_FECCCTRL TCFLASH ECC Control register ECC control register to enable or disable ECC
TCFCFG_FDATEIR TCFLASH Data Bit Error-Injection register Error injection bit positions in 64- bit data
TCFCFG_FECCEIR TCFLASH ECC it Error Injection register Error injection bit positions in 8- bit ECC
TCFCFG_FSTAT TCFLASH Status register Status to indicate interrupt and mask
TCFCFG_FECCEAR TCFLASH ECC Error Address register Indicates ECC error address in case of 1-bit error

Document No. 002-25469 Rev. **

o CYPRESS

= EMBEDDED IN TOMORROW"™

Abbreviated Register Register Name Register Details
Name
TCFCFG_FUCEAR TCFLASH Uncorrectable Error Address Indicates the ECC error address location upon detecting 2-
register bit non-correctable error

1.2 Sample Codes

1.2.1 1-bit ECC Error Injection with AXI Access

Consider the following function:

/*Testing ECC functionality with 1-bit Error Injection */

static void Test Ecc lbit (void)

{

/* Unlock */

TCFCFG_FCPROTKEY = O0xCF61F1A5;

/* Inject Error (bit 0) in LS 32 bit */
TCFCFG_FDATEIR L = 0x01U;

/* Unlock */

TCFCFG_FCPROTKEY O0xCFo61lF1A5;
/* Inject Error in MS 32 bit (not set) */

TCFCFG_FDATEIR H

0U;

/* Unlock */

TCFCFG_FCPROTKEY = O0xCF61F1A5;

/* Enable 1-bit ECC detection Interrupt*/
TCFCFG_FSECIR = 1U;

/* Clear Cache */

DSB() ;

/* Read the location to inject error*/

Document No. 002-25469 Rev. **

& CYPRESS

> EMBEDDED IN TOMORROW"

Read FG = * ((uint32 t*)0x01B0O0OFC) ;

}
Note that the byte setting TCFCFG_FDATEIR_L to 0x01 will inject an error into the 0™ bit of the lower 32 bits of the data. This function enables the Interrupt
Service Routine (ISR) when a 1-bit ECC error is detected and corrected. The IRQ 8 is mapped to TCFLASH Single Bit Error occurrence and associated ISR can

be used to log any information about the ECC error. A sample code to handle this is shown below:

/* ISR for the 1l-bit ECC detection and correction by TCFLASH via AXI access. */
FN_TRQ DEFINE BEGIN (testecc, INTERRUPTS_IRQ_NUMBER_8)

{

/* 1-bit ECC error detected while accessing a location of TCFLASH via AXI

Clear Interrupt source */

TCFCFG_FCPROTKEY = 0xCF61F1A8;
TCFCFG_FSECIR |= 0x10U;

}
FN_IRQ DEFINE END()

As shown in Figure 2, after executing read to a location in TCFLASH (via AX]I), the single-bit ECC error is injected into the data field of that location and an ECC
error is detected, and corrected, the control goes to the ISR.

Document No. 002-25469 Rev. **

&= CYPRESS

-~ EMBEDDED IN TOMORROW™

Document No. 002-25469 Rev. **

Figure 2. TCFLASH 1-Bit ECC Code

stavic void Test_Ecc_1ibit (void)
(
/* Unlock */

B TCFCFG_FCPROTKEY = OxCFG61F1A4S;
/* Inject Error(bit 0) in LS 32 bit *#/
. TCFCFG_FDATEIR L = Ox01U;
/* Unlock */
. TCFCFG_FCPROTKEY = OxCF61F1A5;
/* Inject Error in M3 32 bic(not sec) */
. TCFCFG_FDATEIR _H = DU;
/* Unlock */
- TCFCFG_FCPROTKEY = OxCF61F145;
/* Enable 1-bit ECC detection Interrupt®/
- TCFCFG_FSECIR = 1U;
/* Clear Cache =/
. DSB():

/* Read the location to inject error?®/
-’“ Read FG = *((uint32_t*)0x01BO0OFC) :

Figure 3. TCFLASH 1-Bit Interrupt Handler

/* ISR for the 1-bit ECC detection and correction by TCFLASH via AXI access.

FN_IRQ_DEFINE_BEGIN (testecc, INTERRUPTS_IRQ NUMBER_8)
¢

/* 1-bit ECC error detected vhile accessing a locaiton of TCFLASH via AXI
Clear Interrupt source */
oy TCFCFG_FCPROTKEY » OxCF61F14S;
. TCFCFG_FSECIR |= O0x10U:

)
+ FN_IRQ DEFINE_END()

7

o CYPRESS

e - EMBEDDED IN TOMORROW

The register values can also be monitored to check the ECC error address, ECC error detection interrupt, and the Syndrome value. In GHS, this can be done
using View > Registers option after entering Debug mode.

Figure 4. TCFLASH Error registers

Ox01b000e0D

FHl e mem s e a T e -

\., S

From the value of the syndrome, it can be inferred that bit O is flipped and an error was detected during ECC check. Note that the 128-bit aligned address is
reported in the TCFCFG_FECCEAR register due to the properties of the cache.

1.2.2 2-bit ECC Error Injection via AXI Access

Consider the following function:

/* Testing the ECC functionality of TCFLASH with 2-bit Error injection */
static void Test Ecc 2bit (void)

{

TCFCFG_FCPROTKEY = 0xCF61F1A5;/* Unlock */
TCFCFG_FDATEIR L = 0x03U; /* Inject Error in LS 32 bit */
TCFCFG_FCPROTKEY = 0xCF61F1A5;/* Unlock */
TCFCFG_FDATEIR H = 0x00U; /* Inject Error in MS 32 bit */

TCFCFG_FCPROTKEY = O0xCF61F1A5;/* Unlock */

TCFCFG_FSECIR 10; /* Enable 1-bit ECC detection Interrupt*/

/* Read the location to inject 2-bit error,

Control would enter Data Abort handler*/

Document No. 002-25469 Rev. **

& CYPRESS

“ae> EMBEDDED IN TOMORROW"
Read FG = *((uint32 t*)0x01B0O0O0FO);

}

Writing 0x03 to TCFCFG_FDATEIR_L injects 2-bit errors into the TCFALSH location. 2-bit ECC errors can be detected but cannot be corrected; this will result in a
bus error as shown in Figure 5:

Figure 5. TCFLASH 2-Bit ECC Code

/* Testing the ECC funcrionality of TCFLASH with 2-bit Error injection %/
static void Test_Ecc_2bit (void)
{

TCFCFG_FCPROTREY = OxCF61F145;/* Unlock */

TCFCFG_FDATEIR_L = Ox031: /* Inject Error in LS 32 bit */
TCFCFG_FCPROTKEY = OxCF61F1AS;/* Unlock */

TCFCFG_FDATEIR_H = 0x00U; /* Inject Error in NS 32 bit */
TCFCFG_FCPROTKEY = OxCF61F1AS;/* Unlock */

TCFCFG_FSECIR = 10 /* Enable l-bit ECC detection Interrupt*/

« e e

/* Read the location to inject 2 bit error,
Control would enter Data Abort handler?®/
w Read FG = *((uint3Z_t*)0x01BO00FO):

Document No. 002-25469 Rev. **

o CYPRESS

- EMBEDDEDIN TOMORROW™

Figure 6. Data Abort for 2-Bit TCFLASH Error

static void DefaultDatalbortExceprionHandler (void)
{
// IRQs are disabled now.
// Please refer to the ARM documentation on how to handle this exception.

// For debugging purpose only

#iifdef DEBUG

// Collect some information about the cause of the data abort
volatile uint32 t u3ZDataFaultStatus = BRC(15, 0, 5, 0, O)
volatile uint3Z_t u3ZAuxDataFaultStatus = NRC(15, 0, 5, 1, 0O)
volatile uint32_ t u3ZDataFaultiddress = NRC¢ 15, 0,. 6; 0, O)
fendif // DEBUG

e v e

fsurriod while (1)
{

- NOP():

o }

Bus error results in Synchronous External Data Abort as shown below. The DFAR register holds the address, which when accessed, results in the abort.

Document No. 002-25469 Rev. **

o CYPRESS

= EMBEDDED IN TOMORROW"™

Figure 7. Registers During Abort Mode

\.,

B DF3R
ExT
nR
FS[4]
FS[3:0]
H IF3R
ADFSR
AIFSR

Ox00001003
Ox1
Ox0
Ox0
Ox8
Ox00000000
0x00000000
0x00000000

— prar | 0x01b000£0

v

The Syndrome indicates that the ECC error detected is a 2-bit error; the error can be detected but not corrected. Also, the ECC address is reported in

TCFCFG_FUCEAR.

Figure 8 TCFLASH Error registers during Abort

4 ™
l. B TCFCFG FUCEDIR 0Ox05010000
UCEDIC
UCEDINT
STN
TCFCFG FUCELR Ox01b000s0
. A

The reported value in TCFCFG_FECCEAR is 0x01b00e0 instead of 0x01b00f0 because of the memory region attribute of write-back cacheable for the TCFLASH
region. Because the cache lane is 32-byte aligned, wrap-around occurs as shown below while trying to access 0x01b000f0 as follows:

Access to 0x01b000f0 -> cache controller fetches from: 0x01b000f0, 0x01b000f8, 0x01b000e0, 0x01b000e8

Because TCFCFG_FECCEAR is updated with the 128 bit-aligned address that was last read, you can observe 0x01b000eO0. If the memory region is made non-

cacheable, you would see the 128 bit-aligned read address, which in this case would be 0x01b000fO0.

Note the following important points while performing TCFLASH ECC error injection:

= [f ECC is enabled, error injection happens globally across the address range. i.e., errors are injected in any read location in TCFLASH via both AXI and

TCM space.
Document No. 002-25469 Rev. **

o CYPRESS

e - EMBEDDED IN TOMORROW

= While testing TCFLASH ECC via AXI, it is recommended to place the test handler (ISR) in a RAM location or execute the handler via TCM space (disable
ECC checks in CPU). If not, it may trigger ECC error detection continuously in case of 1-bit ECC and may result in prefetch aborts in case of 2-bit ECC

because any read to the code region also gets injected with errors; the CPU prefetch unit will continue fetching code from flash memory that it wants to
execute.

You can also choose to inject errors into the ECC bits in the TCFLASH instead of data bits by writing to FECCEIR register.
See ARM manuals for details on ECC error checks in case of TCM access.

