

1

Just Enough Verilog for PSoC
®

When creating a custom UDB-based component in PSoC® Creator™, if you start with the symbol
wizard1 and then generate the Verilog corresponding to that symbol, the code looks like:

Figure 1. Verilog Shell Generated by PSoC Creator

1
This is discussed in another KB Article titled ‘Creating a Verilog-Based Component’ available at www.cypress.com.

Using this Verilog shell as a starting point, this document discusses important aspects of Verilog
needed to understand and build meaningful designs in the PSoC UDBs. It is meant to be a handy
supplement to the Warp Verilog Reference Guide and the Verilog textbook of your choice.

Only the elements of Verilog supported by the Warp synthesizer tool are discussed in this document.
See the Warp Verilog Reference Guide in PSoC Creator Help>Documentation for more information.

Contents

Introduction ... 2
C and Verilog .. 2
Modules ... 4
Data Types: Wire vs Reg .. 4
Registering Outputs ... 4
Declarations .. 4
Constants .. 5
Always Construct ... 5

Sensitivity List .. 6
Assignments ... 6

Continuous Assignment ... 6
Procedural Assignment .. 6

Parameters ... 8
Instantiation .. 9
Guidelines ... 12
Generate Construct ... 13
Final Words ... 13
Appendix A: 4-bit Counter Custom Component .. 14
Appendix B: EdgeDetect Cypress Catalog Component .. 15

http://www.cypress.com/?id=4&rtID=118&source=header

2

Introduction

Verilog is a Hardware Description Language (HDL). To appreciate what this means, consider the 8-bit
combinatorial multiplier in Code 1. The multiplier takes as input two 8-bit numbers A and B, multiplies

them, and outputs the 16-bit result (Mult).

Code 1. Verilog is not C

Note Consumes 144 macrocells (75%) and 196 product terms (51%) in a 24-UDB PSoC device.

Code written in Verilog is synthesized (maps) to the UDB PLDs unless the UDB
Datapaths/Status/Control blocks are explicitly instantiated in the Verilog. It does not run on the CPU.

C and Verilog

Now that you have been introduced to the fundamental difference between C (runs on a CPU) and
Verilog (maps to logic), note that there are several similarities between the two:

 Language structure (file includes, variable declaration, code blocks, comments, semicolons to
terminate statement, and more)

 If statement, case statement, bitwise and logical operators, and more

 while loop, for loop (these are not generally used because they are not synthesizable, and
hence not discussed)

Table 1 shows some of the parallels between C and Verilog:

Table 1. Parallels between C and Verilog

Concept C Verilog

Operators (1)

Arithmetic
Operators *, +, -, /, %

Shift Operators <<, >>

Relational
Operators <, >, <=, >=

Equality Operators ==, !=

Logical Operators !, &&, ||

Conditional
Operator ?:

Same as C

Operators (2) Has the boldfaced operators on the right

Bitwise Operators ~, &, |, ^, ^~, ~^

Reduction
Operators

&, |, ^, ^~, ~^, ~&,
~|

Event or or

Concatenation {}, {{}}

These are explained with examples in section
2.4 of the Warp Verilog Reference Guide.

3

Table 1. Parallels between C and Verilog (continued)

Concept C Verilog

Comments
// slash slash comment

/* slash star comment */

Same as C

Compiler directives

#define, #include, #ifdef,

#ifndef, #else, #endif, #undef

`define, `include, `ifdef,

`ifndef, `else, `endif, `undef,

`elseif

Referring to a
#defined constant

#define CONST 5

...

a = CONST;

`define CONST 5

…

assign a = `CONST;

Declaring vectors
(arrays)

Declare 5-member array as:

uint8 var[5];

Declare 5-bit vector as:

reg [4:0] a;

or:

wire [4:0] a;

Block Delimiting Braces { } begin and end keywords

if-else

if(condition_1)

{

 // do something

}

else

{

 // do something else

}

if(condition_1)

begin

 // do something

end

else

begin

 // do something else

end

Case (switch)
statement

switch(a)

{

 case 31:

 //statements here

 break;

 case 0;

 //statements here

 break;

 // other cases

 default:

 // statements here

 break;

}

case(a) // a is a 5-bit vector

 10'd31:

 begin

 //statements here

 end

 10'd0:

 begin

 //statements here

 end

 //other cases

 //good practice to have a

default

 default:

 begin

 //statements here

 end

endcase

4

Modules

The module is the basic building block in Verilog. It is the metaphorical black box with inputs and
outputs, analogous to a function in C.