2. ECC for IRC Vector Address RAM

The interrupt controller block in Traveo MCU is equipped with an SRAM which has the ECC protection function. This SRAM holds the vector address of the
mapped interrupt vectors. If a 1-bit error (correctable) occurs in this SRAM memory, the IRCn_EEI:EEIS bit is set and an IRQ is generated if the IRQVAr register is
read by the CPU or from the IRQ processing stage.

If an error of 2 or more bits (uncorrectable) occurs, the IRCn_EEI:EENS bit is set and an NMI is generated if the IRQVAr register is read by the CPU. If the SRAM
read happens from the Interrupt Controller, a transition is made to the function pointer indicated by IRCn_IRQEEVA. Therefore, also make sure that a valid
address is set in IRCn_IRQEEVA.

Note that IRQ number and NMI number for single-bit error and multi-bit errors are respectively specified in the IRQ Map and NMI Map sections of the Series
Hardware Manual.

Document No. 002-25469 Rev. ** 10

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf

& CYPRESS

> EMBEDDED IN TOMORROW™

Figure 9. IRQ for IRC Vector Address RAM Single-Bit Error

1. IRQ Map

This section shows list of interrupt vector
This list shows the assignment of intermupt vectors/interrupt control registars
Vector of not-implemented funclion is not supported. See the chapter of function list

IRQ No. Detail IRQ Priority Register Vector Address Register
0 Reserved - -
1 System Control Status IRCO_IRQPLO | IRQPL1Y IRCO_IROVA1
2 HW-WDT Pre-waming IRCO_IROPLD | IRQPL2 IRCO_IROVA2
3 SW-WDT Pre-waming IRCO_IRQPLO : IROPL3 IRCO_IRQVA3
Ato7 Reserved
8 TCFLASH RDY, Hang up, Single Bit Error IRCO_IROPL2 : IROPLS IRCO_IRQVAB
Reserved - -
10 Work FLASH Hang up IRCO_IRQPL2 : IRGPL10 IRCO_IRQVA10
Mto13 Reserved - -
14 System RAM Single B Error IRCO_IRGQPL] : IRQPL14 IRCO_IRQVA14
: A 61 Si RCO IRQPLS - IROP RCO _IRQVA
IRCO_IRQPLA - IRQPL1E IRCO_IRQVA16
171019 Reserved = - m—

Document No. 002-25469 Rev. ** 11

o CYPRESS

= EMBEDDED IN TOMORROW"™

Figure 10. NMI for IRC Vector Address RAM 2-Bit Error
2. NMI Map

This section shows NMI map.

NMI of not-implemented function is not supported. See the chapter of function list.

NMI No. Detail Priority Level IRQ/NMI Vector Address
0 NMIX pin{Ext-IRC) IRCO_NMIPLO : NMIPLO IRCO_NMIVAO
Tto2 Reserved - -
3 Reserved - -
4 LVDs IRQ IRCO_NMIPL1 : NMIPL4 IRCO_NMIVA4
5 CSV, Profile IRCO_NMIPL1 : NMIPL5 IRCO_NMIVAS
6 HW-WDT IRCO_NMIPL1 : NMIPLE IRCO_NMIVAG
7 SW DT IRCO _NMIPIA - NIMIPL T IRCO_MNMIVAT
8 IRC 2-bit ECC err detection IRCO_NMIPL2 : NMIPL8 IRCO_NMIVAS
9to 10 Reserved - -

Note that 1-bit errors are always corrected and sent to the master who accessed the SRAM holding the vector addresses. If you enable the 1-bit ECC error
interrupt, the interrupt handler (IRQ-16) would be called. To correct the error in SRAM, you can write back the vector address into the SRAM to force a
recalculation of the ECC by hardware. IRCn_EAN holds the relative address of the SRAM where the error occurred.

If a double-bit ECC error in the SRAM is detected by reading IRCn_IRQVAr by the CPU, a correct vector address must be written again in the relevant
IRCn_IRQVAr register with the corresponding NMI handler. Then, the error bit must be cleared by writing to IRCn_EEI:EENC.

If a double-bit ECC error in the SRAM is detected by reading IRCn_IRQVAr by the IRQ processing unit, the correct vector address must be rewritten to
IRCn_IRQVAr register corresponding to the IRQEEVA handler.

More details about these registers are covered in the subsequent sections.

2.1 ECC Test Function

The interrupt controller also has a function for generating pseudo ECC errors by corrupting the data read from SRAM. Using this function, you can check the
operation of the ECC error handler while developing applications. By setting the ECC error bit registers (IRCn_EEBO to IRCn_EEB?2), you can invert the data read
from the SRAM by using the bitwise operation. This test function can be enabled/disabled using the ECC test register (IRCn_ET).

2.1.1 Registers needed for ECC Tests for IRC Vector Address RAM

Document No. 002-25469 Rev. ** 12

o CYPRESS

e - EMBEDDED IN TOMORROW"™

Table 2. IRC Vector Address RAM ECC Registers

Abbreviated Register Name

Register Name

Register Details

IRCn_ET

IRC ECC test register

This register sets enable/disable of the test mode for the ECC protection function of the SRAM in the
interrupt controller.

IRCn_UNLOCK

IRC Unlock Register

This register controls the write lock for the interrupt controller to each register.

IRCn_EEBO to IRCn_EEB1

IRC ECC error bit register

These registers are used in ECC test mode. In the data read from the SRAM, you can spuriously
corrupt any of the bits in the data area.

IRCn_EEB2 IRC ECC error bit register This register is used in ECC test mode. In the data read from the SRAM, you can spuriously corrupt
any of the bits in the ECC parity area.

IRCn_IRQVAr IRC IRQ vector address register This register indicates the 32-bit vector address of individual IRQ channels. Before the corresponding
IRQ channel is enabled, the vector address should be initialized by software. The same type of register
is installed for each IRQ channel. The "r" in the abbreviated register name corresponds to the IRQ
channel number, r (0 to 511). This register is on SRAM of the interrupt controller.

IRCn_IRQEEVA IRC ECC error vector address register This register is used to perform correct error handling when SRAM holding the IRQ vector is read by
the IRQ processing block and a 2-bit ECC error is detected.

IRCn_EEI IRC ECC error interrupt register This register indicates the ECC error interrupt status. It also clears the interrupt. There are two types of
ECC error interrupt: NMI and IRQ.

IRCn_EAN IRC ECC address number register When a single-bit or double-bit ECC error occurs, this register indicates the SRAM address of the error.

Note that IRCn_EEBO to IRCn_EEB2 (n = 0) are the critical registers that need to be written to corrupt the data in the SRAM area of the interrupt controller.

The registers IRCO_EEBO and IRCO_EEB2.EEBE correspond to the even vectors i.e., IRCO_IRQVAOQ, IRCO_IRQVA2, IRCO_IRQVA4, etc., and the registers
IRCO_EEB1 and IRCO_EEB2.EEBO correspond to the odd vectors i.e., IRCO_IRQVAL, IRCO_IRQVAS, IRCO_IRQVAS5, etc.

Also note that only the lower eight bits of IRCn_EAN registers are significant; they hold a relative address only. IRCn_EAN.EAN represents the 8-byte offset of the
ECC error occurrence address from the SRAM base address (i.e., the address of IRCn_IRQVAO). Effectively, the absolute error occurrence address will be

= (Addr of IRCn_IRQVAOQ) + (8 x IRCn_EAN.EAN)

Document No. 002-25469 Rev. **

13

& CYPRESS

EMBEDDED IN TOMORROW"™

2.2 Sample Codes for ECC Injection Tests

2.2.1 2 Bit Error Injection and Handling NMI
Consider the following function:

void Test ECC 2Bit (void)

{

volatile uint32 t Read Vector;

/* Unlock Interrupt Controller */
IRCO UNLOCK = 0x17ACC911;

/* Set Address to trigger ISR when read by Interrupt Controller */

IRCO IRQEEVA = (uint32 t)Test ECC2Bit Int Controller;

/* Enable the Self Test */
IRCO ET ET = 1;

/* Set Double Bit Error in Even Vector Address*/

TRCO_EEBO EEB = 0x0000000C;

/* Read an Even Vector Address to trigger the IRQ */

Read Vector = (uint32 t)IRCO_IRQVA2;

/* Lock Interrupt Controller */
IRCO UNLOCK = 0x17B10C11;

Document No. 002-25469 Rev. **

14

& CYPRESS

= EMBEDDED IN TOMORROW™

Because you are setting two bits as ‘1’ in IRCO_EEBO_EEB, you are corrupting two bits of the SRAM memory. Now, a read to any of the even vector address by
the CPU (for example, IRCO_IRQVAZ2) would trigger NMI8.

If the operating system has initialized/mapped this NMI, it can be serviced using a similar function as shown below:

FN_NMI DEFINE BEGIN(ECC 2BitError NMI, INTERRUPTS NMI NUMBER 8)

{
/* 2 Bit ECC Detected, triggered the NMI */

/* Add code to trigger Software Reset or required user action */

/* Clear Hold Bit for NMI8 */

IRCO NMIHC = 0x08;

/* Clear Error Bit */
IRCO_EEI_EENC = 0x1;

}
As shown in Figure 11, you can see “ECC_2BitError_NMI” being hit after a read of IRCO_IRQVA2.

Document No. 002-25469 Rev. ** 15

=¥
o .
R

CYPRESS

EMBEDDED IN TOMORROW"™

Figure 11. IRC RAM 2 Bit Error and NMI Handler

wvoid Test_ECC _ZBit (wvoid)
{
wolatile uintii t Read Vector;

/% Unlock Interrupt Controller #/
IRCO_UNLOCE = Ox17ACCS11:

% Zet Address to trigger ISE when read by Interrupt Controller
IRCO_IRQEEWA = (uint3Z_) Test_ECCZBit_Int Controller:

/% Enable the ZIelf Test */
IRCO_ET ET = 1;

/% Zet Double Bit Error in Even Vector Address@®/
IRCO_EEEO_EEE = 0Ox0000000C;

/% Bead an Even Vector Address to trigger the IRQ +/

[3 Fead Vector = (uint32 t) IRCO_IRQVAZ;

/% Lock Interrupt Controller +f
IRCO_UNLOCE = O0x17E10C11:

w/

FN_NMI DEFINE BEGIN(ECC ZBitError NMI, INTERRUPTI NMI_ NUMEEER &)
{
/% 2 Bit ECC Detected, triggered the NHI */
A% Add code to trigger Software Reset or regquired user action +/

/% Clear Hold Eit for NMIS */

iy IRCO_MMIHC = 0Ox0S:

/% Clear Error Bit */
IRCO_EEI_EENC = Oxl:

¥
FN_NMI_DEFINE END ()

2.2.2 1-Bit Error Injection and Handling IRQ

Consider the following function:

void Test ECC 1Bit (void)

Document No. 002-25469 Rev. **

16

o CYPRESS

= EMBEDDED IN TOMORROW"™

volatile uint32 t Read Vector;

/* Unlock Interrupt Controller */

IRCO UNLOCK = 0x17ACC911;

/* Enable the Self Test */

IRCO ET ET = 1;

/* Set Single Bit Error in Even Vector Address*/

TRCO_FEEBO_EEB = 0x00000004;

/* Read an Even Vector Address to trigger the IRQ */
Read Vector = (uint32 t)IRCO IRQVA2Z;

/* Lock Interrupt Controller */

IRCO _UNLOCK = 0x17B10C11;

}

Because you are setting one bit as [1’ in IRCO_EEBO_EEB, you are corrupting one bit of the SRAM memory. Now, a read to any of the even vector address (for
example, IRCO_IRQVA2) would trigger IRQ16.