In all cases where you describe modules, you are providing the template for the behavior of the
module. This module (or function) can be later instantiated (or called) in other top level modules.

The module name for the Component should be the same as the file it is saved in. For example, the file
name of the example in Figure 1 is Component1_v1_0.v

Data Types: Wire vs Reg

Keeping in mind that Verilog describes hardware, signals in a Verilog module are either of type „wire‟ or
type „reg‟.

Wire

 Combinatorial signal – continuously driven, literally like a wire

 Assigned outside an always block with assign statement or inside an
always block (see the Assignments section)

Reg

 Synchronous signal – changes state only on a trigger event

 Can be assigned a value only inside an always block

There exists a third data type – a parameter, discussed in the Parameter section.

Registering Outputs

Signals listed in the module terminal list by default are of type wire. If the outputs of the module you are
defining are synchronous (as they often are), you must change the terminal list shown in Figure 1 to be:

Code 2. Module Terminal List

This is the only code that you have to write outside of the #start and #end comments in the Verilog file –
so if you regenerate the Verilog, it has to be re-entered.

Declarations

Declare all other signals (besides for the ones in the module terminal list) after the #start body
comment. This is similar to declaring variables in C.

Code 3. Examples of type declarations

5

These signals are a single bit wide if the width is not specified, or buses (vectors) if a width is specified
– as Code 3 shows.

Constants

One source of confusion for first-time Verilog readers are statements similar to those in Code 4.

Code 4. Example of Constant Syntax

This is similar to declaring and initializing variables in C. Figure 2 explains what the constant means:

Figure 2. Explanation of Sized Constants

 <Number of bits> (optional)
o Number of bits (not digits) used to represent the data

 „<Data Representation>
o The base of the data field. Can be decimal (d), binary (b), hexadecimal (h), octal (o); is

case insensitive

 <Data>
o A decimal base number is composed of a sequence of 0 through 9 digits.
o A binary base number is composed of a sequence of x (don‟t care), z (high impedance), 0

and 1.
o A hexadecimal base number is composed of a sequence of x, z, 0 through 9 digits and A

through F characters.

Always Construct

This statement is used to model a block of activity repeated on a set of conditions. This set of
conditions is called the sensitivity list. In Warp, an always statement must have a sensitivity list.

Code 5. Examples of always Construct

3'd6

Number of bits (optional)

Data representation (d, h, b, o)

Data

6

Sensitivity List
The sensitivity list determines when the always block is executed. With reference to Code 5, it is the

expression after the @, in parentheses.

1. The first always block has an asynchronous trigger – the always block is executed any time x

or y change state.
2. The second always block has an synchronous trigger – the always block is executed on each

rising edge of the clock.

The sensitivity list can contain only asynchronous triggers or only synchronous triggers, but not
both. For example, the sensitivity list cannot contain always @ (x or posedge clock).

There also exists a negedge keyword. However, because of the architecture of the PSoC, only

posedge should be used. Timing and synchronization failures are likely if negedge is used. If it is

essential that something occur on the positive and negative edge of a clock, use the rising edge of
a clock twice the frequency to trigger the circuitry.

Assignments

Continuous Assignment
When modeling combinatorial logic outside an always statement, assignments to wires are made using

the assign statement:

Code 6. Example of Continuous Assignment

Procedural Assignment
When modeling combinatorial or sequential logic inside an always block, assignments are of two types:

a. Blocking assignments – using the “=” operator; are executed one after the other (in a serial
fashion)

b. Non-blocking assignments – using the “<=” (looks like an arrow) operator, are executed in
parallel.

To understand this concept a little better, consider the examples in Code 7.

Code 7. Examples of Blocking and Non-Blocking Assignments

7

Keep in mind the following rules:

 When modeling sequential logic such as state machines, use non-blocking assignments.