If the operating system has initialized/mapped this IRQ, it can be serviced using a similar function as shown below:

FN_IRQ DEFINE BEGIN(ECC 1BitError IRQ, INTERRUPTS IRQ NUMBER 16)

{
/* 1 Bit ECC Detected, triggered the IRQ */

Document No. 002-25469 Rev. **

17

o CYPRESS

= EMBEDDED IN TOMORROW"™
IRCO_EEI EEIC = 0xl;
/* Clear Hold Bit for IRQl6 */
IRCO_IRQHC = 0x00000010;

}

FN_IRQ DEFINE END()

As shown in Figure 12, you can see “ECC_1BitError_IRQ" being hit after a read of IRCO_IRQVAZ2.

Document No. 002-25469 Rev. **

o CYPRESS

g EMBEDDED IN TOMORROW™

Figure 12. IRC RAM 1 Bit Error and IRQ Handler

void Test ECC_1Bit{void)
(
volatile uint3Z _t Read Vector:

* Unlock Int

t roller v
. IRCO_UNLOCK =

/* Enable the Self
. IRCO_ET ET = 1;

* Set Single Bit Error in Even Vector Address®/

e IRCO_EEBO_EEB = 0Ox0D000004;

/* Read an Even Ve o trigger the IRQ =/

[Read Vector = (uir IRC VAZ;
* Lock Intérrupt
§ IRCO_UNLOCK = 0x17B1
.)
. v
i R

FN_IRQ_DEFINE_BEGIN(ECC_iBitError_IRQ, INTERRUPTS_IRQ NUMBER_16)
(

/* 1 Bit ECC Detected, triggered the IRQ */
IRCO_EEI_EEIC = Ox1:

/* Clear Hold Bit for IRQ1s */
L IRCO_IRQHC = Dx00000010:
)
« FN_IRQ_DEFINE_END()

3. ECC for VRAM

Video RAM (VRAM) is a 2-MB embedded SRAM, which is part of the Graphics Subsystem. The VRAM also has built-in ECC that can be enabled for various
VRAM sub-regions. Note that because this ECC region is shared with the user region, the memory size available for the user program shall reduce if ECC is
enabled. You can define the ECC-enabled area and ECC-disabled area as part of the VRAM configurations.

Single-bit and double-bit error detection triggers respective NMI, which can be handled in the user application.

Document No. 002-25469 Rev. **

&= CYPRESS

g EMBEDDED IN TOMORROW"™

Figure 13 shows the NMis for VRAM error detection:

Figure 13. NMI for VRAM ECC

2. NMI Map
This secbon shows NMI map.
NMI of not-impiemented function is not supported. See the chapler of function kst
NMI No, Datalt Priorty Lovs! IRQNMI Vector Address
0 NMIX i/ ExH-IRC) IRCO_NMIPLD - NMIPLD IRCO_NMIVAD
1102 Reserved s
3 Reserves
1 LVDs IRQ IRCO_NMIPLY - NMIPLA IRCO_NMIVAZ
5 CSv, Profe IRCO_NMIPLY - NMIPLS RCO_NMIVAS
5 HW-WDT |RCO_NMIPLT - NMIPLE IRCO_NMIVAG
7 SW-ADT JRCO_NMIPLY - NMIPLT IRCO_NMIVA7
5 IRC 2-08 ECC err delection IRCO_NMIPLY - NMIPLS IRCO_NMIVAS
ato 10 Reservad - -
T Backup RAM 2-bit ECC eeror detection IRCO_NMIPLZ | NMIPL11 IRCO_NMIVAT1
12 M-CAN RAMS 2-b2 ECC error aetection |RCO_NMIPLY - NMIPL12 IRCO_NMIVA12
3 DMAC MPU #0 protecton viokaton JRCO_NMIELY - NMIPL13 IRCO_NMIVA13
1 Reserved
15 SHE MPU IRCO_NMIPL3 - NMIPL15 IRCO_NMIVATS
o117 Reservod
1 TPU protectian violation IRCO_NMIPLA - NMIPL15 IRCO_NMIVA18
19 Reserved .
20 GIapNICS SUbEyStem Mamory PTOLEton IRCO_NMELS NWPLI0 JRCO. NMIVAZ0
Graphics subsystem {VRAM) ECC Singie B
2 s itrtk IRCO_NMIPLS - NMIPL21 IRCO_NMIVA21
2 T e NI TRCO. NIMPLE . NIMPLEZ TR0, NRVATS
23 ETHERNET_MPU_NMI IRCO_NMIPLS - NMIPLZ3 IRCO_NMIVAZ3
241031 Reservad -

A single-bit error in the VRAM triggers NMI 21 when the erroneous memory address is read in the application. You can read the vram_sberraddr_sn register
(where ‘n’ varies from 0 to 2) to know the VRAM address location that has experienced the bit flip.

A double-bit error in the VRAM triggers NMI 20 when the erroneous memory address is read in the application. NMI 20 is also triggered when the Graphics
Subsystem Memory Protection Unit and Bus Monitoring detect any error.

Document No. 002-25469 Rev. **

20

o CYPRESS

e - EMBEDDED IN TOMORROW"™

NMIs should be handled in the user application to clear the interrupt and check the VRAM address where error has occurred. Single-bit errors are corrected by the
ECC block; however, it is the user’s responsibility to either reset the controller or rewrite the memory again in case of double-bit errors.

3.1 ECC Test Function

The VRAM also supports injecting pseudo ECC errors by corrupting the data read from the VRAM. The error can be injected using vram_errinj_ecc_sn_lo and
vram_errinj_ecc_sn_hi registers. By setting a bit in these registers, the respective bit is inverted in the data read from the VRAM.

3.1.1 Registers Needed for ECC Tests for VRAM
Table 3. VRAM ECC Registers

Abbreviated Register Name Register Name Register Details
vram_errinj_ecc_sn_lo vram_errinj_ecc_sn_lo (where ‘n’ ECC error injection for Sn interface (check bits for lower 32 bits).
varies from 0 to 2)
vram_errinj_ecc_sn_hi vram_errinj_ecc_sn_hi (where n ECC error injection for Sn interface (check bits for upper 32 bits).
varies from 0 to 2)
vram_LockUnlock vram_LockUnlock Register to change the protection status of the address block 2.(Refer Table 2)
vram_LockStatus vram_LockStatus Updates the VRAM lock status, privilege status and freeze status.
vram_sram_select vram_sram_select Selects the ECC-protected region in units of 4 KB. A value of ‘0’ means there is no

protected region.
This field accepts the value greater than 511. Such a value means that whole of 2 MB are
protected region.

VRaminterruptEnable VRamlinterruptEnable VRAM non-maskable interrupt enable register. Writing ‘1’ to a bit in this register enables
the VRAM interrupt. There are three LSb bits, each for VRAM Interrupt ECC 3DGC,
VRAM Interrupt ECC Disp and VRAM Interrupt ECC 2DGC Sys

VRaminterruptClear VRaminterruptClear VRAM non-maskable interrupt clear register. Writing ‘1’ to a bit in this register clears the
respective interrupt.

Here is the flow for performing the VRAM ECC test:

1. Unlock VRAM registers by writing 0x691DB936 to the vram_LockUnlock register. Wait until the unlock is successful by monitoring the vram_LockStatus
register.

2. Select the VRAM region for which ECC should be enabled, by using the vram_sram_select register.

3. Enable error injection by setting one/ two bits of vram_errinj_ecc_sn_lo and vram_errinj_ecc_sn_hi, for single/double bit error.

Document No. 002-25469 Rev. ** 21

& CYPRESS

> EMBEDDED IN TOMORROW™

Enable the VRAM interrupt by setting the respective bits of the VRamInterruptEnable register.
Lock VRAM registers by writing 0x5651f763 to the vram_LockUnlock register.
Write a dummy byte to the VRAM location and read it back.

S A

Handle NMI 21/NMI 20 for clearing the interrupt for single bit/double bit error.

3.2 Sample Codes for ECC Injection Tests

3.2.1 1-Bit Error Injection and Handling NMI

The following code snippet injects one-bit error in a VRAM location:
static void ECC_Test ()
{
/*Unlock the VRAM registers*/
GRPSUB_SUBC_VRAM LOCKUNLOCK=0x691DB936;
while (GRPSUB_ SUBC VRAM LOCKSTATUS == 1);
/*Write 512 to VRAM Select register to enable ECC for entire VRAM region*/
GRPSUB_SUBC_VRAM SRAM SELECT = 512;
/*Inject 1 bit error by setting one bit in error injection register. */
GRPSUB_SUBC_VRAM ERRINJ ECC_ S0 LO VRAM ERRINJ ECC SO0 LO = 0x000000001ul;
GRPSUB_SUBC_VRAM ERRINJ ECC SO HI VRAM ERRINJ ECC SO HI = 0x00;
/*Enable VRAM interrupts for error detection*/
GRPSUB_ SUBC VRAMINTERRUPTENABLE = 1;
/*Lock the VRAM registers*/
GRPSUB_SUBC_VRAM LOCKUNLOCK = 0x5651£763;

while (GRPSUB_SUBC VRAM LOCKSTATUS == 1);
Document No. 002-25469 Rev. **

22

o CYPRESS

= EMBEDDED IN TOMORROW"™

/*Write a dummy data to a VRAM address (0x50000000) */
((volatile uint32 t)0x50000000) = 0x25;

DSB ()

/*Read the VRAM address*/

Read vram= *((volatile uint32 t*)0x50000000)-Read vram;

As soon as the VRAM location is read, NMI 21 is triggered, which shall be handled in the user application. A sample code for handling this NMI is shown below:
FN NMI DEFINE BEGIN (test ECC, INTERRUPTS NMI NUMBER 21)
{
/*unlock the key register for VRAM*/
GRPSUB_SUBC VRAM LOCKUNLOCK=0x691DB936;
while (GRPSUB SUBC VRAM LOCKSTATUS == 1)
{
}
/* clear the injected error*/
GRPSUB SUBC VRamInterruptClear =0x7U;
GRPSUB_SUBC_VRAM ERRINJ ECC_S0 LO VRAM ERRINJ ECC_S0 LO = 0x00000000ul;
GRPSUB_SUBC_VRAM ERRINJ ECC_S0 HI VRAM ERRINJ ECC S0 HI =0;
/* lock configuration registers*/
GRPSUB_SUBC_VRAM LOCKUNLOCK =0x5651F763;
while (GRPSUB_SUBC_VRAM LOCKSTATUS == 1)

{
Document No. 002-25469 Rev. **

& CYPRESS

g EMBEDDED IN TOMORROW™

}
/*Clear hold bit for NMI21*/
IRCO NMIHC = 0x15U;

}

FN_NMI DEFINE END ()

In the NMI handler, the error injection register is cleared to stop pseudo ECC errors and the NMI is cleared. For clearing error injection, follow the same flow as
that of enabling error injection. Instead of setting the bit, clear the bit in the error injection register.

In Figure 14 and Figure 15, you can observe that the NMlI is triggered after a read is done to the VRAM address.

Figure 14. 1-Bit-Error Injection for VRAM

s

{

=tatic void ECC_Test()

/'Unlock the VRAN regiasera’/
GRP3UB_SUBC_VRANM_LOCKUNLOCE=0x 691008362
whils |GRPSUB_SUBC VRAN LOCKSTATUS == 1);

fAPrite 512 to VIAK Seilect regiscer to snable ECC for entire VRAR regicn®

GRPSUE_SUBC_VRAN_3RAM_SELECT = 513:

*Inject 1 bit error by setting one bit In error injection regis
GRFSUB_SUBC_VRAM ERRINJ IZCC_SO_LO _VRAE _ERRINJ ECC_50_LO = Ox
GRPSUB_SUBC_VRAN_ERRINJ_ECC_SO_HI_VRAM_ERRIRJ_ECC_SO_RI = 0Ox00

/*Ensble VEAM interrupts for eccor detection®/
GRFSUB_SUBC_VRAMINTERRUPTENABLE = 13

*Lock the VRAN reglstesas/
GRPSUB_SUBC_VRAM_LOCKUNLOCK = OxS5651£763;
while [GRPSUE_SUBC_VRAM LOCKSTATUS == 1);

/AVrice a duseyy dota cOo A VRAR addreas (0xS00GDO00] */
*((volatile uine3Z tv)0x50000000) = Ox2S5:

D3IBL)

{{volatiie uinc3Z c¥)OxS0000000| ~Read vram:

Document No. 002-25469 Rev. **

24

o CYPRESS

= EMBEDDED IN TOMORROW"™

Figure 15. NMI Handler for 1-bit VRAM Error

\.,

FH_NMI_DEFINE EEGIN(test ECC, INTERRUPTS NNI_NUMBEER 21}
i

J*unlock the key redgister for VREAN*/
GRP3SUE_SUEC_VEAM LOCKUNLOCE=0x631DES36;
while (GRPIUB_SUBC_ VRAM LOCEITATUI == 1)
{
i
/% zlear the injected error®/
GRP3UB_SUBC_VRamInterruptClear =0x70;
GRPSUB_SUBC_VRAM ERRINJ ECC S0 LO VRAM ERRINJ ECC S0 LO = 0x00000000ul;
GRPSUE_SUBC_VRAM ERRINJ ECC S0 _HI VRAM ERRINJ ECC S0 _HI =0;

/% lock configuration registers®/
GRPSUE_SUBC_VRAM LOCKUNLOCE =0xS5S651F763;
while (GRPIUB_SUBC_WVRAM LOCESTATUI == 1)
{

i

/*Clear hold hit for NMIZ1+*/
IRCO_NHMIHC = Ox157;

H
FN_NNI_DEFINE_END)

Once error injection and NMI are cleared, NMI is not again triggered until there is a bit flip in the VRAM memory.

3.2.2 2-Bit Error Injection and Handling NMI

The following code snippet enables two-bit error injection in VRAM memory:

static void ECC Test ()

{

/*Unlock the VRAM registers*/

GRPSUB_SUBC_ VRAM LOCKUNLOCK=0x691DB936;

while (GRPSUB SUBC VRAM LOCKSTATUS == 1);

/*Write 512 to VRAM Select register to enable ECC for entire VRAM region*/

Document No. 002-25469 Rev. **

25

o CYPRESS

= EMBEDDED IN TOMORROW"™

GRPSUB_SUBC_VRAM SRAM SELECT = 512;

/*Inject 2-bit error by setting one bit in error injection register. */

GRPSUB_SUBC_VRAM ERRINJ ECC SO LO VRAM ERRINJ ECC SO LO = 0x000000011ul;

GRPSUB_SUBC_VRAM ERRINJ ECC SO HI VRAM ERRINJ ECC_SO HI

0x00;
/*Enable VRAM interrupts for error detection*/

GRPSUB_SUBC_ VRAMINTERRUPTENABLE = 1;

/*Lock the VRAM registers*/

GRPSUB_SUBC_VRAM LOCKUNLOCK = 0x5651f763;

while (GRPSUB SUBC VRAM LOCKSTATUS == 1);

/*Write a dummy data to a VRAM address (0x50000000) */
((volatile uint32 t)0x50000000) = 0x25;

DSB () ;

/*Read the VRAM address*/

Read vram= *((volatile uint32 t*)0x50000000)-Read vram;

As soon as the VRAM location is read, NMI 20 is triggered, which shall be handled in the user application. A sample code for handling this NMI is shown below:
FN NMI DEFINE BEGIN (test ECC2bit, INTERRUPTS NMI NUMBER 20)
{
GRPSUB_SUBC_VRAM LOCKUNLOCK=0x691DB936;
while (GRPSUB_ SUBC VRAM LOCKSTATUS == 1)
{

}
Document No. 002-25469 Rev. **

26

& CYPRESS

= EMBEDDED IN TOMORROW™

/* clear the injected error*/
GRPSUB_SUBC VRamInterruptClear =0x7U;
GRPSUB_SUBC VRAM ERRINJ ECC S0 LO VRAM ERRINJ ECC SO LO = 0x00000000ul;

GRPSUB_SUBC_VRAM ERRINJ ECC S0 HI VRAM ERRINJ ECC_SO HI =0;

/* lock configuration registers*/
GRPSUB_SUBC_VRAM LOCKUNLOCK =0x5651F763;
while (GRPSUB SUBC VRAM LOCKSTATUS == 1)
{

}

/*Clear hold bit for NMI20%*/
IRCO_NMIHC = 0x140U;

}

FN_NMI DEFINE END ()

In the NMI handler, the error injection register is cleared to stop pseudo ECC errors and the NMI is cleared. For clearing the error injection register, follow the
same flow as that of enabling error injection. Instead of setting the bit, clear the bit in the error injection register.

In Figure 16 and Figure 17, you can observe that the NMI is triggered after a read is done to the VRAM address.

Document No. 002-25469 Rev. **

27

-CYPRESS

EMBEDDED IN TOMORROW"™

Document No. 002-25469 Rev. **

Figure 16. 2-Bit Error Injection for VRAM

static void ECC_Test ()

i

A *Unlock the WRAM registers*/
GRP3UE_SUEBC WVRAM LOCKUNLOCE=OxE51DESEG;
while (GRPEUE_SUBC_VRAM LOCESTATUI == 1);

A*Write 512 to WERAM Select register to enable ECC for entire VRAM region®/
GRPSUB_SUBC_WVRAM SEAM SELECT = 512;

f*Inject 2 bit error by setting one bit in error injection register.*/
GRP3SUE_SUEBC_WVRAM ERRINJ ECC 30_LO VRAM ERRINJ_ECC_ 30 LO = Ox000000011ul:
GRPSUB SUBC VRAH ERRINJ ECC S0 HI UREH ERRINJ ECC SO HI = O=00;

/*Enable VWRAM interrupts for error detection®/
GRP3IUE_SUBC VRAMINTERRUPTENAELE = 1;

/*Lock the VRAM registers®/
GRPSUE SUBC_VRAM LOCKUNLOCE = Ox5651£763;
while (GRPEUE_SUBC_VRAM LOCESTATUI == 1);

S*Write a dumny data to a VRAM address (0x50000000) */
*{{volatile uint3z t%)0x50000000) = Oxz5;

D3E);

/*Read the VRAM address+®/

Read vram= *|(wvolatile uint32_t%)0x50000000) -Read wram;

28

o CYPRESS

g EMBEDDED IN TOMORROW™

Figure 17. NMI Handler for 2-bit VRAM Error

7= ™~
1 FN_NMI_DEFINE BEGIN (test ECC2Zbit, INTERRUPTS_NNI_NUMBER_20)

2 (

3

4

5 wpsmd GRPSUB_SUBC_VRAM LOCKUNLCCK=0x691DB936:

6 . while (GRPSUB_SUBC_VRAM LOCKSTATUS == 1)

7 (

2)

=] /* clear the injected errort®/

10 . GRPSUB_SUBC_VRamInterruptClear =0x70:

11 . GRPSUB_SUBC_VRAN_ERRINJ_ECC_SO_LO_VRAN_ERRINJ_ECC_SO_LO = 0Ox00000000ui;
12 . GRPSUB_SUBC_VRAM_ERRINJ_ECC_30_HI_VRAM_ERRINJ_ECC_SO_HI =0:
13

14

15 /* lock configuration regiscera®/

16 . GRPSUB_SUBC_VRAN_LOCKUNLOCK =0x5651F763;

17 . vhile (GRPSUB_SUBC_VRAM_LOCKSTATUS == 1

18 (

19 ’

20

21 /*Clear hold bit for NHIZO*®/

22 . IRCO_NHIHC = Ox14U:

23)

24 « FN_NMI DEFINE END{)

N

4. ECC for Work Flash

Work Flash adds an 8-bit error check code for every 64 bits, so that it can detect and correct 1-bit errors and detect 2-bit errors. The ECC feature can be turned
ON/OFF by configuring the ECCOFF bit in the WFCFG_ECR register.