 When modeling combinatorial logic with an always block, use blocking assignments. For example,

if you try to model y=(a&b)|(c&d) with Code 8, y is assigned a value according to the old contents

of tmp1 and tmp2, not from the current pass of the always block.

Code 8. Modeling Combinatorial Logic - Non-Blocking Assignments Gives Unexpected Results

 When modeling both sequential and combinatorial logic within the same always block, use non-

blocking assignments.*

 Do not mix blocking and non-blocking assignments in the same always block (See Code 9).

Code 9. What Not to Do – Mixing Blocking and Non-Blocking Assignments in the Same always Block

 Do not make assignments to the same variable from more than one always block. For more

information, refer to Cliff Cummings‟ paper: Nonblocking Assignments in Verilog Synthesis, Coding
Styles That Kill!

http://www.sunburst-design.com/papers/
http://www.sunburst-design.com/papers/

8

Parameters

Parameters are constants which cannot be modified during run time. Based on their scope, constants in
a design can either be:

a. Design wide:

 Use the `define syntax

 Examples could be to define design-wide constants like TRUE and FALSE

b. Local to the module, but passed to it:

 Use the parameter keyword - see Figure 3

 The parameter value is assigned at compile-time, that is, it does change at run-time.

 See Figure 3. Note that the value in code (on the right) is overwritten at compile-time

based on the customizer values.

 Used as a method to configure a Component

 Parameters can be passed to the Component either through the Component customizer
(as shown in Figure 3) or in Verilog – this is discussed in the Instantiation section.

The example shown in Figure 3 is a custom Component taken from AN82250 - PSoC® 3 and PSoC 5LP

Implementing Programmable Logic Designs with Verilog; „period‟ is the configurable counter period.
The full Verilog code for the counter is provided in Appendix A.

Figure 3. Example of Component Parameters

c. Local to the module:

 Use the localparam keyword

 Ensures that the parameter cannot be modified by or interfere with other modules.

 Example could be to define sensible names for various states of a state machine.

Code 10. Example of localparams

http://www.cypress.com/?rID=69773

9

Instantiation

 You can use another prewritten Component or module directly in your Verilog code by instantiating it.

Placing, connecting, and configuring a UDB Component on a schematic is equivalent to instantiating a

UDB Component/Module in Verilog Code. For example, the code snippet and schematic in Figure 4 are

equivalent.

Figure 4. Instantiation and Schematic - Similarities

If you were to create a wrapper Component for the 4-bit counter, the Verilog code would look similar to
the code in Figure 5. Note that to instantiate another Component or pre-written module in your Verilog

code, you have to include the corresponding Verilog file (line 14 in Figure 5) and then instantiate it (lines

28-33 in Figure 5).

Figure 5. Counter Wrapper Example for Instantiation – Verilog Code with Equivalent Component Symbol

<FilePath> in Figure 5 is the location on the disk which contains Count4Bit_v1_20.v.

Cypress modules such as the Datapath, Control, Status, UDB Clock Enable blocks are automatically

included by including "cypress.v" at the top of your Verilog code.

period = 15

(parameter from customizer)
Module Connection

Module Name Parameter Instance Name

period = 15

Include file with

Count4Bit_v1_20 module

definition

10

Verilog code maps to the Datapath, Control/Status, UDB clock enable blocks only if these are explicitly
instantiated. All the rest of the Verilog code maps to the PLDs.

The instantiation syntax can be broken out as:
<Module Name> #(Parameters) <Instance Name> (Module Connection);

 Module Name
Is the name of the top level module in the included file.

 Parameters (see Parameters section)
Parameters are passed to the instantiated module by their name in the module definition – for
example SignalWidth is a parameter for the Debouncer (Figure 3). The syntax to do this is:
#(.<param1>(value1), .<param2>(value2), ….)

In Figure 5, period (param1) is passed a value of 15 (value1).

If a parameter value is not explicitly passed, it remains at the value it was initialized to in the
module definition.

 Instance Name
Is the name you choose to give the instantiated Component (Count4Bit_1 in above example)

 Module Connection
Describes the connection between the signals listed in the module instantiation statement and
the ports in the module definition. The syntax is similar to that for parameters:
(.port1(signal1), .port2(signal2),…);
Where the port1, port2, and so on are the names in the module definition, and signal1, signal2,
and so on are the names of signal in the top level module.