1-bit error is correctable and triggers the interrupt IRQ 20. 2-bit error results in a bus error leading to a data abort.

Document No. 002-25469 Rev. ** 29

& CYPRESS

> EMBEDDED IN TOMORROW™

Document No. 002-25469 Rev. **

Figure 18. IRQ for 1-Bit Work Flash Error

1. IRQ Map
This section shows list of interrupt vector.
This list shows the assignment of interrupt vectors/interrupt control registers,
Vector of not-implemented function is not supported. See the chapter of function list.
IRQ No Detail IRQ Priority Register Vector Address Register
0 Reserved - -
1 System Controi Status IRCO_IRQPLO - IRQPL1 IRCO_IRQVA1
2 HW-WDT Pre-waming IRCO_IRQPLO * IRQPL2 IRCO_IRQVA2
3 SW-WDT Pre-waming IRCO_IRQPLO : IRQPL3 IRCO_IRQVA3
4107 Reserved - -
8 TCFLASH RDY, Hang up, Single Bit Error IRCO_IRQPLZ - IRQPLE IRCO_IRQVAS
9 Reserved - -
10 Work FLASH Hang up IRCO_IRQPL2 - IRQPL10 IRCO_IRQVA10
M3 Reserved - -
14 System RAM Single Bit Error IRCO_IRQPL3 " IRQPL14 IRCO_IRQVA14
15 Backup RAM / CAN FD RAM{(ch.0,1,5 6) Single Bit Error IRCO_IRQPL3 : IRQPL1S IRCO_IRQVA15
16 IRC Vector Address RAM Single Bit Error IRCO_IRQPLA ' IRQPL16 IRCO_IRQVA16
17 to 19 Reserved ; E
20 Work FLASH RDY, Write Enable Release, Single Bit Error IRCO_IRQPLS IRQPL20 IRCO_IRQVA20

30

&2 CYPRESS

EMBEDDED IN TOMORROW™

4.1 ECC Test Function

To test the ECC functionality, the ECC logic has a test function to insert an error into the data and ECC read from the flash memory.

4.2 ECC Error Injection Related Register Configuration

Table 4. Work Flash ECC Registers

AbbreviatedRegister

Register Name

Register Details

Register

Name
WFCFG_CPR Work Flash Configuration Used to protect the following registers from unintended writing:
Protection Key Register (WFCFG_CR),(WFCFG_ECR),(WFCFG_DBEIR), (WFCFG_EEIR).
WFCFG_ECR Work Flash ECC Control This register is used to control the operation of the ECC logic.

WFCFG_DBEIR

Work Flash Data Bit Error
Injection Register

This register is used to perform an ECC logic operation test by injecting errors into the data bits read from
Flash memory.

WFCFG_EEIR

Work Flash ECC Bit Error
Injection Register

This register is used to perform an ECC logic operation test by injecting errors into the ECC bits read from
Flash memory.

WFCFG_SECIR

Work Flash SEC Interrupt
Register

This register contains the status flags, enable bits, and clear bits related to 1-bit error correction interrupts.

WFCFG_EEAR

Work Flash ECC Error
Address Register

This register retains the address at which a 1-bit error was detected during reading. If the 1-bit error was
detected multiple times, the register retains the address at which the error was last detected.

WFCFG_UCEAR

Work Flash Uncorrectable
Error Address Register

This register retains the address at which an uncorrectable error was detected during reading. If the
uncorrectable error was detected multiple times, the register retains the address at which the error was
last detected.

For performing the ECC Error injection tests, the following procedure is performed:

a) Unlock WFLASH ECC configuration interface.
b) Perform the required configuration.

c) Repeat a) and b) for the required registers.

d) Read the Work Flash memory.

Notice the error response corresponding to the configuration.

Document No. 002-25469 Rev. **

31

& CYPRESS

EMBEDDED IN TOMORROW"™

4.3 1-Bit Error Injection and Handling IRQ

Consider the following lines of code:

void Test WFLASH ERRdata 1bit (void)
{

if (WFCFG_ECR_ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers

while (WFCFG CPR != OxXFFFFFFFF)
{
}

WFCFG_ECR_ECCOFF = 0x0;

WFCFG_SECIR SECIE =1; // ECC interrupt enable

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers
while (WFCFG _CPR != OxXFFFFFFFF)

{

}

WEFCFG_DBEIR L=0x0001;
Document No. 002-25469 Rev. **

o CYPRESS

= EMBEDDED IN TOMORROW"™

data wflash read data = *((volatile uint32 t *)0xO0E000000); // reading workflash location

In this example, Bit 0 is configured for data flipping. This will cause 1-bit error detection and correction and trigger the corresponding interrupt (IRQ 20). The
following is a sample interrupt handler:

/* ISR for the 1-bit ECC detection and correction by WFLASH */
FN IRQ DEFINE BEGIN (WFLASH ECC Test, INTERRUPTS IRQ NUMBER 20)
{

WFLASH Error Address = WFCFG _EEAR; // read error address

if (WFCFG_SECIR SECINT == 1)// read error flag.
WFCFG_SECIR_SECIC = 1;// Clear error flag.

}
FN_IRQ DEFINE END ()

Figure 19 and Figure 20 show that the interrupt gets triggered after a Work Flash read.

Document No. 002-25469 Rev. **

o CYPRESS

g EMBEDDED IN TOMORROW™

Figure 19. 1-Bit Work Flash Error Injection

i woid Test WFLASH ERRdata lbit (woid)
i
- if (WFCFG ECE ECCOFF I= Ox0) {/Ensbhle ECC for Mirror 1 and Mirror 4 enabled if not enabled
{
- WFCFG CPE = WFLAZH KEY UNLOCE: /¢ Unlock WFLASH configuration registers
L while (WFCFG CPR != OxFFFFFFFF)
{
i
. WFCFG _ECR_ECCOFF = 0Ox0;
}
- WFCFG_SECIR_SECIE =1; // ECC interrupt enable
- WFCFG CPE = WFLAZH KEY UNLOCE: /4 Unlock WFLASH configuration registers
. while (WFCFG_CPR != OxFFFFFFFF)
i
i
L WFCFG_DEEIR L=0x0001;
. data wflash read data = *((volatile uint3iZ t *)0x0E000000) : /7 reading workflash location
5T
.

A

Figure 20. IRQ Handler for 1-Bit Work Flash Error

/% ISR for the 1-bit ECC detection and correction by WFLASH #/)
FN_IRQ DEFINE BEGIN(WFLASH ECC_Test, INTERRUPTS IRC NUMEER_20)
{

iy =) WFLASH Error Address = WFCFG_EEAR; // read error address

if{ WFCFG_SECIR_SECINT == 1)// read error flag.
WFCFG SECIR SECIC = 1:// Clear error flag.

H

FN_IRQ DEFINE_END ()

Here is an example for 2-bit ECC data error for Work Flash:

Document No. 002-25469 Rev. **

34

& CYPRESS

g EMBEDDED IN TOMORROW™

void Test WFLASH ERRdata 2bit (void)
{

if (WFCFG_ECR_ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled
{

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers.

while (WFCFG_CPR != OxFFFFFFFF)
WFCFG_ECR_ECCOFF = 0x0;

// Configure Double-Bit Error

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers
while (WFCFG _CPR != OXFFFFFFFF)

{
}

WECFG_DBEIR L=0x0001; // Configure lower 32 bit of error injection register

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers

Document No. 002-25469 Rev. **

35

o CYPRESS

= EMBEDDED IN TOMORROW"™

while (WFCFG CPR != OXFFFFFFFF)
{

}

WFCFG_DBEIR H=0x0001; // Configure upper 32 bit of error injection register

data wflash read data =

*((volatile uint32 t *)0x0E000000); // reading workflash location.

In this example, Bit 0 and Bit 32 are configured for data flipping. This will cause 2-bit error detection resulting in bus error leading to data abort.

A sample for reading the error status inside the data abort handler follows:

if (WFCFG_BERR DED ==1)
{

// Check for 2 bit ECC error.

WFLASH Error Address 2bit= WFCFG_UCEAR; // read error register.

WFCFG_BERRCLR_DEDCLR =1; // clear error status.

Figure 21 and Figure 22 show that the interrupt gets triggered after a Work Flash read.

Document No. 002-25469 Rev. **

36

o CYPRESS

g EMBEDDED IN TOMORROW™

Figure 21. 2-Bit Work Flash Error Injection

Document No. 002-25469 Rev. **

4 wvoid Test WFLASH ERRdata zbit (void) Y
{
L] 1f (WFCFG_ECR_ECCOFF !'= 0Ox0] //Enalile ECC for Mirror 1 and Mirror 4 enabled if not enakled
i
L] WFCFG_CPR = WFLASH KEY UNLOCK: // Unlock WFLLZH configuration registers.
- while (WFCFG CPR != OxFFFFFFFF)
{
i
L WFCFG_ECR_ECCOFF = 0Ox0;
i
/f Configure Double-Eit Error
- WFCFG CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers
. while (WFCFG_CFR != OxFFFFFFFF)
i
i
- WFCFG DEEIR_L=0x0001; /7 Configure lower 32 bit of error injection register
- WFCFG CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers
. while (WFCFG_CFR != OxFFFFFFFF)
i
i
- WFCFG_DEEIR_H=0x0001; /7 Configure upper 32 bit of error injection register
m data wflash read data = *((volatile uint3Z t *)0x0E000000) ; ¢/ reading workflash location.
oo ! v,

37

o CYPRESS

= EMBEDDED IN TOMORROW™

Figure 22. Data Abort for 2-Bit Work Flash Error

r static wvoid DefaultDatalbortExceptionHandler (woid) Y
{
// IRQs are disabled now.
ff Please refer to the ARM documentation on how to handle this exception.
wolatile uinti3i t WFLASH Error Address_Zbit;
ff For debugging purpose only
#ifdef DEBUG
/7 Collect some information akbout the cause of the data abort
volatile uint3Z t udZlataFaultitatus = MRC{ 15, 0O, &5, 0O, 0O }:
volatile uint3Z t udZiuxDataFaulti3tatus = MRC{ 15, 0, 5, 1, 0);
volatile uint3Z t udiDataFaultiddress = MRC{ 15, O, 6, O, 0O }:
#endif /7 DEEUG
- JSrPEDS if (WFCFG_BERR _DED ==1) // Check for Z bit ECC error.

{
WFLAZSH Error_lddress_Zhit= WFCFG_UCELR: // read error register.

WFCFG_BERRCLR_DEDCLR =1; // clear error status.

while (1]

NOP () ;

Because there is a data abort, you can observe the values in DFSR and DFAR registers for further analysis.

Document No. 002-25469 Rev. **

38

& CYPRESS

= EMBEDDED IN TOMORROW

Figure 23. DFSR Register Values During Data Abort

O=00o0l1o00s8
O=1
Wk O=0
F3[4] O=0
N
H IF3E D=oooooooo
H ADFSE D=o0ooooon
H LIFSE D=o0oooooo

l DFAR @

Table 5. DFSR Fault Status During Abort

Bits Description Value Inference
FS[4,3:0] DFSR - Fault Status | 0b01000 Synchronous External Abort.
[31:0] DFAR 0xe0000000 | Address where Work Flash is read.

An error can also be injected by the destruction of the ECC area. The following example codes can be used for that.

4.3.1 1-bit ECC Area Error in Work Flash
void Test WFLASH ERRECC 1lbit (void)
{

if (WFCFG_ECR_ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled
{

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers

while (WFCFG CPR != OXFFFFFFFF)
{
}

Document No. 002-25469 Rev. **

o CYPRESS

g EMBEDDED IN TOMORROW™

WECFG_ECR_ECCOFF = 0x0;

WEFCFG_SECIR SECIE =1; // ECC interrupt enable
WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers
while (WFCFG_CPR != OxFFFFFFFF)

{
}

WECFG_EEIR=0x0008;

data wflash read data = *((volatile uint32 t *)0xOE000000); // reading workflash location

2-bit ECC area Error in Work Flash:

void Test WFLASH ERRECC 2bit (void)
{
if (WFCFG_ECR _ECCOFF != 0x0) //Enable ECC for Mirror 1 and Mirror 4 enabled if not enabled
{

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers.

Document No. 002-25469 Rev. **

40

& CYPRESS

= EMBEDDED IN TOMORROW™

while (WFCFG CPR != OXFFFFFFFF)

— o~

WEFCFG_ECR_ECCOFF = 0x0;

// Configure Double-Bit Error

WFCFG_CPR = WFLASH KEY UNLOCK; // Unlock WFLASH configuration registers
while (WFCFG _CPR != OxXFFFFFFFF)
{
}

WEFCFG_EEIR=0x0003; // Configure lower 32 bit of error injection register

data wflash read data = *((volatile uint32 t *)0x0E000000); // reading workflash location.

5. ECC for TCMRAM

= Cortex-R5F - the CPU core in Traveo MCU has a provision for an ECC check for the TCM RAM. It supports 1-bit error correction and 2-bit error detection.

= Because the following access to uninitialized area of the TCRAM causes an ECC error, 32-bit initialization is necessary before using it.
a. 8- or 16-bit write access.

b. Read access.

Document No. 002-25469 Rev. **

41

o CYPRESS

e - EMBEDDED IN TOMORROW"™

= The Cortex-R5F performs an ECC check for the TCRAM in units of 32 bits.
= For 32- or 64-bit write operation, it adds ECC to data and then writes it to the TCRAM.

= For 8- or 16-hit write operation, it performs Read-Modify-Write access so that the correct ECC can be generated. An ECC check is also performed during
the read operation in case of Read-Modify-Write access.

= TCRAM has provision to insert an error in the data read from the TCRAM so that the 32-bit ECC function of the Cortex-R5F can be tested. ECC error
generation can be either by data area destruction or ECC area destruction.

5.1 Configuration of Error Correction

TCRAM 1-bit error correction can be enabled or disabled by using c15, Secondary Auxiliary Control Register.

Figure 24. c15 Auxiliary Control Register bit arrangements

31 5232221 201191817 16:1514 131211110 9 8: 7 4:3 210
Reserved
DCHE é L ATCMRMW
DRQB BTCMRMW
DF6DI ATCMECC
DF2DI BOTCMECC
DDl Reserved
DOODPFP IDC
DOOFMACS . DzC
Reserved 10C
IXC UFC

OFC

BTCMECC Correction for internal ECC logic on BTCM ports
0 = Enabled. This is the reset value.
1 = Disabled.

When ECC error correction is disabled, an abort is generated.

Document No. 002-25469 Rev. ** 42

.|
.
R

CYPRESS

EMBEDDED IN TOMORROW™

5.2 TCMRAM ECC Behavior

The following table indicates the behavior on ECC error detection for different configurations and errors.
Table 6. TCMRAM ECC Error Detection for Different Configurations and Errors

C15, Secondary
Auxiliary Control Access Error
register- bit 1-bit | 2-bit | TCM/ Address
S.No BTCMECC Error | Error AXI Error path Error Status Register Register
Enabled Yes TCM Corrected CFLR CFLR
Enabled Yes TCM Data Abort DFSR - Synchronous ECC error DFAR
CFLR CFLR
3 Disabled Yes TCM Data Abort DFSR - Synchronous ECC error DFAR
4 Disabled Yes TCM Data Abort DFSR - Synchronous ECC error DFAR
5 Enabled Yes AXI Corrected CFLR CFLR
6 Enabled Yes AXI Data Abort DFSR - Synchronous external abort DFAR
7 Disabled Yes AXI Corrected CFLR CFLR
8 Disabled Yes AXI Data Abort DFSR - Synchronous external abort DFAR
5.3 Correctable Fault Location Register - TCM, Bit Assignments
Figure 25. CFLR Register Bit Arrangements
26 25 24 23 22 3210
Reserved Side Address[22:3] Type
Reserved | Reserved _

[25:24] Side Indicates the source of the error:

0b01 = ATCM

0b10 =BTCM
Document No. 002-25469 Rev. **

o CYPRESS

= EMBEDDED IN TOMORROW"™

[22:3] Address

Indicates the bits [22:3] of the address in the TCM where the error occurred. Address [22:3].

[1:0] Type Indicates the type of access that caused the error:

0b00 = Instruction
Ob01 = Data
Ob10 = AXI Slave

Whenever a correctable error occurs in TCM RAM region, the following values are read from CFLR.

Side — It will be always 2 (indicating BTCM where TCRAM is connected)

Type —

= “Ob01” — On access via TCM interface
= “Ob10” — On access via AXI interface

5.4 ECC Error Injection Related Register Configuration

Table 7. TCMRAM ECC Registers

Abbreviated
Register Name

Register Name

Register Details

TRCFGn_TCMCFGO

TCRAM IF Configuration
Register 0

This register has seven bits for ERRECC data for the BTCM port, two bits for setting the number of
waits, and the LOCKSTATUS bit that indicates the locked state or unlocked state of the TCRAM IF
configuration register.

TRCFGn_TCMCFG1

TCRAM IF Configuration
Register 1

This register is used to insert an error in data read from the TCRAM for testing the ECC function of
the Cortex-R5F BTCM port.

TRCFGn_TCMUNLOCK

TCRAM IF Unlock Register

This register locks or unlocks write access to the TCRAM interface registers. Writing the correct
unlock value (OXACC55ECC) to this register enables write access to the registers. After setting
registers, writing the correct lock value (OXSECCB10C) to this register disables write access to the
registers.

Document No. 002-25469 Rev. **

44

o CYPRESS

= EMBEDDED IN TOMORROW"™

Do the following to perform the ECC Error injection tests:
1. Unlock the TCRAM interface.

Perform the required configuration.

Lock the TCRAM interface.

Read the TCRAM memory.

Observe the error response corresponding to the configuration.

5.5 Sample Codes for ECC Injection Tests

o > 0D

Note the following important points before doing the TCMRAM ECC Injection tests:

= Stack and debugger memory might have been allocated in TCRAM. In such cases, when the error injection feature is configured for TCRAM, reads from
stack or debugger memory can affect the address read from CFLR because CFLR retains the address where the last correctable error was detected.

= If cache is enabled during tests through the AXI interface, it can also affect the reported error address.

5.5.1 1-bit ECC Data Error

Consider the following function:

void Test TCRAM ERRdata lbit (void)
{

uint32 t test read data =0;

data tcram read data[l0] = 10; // writing to an address in TCRAM.

TRCFGO_TCMUNLOCK = TCMRAM KEY UNLOCK; // Unlock TCMRAM configuration registers

while (TRCFGO TCMCFGO LOCKSTATUS == 1)
{

Document No. 002-25469 Rev. **

45

o CYPRESS

= EMBEDDED IN TOMORROW"™

TRCFGO_TCMCFG1 ERRBIT=0x0008; // Configure Single-Bit Data Error

TRCFGO TCMUNLOCK = TCMRAM KEY LOCK; // Lock TCMRAM configuration registers
while (TRCFGO_ TCMCFGO_ LOCKSTATUS == 0)

{

}

test read data = data tcram read data([10]; // read TCRAM data

In this example, Bit 3 is configured for data flipping.

data tcram read data array is placed in the TCRAM TCM region.

The expected result is that the single-bit error is corrected and the corresponding address is reported in the CFLR register.

Figure 26 and Figure 27 show the value of the CFLR register after the TCRAM is read:

Document No. 002-25469 Rev. **

46

o CYPRESS

= EMBEDDED IN TOMORROW™

Figure 26. TCMRAM 1-Bit Error Injection

" vnid Test TCRAM ERRdsta 1bit {void) N
i
L] uintiz t test_read data =0;
- dats tcram read datal[l0] = 10; Jf writing to an address in TCRLM.
L] TRCFGO_TCHUMLOCE = TCMRAM KEY TNLOCE: fi Unlock TCMRAM configuration registers
- while (TRCFGO _TCHCFGO LOCEITATUS == 1)
{
}
L TRCFGO_TCHCFG1 ERREIT=0x0008; F¢ Configure Jingle-Bit Data Error
- TRCFGO _TCMUNLOCE = TCHMEAM EET LOCE: /4 Lock TCHMEAM configuration registers
- while (TRCFGO _TCMCFGO LOCESTATUS == 0)
{
}
. test_read data = data toram read data[10]: ¢/ read TCRLM data
'
e y,

Document No. 002-25469 Rev. **

o CYPRESS

e - EMBEDDED IN TOMORROW

Figure 27. CFLR Register Value

o cp1s C15 ™y
Secondary Auxiliary Control Ox00400000
MNormal AXT Peripheral Interface Region OxkbOo0oo04s
Virtual AXT Peripheral Interface Region 0x00000000
AHE Peripheral Interface Region Oxkb4000045
nVAL TRQ Enahle Set Q=x0o00o00oo0
nVAL FIQ Enahle Set Q=x0o00o00oo0
nVAL Reset Enshle Set O=x00000o00o0
nVAL Debug Regquest Enshle Set Ox000ooooo
nWAL TRQ Enshle Clear Q=x0o00o00oo0
nVAL FIQ Enshle Clear Q=x0o00o00oo0
nVAL Reset Enshle Clear O=x00000o00o0
nVAL Debug Regquest Enshle Clear Ox000ooooo
Build Option= 1 Qx00200000
Build Options 2 OxOehfole:
Pin Options Ox000ooool
Correctable Fault Location Ox02000029
Invalidate All Data Cache O=x00000o00o0
Cache Size Owverride O=x00000o00o0
- v,
The value of CFLR is 0x2000029.
Table 8. Decoding of CFLR
Bits Description Value Inference

[31:0] CFLR 0x2000029

[25:24] Side Ob10 BTCM - source of error

[22:3] Address [22:3] 0x05 Address [20:0] - 0x28. Bits {2:0] is considered as 0.

[1:0] Type 0bO1 Data

The address of the data_tcram_read_data[10] register is 0x00000028. This matches with the CFLR address field.

Document No. 002-25469 Rev. **

48

&2 CYPRESS

EMBEDDED IN TOMORROW™

Figure 28. TCMRAM Data in Memory View of Debugger

] N
Memory View

Locatior: |0

Address Hex ASCH Symbals

O0=x00000000 ———————— ———————— | data toram read data[0] , dats toram read data[l]
O0=x00000008 ——-—————— ————————au. data_toram resd data[zZ] , dats_tcram read datal3]
0=00000010 ———————— ———————— data toram read datal4] , dats teram read data[5]
O0=x00000018 —-——————— ————————u. data toram read datal[6] , data teram read datal[7]
Ox00000020 e — — dars roram read daralfl r‘]HT'H_T'F‘THTﬂ_TF'Hr’]_r‘]Ht,arg]

[DEIDEIDDDZS ———————————————————————— data:t.cram:read:dat.a[llj] . datg_tcra.r_n_reaa_dat.a[llﬂ
LI e e TIECE_ CCLoan Cool teeo [L] ¢ oo corenn reod oat=| La]
O0=00000038 ———————— ———————— ... data_tcram read datal[l4] , data tcram read data[l15]
0=00000040 —-——————— ———————— L data toram read datal[l6] , data toram read datall7]
O=x00000048 ——————— ———————— ... data_tcram read datal[l8] , data tcram read data[l19]
0=00000050 ———————— ———————— data toram read datalzZ0] , data toram read datalzZl]
O=x00D000os8 ——————— ———————— i e data_tcram read datalZZ] , data tcram read datal[23]
O0=00000060 ———————— ———————— data toram read datalzZ4] , data toram read datalzZ5]
O0=00000068 ———————— ———————— ... data_tcram read datalZ6] , data tcram read datal[27]
0=00000070 ———————— ———— — ——— ... data_ tcram read datalzZ8] , data toram read datalzZ9]
O=00000078 ———————— ———————— ... data_tcram read datal30] , data tcram read datal[31]
0=000000580 —-——————— ———————— L data tcram read data[3Z] , data toram read datal33]
O=x00ooooosEsd ——————— ———————— i e data_tcram read datal34] , data tcram read data[35]
0=00000090 ———————— ———— — ——— ... data tcram read datal[36] , data toram read datal37]
kaDDDDDDQS ———————————————————————— data_tcram read datal38] , data tcram read datal[39]

Figure 29 indicates the data read from the memory. The corrected data is the same as what was written before is read back.

data tcram read data[l0] = 10; // writing to an address in TCRAM.

Document No. 002-25469 Rev. **

& CYPRESS

g EMBEDDED IN TOMORROW™

Figure 29. Correct TCMRAM Data

M Data Explorer

Edit View Format Evaluate Tools Settings

o B R[# =0

" ariable W alue
test read data 10
Cazt Type: w || unzighed int

5.5.2 2-bit ECC Data Error
Consider the following function:
void Test TCRAM ERRdata 2bit (void)

{
uint32 t test read data =0;

TRCFGO_TCMUNLOCK = TCMRAM KEY UNLOCK; // Unlock TCMRAM configuration registers

while (TRCFGO TCMCFGO LOCKSTATUS == 1)

TRCFGO_TCMCFG1 ERRBIT=0x0003; // Configure Double-Bit Data Error

Document No. 002-25469 Rev. **

50

& CYPRESS

= EMBEDDED IN TOMORROW™
TRCFGO_ TCMUNLOCK = TCMRAM KEY LOCK; // Lock TCMRAM configuration registers

while (TRCFGO TCMCFGO LOCKSTATUS == 0)

{
}

test read data = data tcram read data[l0]; // read TCRAM data

In this example, bits 0 and 1 are configured for data flipping, which corresponds to 2-bit error injection.

The data tcram read data array is placed in the TCRAM TCM region. The expected result is that the double-bit error is detected and will result in a bus
error leading to a data abort.

Following screenshots show program flow, DFSR and DFAR registers after TCRAM is read.

Document No. 002-25469 Rev. **

51

o CYPRESS

= EMBEDDED IN TOMORROW™

Figure 30. TCMRAM 2-bit Error Injection

.

L.

wold Test TCRAM ERRdata 2Zbit (woid) Y
{

uintiZ t test_read data =0;
TRCFGO_TCHUNLOCE = TCHMRAM EEY UNLOCE: 44 Tnlock TCHMRLM configuration registers
while (TRCFGO_TCHCFGO LOCESTATUI == 1)
{
}
TRCFGO TCHCFG1 ERREIT=0x0003; £ Configure Double-EBit Data Error
TRCFGO TCHUNLOCE = TCHRAM EEY LOCK: A4 Lock TCHMEAM configuration registers
while (TRCFGO TCHCFGO LOCEITATUS == 0)
{
i

test_read data = data_ teoram read datall10]: /¢ read TCRAM data

Data execution has been caught by vector catch. The address OxFFFF0010 indicates that data abort has occurred.

Figure 31. Data Abort During 2-bit TCMRAM Error

y » Oxfrrroood: . e=ooodgc B ORIIFO(O=TTEEiicelr
e OxfEff0004: e51ff045 LDR FC, [PC,-72] (OxEffeffcd)
e OxfEff0008: e51ff045 LDR FC, [PC,-72] (OxEffeffca)
s OxfEff000c: e51ff045 LDR FC, [PC,-72] (OxEfffeffcoe)
wpEmE Ox £ EE0010: e51ff045 LDR FC, [PC,-72] (OxEffeffdO)
* OxfEff0014: e59fff74 LDR FC, [PC,Oxf74] (OxfEf£0£90)
* OxfEff0018: e51ff045 LDR FC, [PC,-72] (OxEffeffds)
\ + Oxffffo0ic: e51ff425 LDR FC, [FC,-0x425] (Oxfffefhicy

You can observe the values in DFSR and DFAR registers for additional analysis:

Document No. 002-25469 Rev. **

& CYPRESS

e EMBEDDED IN TOMORROW

Figure 32. DFSR and DFAR During Abort

ooo4o9

0x00000000

cachellay

llm

Recnverable Error

SideExt DxD
Inde:x O=000
H LIFSE DxDDDDDDDD
1= I
Table 9 DFSR and DFAR Inferences
Bits Description Value Inference
FS[4,3:0] DFSR - Fault Status | 0b11001 Synchronous ECC Error
[31:0] DFAR 0x00000028 | Address where TCRAM is read
ADFSR —
SideExt [20]
[20] [23:22] | Side [23:22] 0b10 BTCM - source of error

An error can also be injected by the destruction of ECC area. The gollowing example codes can be used for that.

5.5.3 1-bit ECC Area Error
void Test TCRAM ERRECC 1bit (void)
{

uint32 t test read data =0;

Document No. 002-25469 Rev. **

53

o CYPRESS

g EMBEDDED IN TOMORROW™

data tcram read data[l0] = 10; // writing to an address in TCRAM.

TRCFGO_ TCMUNLOCK = TCMRAM KEY UNLOCK; // Unlock TCMRAM configuration registers

while (TRCFGO TCMCFGO LOCKSTATUS == 1)

TRCFGO_ TCMCFGO_ ERRECC=0x0008; // Configure Single-bit ECC area Error

TRCFGO_ TCMUNLOCK = TCMRAM KEY LOCK; // Lock TCMRAM configuration registers

while (TRCFGO TCMCFGO_ LOCKSTATUS == 0)
{
}

test read data = data tcram read data[l0];

5.5.4 2-bit ECC Area Error

void Test TCRAM ERRECC 2bit (void)
{

uint32 t test read data =0;
Document No. 002-25469 Rev. **

// read TCRAM data

54

& CYPRESS

= EMBEDDED IN TOMORROW"™

TRCFGO_TCMUNLOCK = TCMRAM KEY UNLOCK; // Unlock TCMRAM configuration registers

while (TRCFGO TCMCFGO LOCKSTATUS == 1)

TRCFGO_TCMCFGO_ERRECC=0x0003; // Configure Double-bit ECC area Error
TRCFGO TCMUNLOCK = TCMRAM KEY LOCK; // Lock TCMRAM configuration registers

while (TRCFGO TCMCFGO LOCKSTATUS == 0)
{
}

test read data = data tcram read data[l0]; // read TCRAM data

6. ECC for SYSRAM and Back-Up RAM

Like the ECC features discussed so far, System RAM (SYSRAM) and Backup RAM also have ECC support and ECC error injection features. The following
examples illustrate these.

6.1 Sample Codes for ECC Injection Tests in SYSRAM

Ensure that the variable data sysram read data is placed in the System RAM area.

Document No. 002-25469 Rev. **

55

o CYPRESS

g EMBEDDED IN TOMORROW™

6.1.1 1-bit ECC Data Error
void Test SYSRAM ERRdata 1lbit (void)
{

uint32 t test read data =0;

SRCFG_KEY UNLOCK = SYSRAM KEY UNLOCK; // Unlock SYRAM configuration registers

while (SRCFG_CFGO_LOCK STATUS == 1)
{
}

if (SRCFG_ECCE _ECCEN != 1) //Enable ECC if not enabled.
{
SRCFG_ECCE_ ECCEN = 1;

SRCFG_INTE SEC INT EN =1; // Enable ECC interrupt

This bit can be modified only once in software

SRCFG_CFG1l ERRBIT=0x0001; // Configure Single-Bit Error
SRCFG_KEY UNLOCK = SYSRAM KEY LOCK; // Lock configuration registers
while (SRCFG CFGO LOCK STATUS == 0)

{
}

Document No. 002-25469 Rev. **

56

o CYPRESS

= EMBEDDED IN TOMORROW"™

test read data = data sysram read data([10]; // read SYSRAM data

}

In this example, Bit 0 is configured for data flipping. This will cause 1-bit error detection and correction and will trigger the corresponding interrupt. The following is
a sample interrupt handler for the same.

/* ISR for the 1l-bit ECC detection and correction by SYSRAM */
FN IRQ DEFINE BEGIN (SYSRAM ECC Test, INTERRUPTS IRQ NUMBER 14)
{

SRCFG_KEY UNLOCK = SYSRAM KEY UNLOCK;
while (SRCFG_CFGO_LOCK STATUS == 1)

{

}

SYSRAM Error Address = SRCFG_ERRADR; // read Single bit error address

if (SRCFG_ERRFLG_SECFLG == 1)// read error flag.
SRCFG_ERRFLG_SECCLR = 1;// Clear error flag.

SRCFG_KEY UNLOCK = SYSRAM KEY LOCK; // Lock configuration registers

while (SRCFG_CFGO LOCK_ STATUS == 0)

Document No. 002-25469 Rev. ** 57

o CYPRESS

g EMBEDDED IN TOMORROW™

}
FN_IRQ DEFINE END ()

6.1.2 2-bit ECC Data Error
void Test SYSRAM ERRdata 2bit (void)

{
uint32 t test read data =0;

SRCFG_KEY UNLOCK = SYSRAM KEY UNLOCK;
while (SRCFG_CFGO LOCK STATUS == 1)

{
}

// Unlock SYSRAM configuration registers

if (SRCFG_ECCE ECCEN != 1) //Enable ECC if not enabled. This bit can be modified only once in software

{
SRCFG _ECCE ECCEN = 1;

SRCFG_CFG1 ERRBIT=0x0003; // Configure Double-Bit Error

SRCFG_KEY UNLOCK = SYSRAM KEY LOCK;

while (SRCFG_CFGO LOCK_STATUS == 0)

{
Document No. 002-25469 Rev. **

// Lock configuration registers

58

o CYPRESS

“ae> EMBEDDED IN TOMORROW"
test read data = data sysram read data[10]; // read SYSRAM data

In this example, Bit 0 and Bit 1 are configured for data flipping. This will cause 2-bit error detection resulting in a bus error leading to a data abort.

An error can also be injected by the destruction of ECC area.

6.2 Backup Ram (BURAM)

6.2.1 1-bit ECC Error
void Test BURAM ERR 1lbit (void)
{

BURIF UNLOCK = BURAM KEY UNLOCK;// Unlock BURAM configuration registers

while (BURIF STATUS LOCKSTATUS == 1)

BURIF EECSR SEIE=0x1; //Enable Single-Bit Error Interrupt

BURIF EFEAR ERR ADDR = 0x20; // Configure the address offset for ECC error

Document No. 002-25469 Rev. **

59

o CYPRESS

= EMBEDDED IN TOMORROW"™

BURIF EFECR 0 EI = 0xl1; // Configure Single-Bit Error

BURIF EFECR 1 EY = 0xl; // Configure byte where error is to be introduced

BURIF EFECR 2 FERR =1;

// ECC psuedo error generation enable. Error gets inserted during the enabling of this
configuration

BURIF UNLOCK = BURAM KEY LOCK; // Lock configuration registers

while (BURIF_STATUS_ LOCKSTATUS == 0)
{
}

In this example, Bit 0 and Byte O are configured for pseudo ECC error. This will cause 1-bit error detection and correction and will trigger the corresponding
interrupt. The following is a sample interrupt handler for the same.

/* ISR for the 1-bit ECC detection and correction by BURAM */
FN_IRQ DEFINE BEGIN(BURAM ECC Test, INTERRUPTS IRQ NUMBER 15)
{

BURIF UNLOCK = BURAM KEY UNLOCK;
while (BURIF STATUS LOCKSTATUS == 1)
{

}

Document No. 002-25469 Rev. ** 60

o CYPRESS

g EMBEDDED IN TOMORROW™
BURAM Error Address = BURIF SEEAR ERR ADDR; // read error address
if (BURIF_EECSR_SEI == 1)// read error flag.
BURIF_FEECSR_SEI = 0;// Clear error flag.

BURIF UNLOCK = BURAM KEY LOCK; // Lock configuration registers

while (BURIF STATUS LOCKSTATUS == 0)

{
}

}
FN_IRQ DEFINE END()

6.2.2 2-bit ECC Error
void Test BURAM ERR 2bit (void)
{

BURIF UNLOCK = BURAM KEY UNLOCK;// Unlock BURAM configuration registers

while (BURIF STATUS LOCKSTATUS == 1)

Document No. 002-25469 Rev. **

61

o CYPRESS

~ume> EMBEDDED IN TOMORROW"
BURIF EECSR DEIE=0x1; //Enable Configure Double-Bit Error
BURIF _EFEAR ERR ADDR = 0x20; // Configure the address offset for ECC error
BURIF EFECR 0 EI = 0x3; // Configure Double-Bit Error
BURIF EFECR 1 EY = 0xl; // Configure byte where error is to be introduced

BURIF EFECR 2 FERR =1; // ECC psuedo error generation enable. Error gets inserted during the enabling of this
configuration

BURIF UNLOCK = BURAM KEY LOCK; // Lock configuration registers

while (BURIF STATUS LOCKSTATUS == 0)
{
}

In this example, Bit 0, Bit 1, and Byte 0 are configured for pseudo ECC error. This will cause 2-bit error detection and will trigger the corresponding NMI. The
following is a sample NMI handler for the same.

/* NMI for the 2-bit ECC detection by BURAM */

FN_NMI DEFINE BEGIN(BURAM ECC Test 2bit, INTERRUPTS NMI NUMBER 11)
{

Document No. 002-25469 Rev. ** 62

o CYPRESS

~ume> EMBEDDED IN TOMORROW"
BURIF_UNLOCK = BURAM_KEY_UNLOCK;
while (BURIF_STATUS_LOCKSTATUS == 1)
{
}
BURAM Error Address 2bit = BURIF DEEAR; // read error address

if(BURIF_EECSR DEI == 1)// read error flag.
BURIF_EECSR DEI = 0;// Clear error flag.

BURIF UNLOCK = BURAM KEY LOCK; // Lock configuration registers

while (BURIF STATUS LOCKSTATUS == 0)
{
}

}
FN_NMI_DEFINE_END ()

Document No. 002-25469 Rev. **

63

A

ws CYPRESS

=

7. Summary

EMBEDDED IN TOMORROW™

This guide covered the ECC injection tests available in various Traveo memories. The hardware ECC logic itself can be enabled or disabled for these memories.
Similarly, there are registers that would control the Interrupt generation in case of errors on these memories. Table 10 and Table 11provide a summary of this.

Table 10. Summary of ECC for Vvarious Memories in Traveo

Memory ECC Logic (Default 1-bit error interrupt default 2-bit error interrupt/abort default
Control) (When ECC logic is enabled, 1-bit errors are
automatically corrected. Interrupt generation
is optional setting for the user)
TCFLASH - Enabled Disabled (TCFCFG_FSECIR) Enabled (abort) (always enabled when ECC logic is
AXI (TCFCFGNn_FECCCTRL) enabled)
TCFLASH - Enabled (Cortex-R5 ACTLR | Disabled (no specific interrupt flag, Cortex-R5 Enabled (abort) (always enabled when ECC logic is
TCM register) measurement counters can be used to trigger enabled)
an event)
WORKFLASH Enabled (WFCFG_ECR) Disabled (WFCFG_SECIR) Enabled (abort) (always enabled when ECC logic is
enabled)
TCMRAM Enabled (Cortex-R5 ACTLR | Disabled (no specific interrupt flag, Cortex-R5 Enabled (abort) (always enabled when ECC logic is
register) measurement counters can be used to trigger enabled)
an event)
SYSRAM Enabled (SRCFG_ECCE) Disabled (SRCFG_INTE) Enabled (abort) (always enabled when ECC logic is
enabled)
Back-Up RAM Enabled (BURIF_EDPCR) Disabled (BURIF_EECSR) Disabled (interrupt) (BURIF_EECSR)
IRC Vector Enabled (always) Enabled (Proper mapping of IRQ handler is up- | Enabled (Proper mapping of NMI handler is up-to user)
Address RAM to user)
VRAM Disabled (Specify the sub- Disabled Disabled
sections of the VRAM using | (VRAMINTERRUPTENABLE) (VRAMINTERRUPTENABLE)
VRAM_SRAM_SELECT)
Table 11. Summary of ECC for various memaories in Traveo
Memory ECC Scheme Enabled by Configurable Failure Handling Single-Bit Error Failure Handling Double-Bit Error
Default
TCRAM (through BTCM) 32-bit ECC Yes Yes ABORT (configurable) ABORT

Document No. 002-25469 Rev. **

64

& CYPRESS

= EMBEDDED IN TOMORROW"™

TCRAM (through BTCM) 32-bit ECC Yes Yes CFLR Bus error response

System RAM 32-bit ECC Yes Yes IRQ Bus error response

Backup RAM 8-bit ECC Yes Yes IRQ NMI

IRC vector RAM 32-bit ECC Yes No IRQ NMI

CAN RAM 32-bit ECC Yes Yes IRQ NMI and Bus error response
Video RAM 8-bit ECC No Yes NMI Bus error response
TCFLASH (through ATCM) 64-bit ECC Yes Yes ABORT (configurable) ABORT

TCFLASH (through AXI) 64-bit ECC Yes Yes IRQ Bus error response
WORKFLASH 32-bit ECC Yes Yes IRQ Bus error response

8. References

= S6J3200 Series 32-bit Microcontroller Traveo™ Family

= 32-bit Microcontroller Traveo™ Family S6J3200 Series Hardware Manual
= Traveo™ Family 32-Bit Microcontroller Platform Part Hardware Manual

= Cortex™ -R5 and Cortex-R5F Revision: rlpl Technical Reference Manual

Document No. 002-25469 Rev. **

65

http://www.cypress.com/documentation/datasheets/s6j3200-series-32-bit-microcontroller-traveo-family
http://www.cypress.com/documentation/technical-reference-manuals/32-bit-microcontroller-traveo-family-s6j3200-series
http://www.cypress.com/documentation/technical-reference-manuals/traveo-family-32-bit-microcontroller-platform-part
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0460c/DDI0460C_cortexr5_trm.pdf