In Figure 5, en, reset, clock, tc, count (port1, port2, port3, port4, port5) are connected to enIn,

resetIn, clockIn, tcOut, countOut (signal1, signal2, signal3, signal4, signal5). Note that input
ports must be connected, while output ports may be left unconnected.

A Datapath instance (Code 11) is only an instantiation. The blue text (parameters) is automatically

generated based on the Datapath Configuration Tool settings. The rest of the statements in the list are
module connections, and allow you to connect the signals you want to interface with the Datapath.

11

Code 11. Instance of a Datapath (taken from the B_PWM Component)

Module Connection

Module Name

Parameters

Instance Name

cy_psoc3_dp8 #(.cy_dpconfig_a (

 {

 `CS_ALU_OP_PASS, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC___D0, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG0 Comment:Preload Period (A0 <= D0) */

 `CS_ALU_OP__DEC, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC__ALU, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG1 Comment:Dec A0 (A0 <= A0 - 1) */

 `CS_ALU_OP_PASS, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC__ALU, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG2 Comment:Idle */

 `CS_ALU_OP_PASS, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC__ALU, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG3 Comment:Idle */

 `CS_ALU_OP_PASS, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC__ALU, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG4 Comment:Idle */

 `CS_ALU_OP_PASS, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC__ALU, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG5 Comment:Idle */

 `CS_ALU_OP_PASS, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC__ALU, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG6 Comment:Idle */

 `CS_ALU_OP_PASS, `CS_SRCA_A0, `CS_SRCB_D0,

 `CS_SHFT_OP_PASS, `CS_A0_SRC__ALU, `CS_A1_SRC_NONE,

 `CS_FEEDBACK_DSBL, `CS_CI_SEL_CFGA, `CS_SI_SEL_CFGA,

 `CS_CMP_SEL_CFGA, /* CS_REG7 Comment:Idle */

 8'hFF, 8'h00, /* SC_REG4 Comment: */

 8'hFF, 8'hFF, /* SC_REG5 Comment: */

 `SC_CMPB_A0_D1, `SC_CMPA_A0_D1, `SC_CI_B_ARITH,

 `SC_CI_A_ARITH, `SC_C1_MASK_DSBL, `SC_C0_MASK_DSBL,

 `SC_A_MASK_DSBL, `SC_DEF_SI_0, `SC_SI_B_DEFSI,

 `SC_SI_A_DEFSI, /* SC_REG6 Comment: */

 `SC_A0_SRC_ACC, `SC_SHIFT_SL, 1'b0,

 1'b0, `SC_FIFO1_BUS, `SC_FIFO0_BUS,

 `SC_MSB_DSBL, `SC_MSB_BIT0, `SC_MSB_NOCHN,

 `SC_FB_NOCHN, `SC_CMP1_NOCHN,

 `SC_CMP0_NOCHN, /* SC_REG7 Comment: */

 10'h0, `SC_FIFO_CLK__DP,`SC_FIFO_CAP_AX,

 `SC_FIFO__EDGE,`SC_FIFO__SYNC,`SC_EXTCRC_DSBL,

 `SC_WRK16CAT_DSBL /* SC_REG8 Comment */

 }))

 killmodecounterdp (

 /* input */ .clk(ClockOutFromEnBlock),

 /* input [02:00] */ .cs_addr({2'b0,km_run}),

 /* input */ .route_si(1'b0),

 /* input */ .route_ci(1'b0),

 /* input */ .f0_load(1'b0),

 /* input */ .f1_load(1'b0),

 /* input */ .d0_load(1'b0),

 /* input */ .d1_load(1'b0),

 /* output */ .ce0(),

 /* output */ .cl0(),

 /* output */ .z0(km_tc), /* Terminal Count (A0 == 0) */

 /* output */ .ff0(),

 /* output */ .ce1(),

 /* output */ .cl1(),

 /* output */ .z1(),

 /* output */ .ff1(),

 /* output */ .ov_msb(),

 /* output */ .co_msb(),

 /* output */ .cmsb(),

 /* output */ .so(),

 /* output */ .f0_bus_stat(),

 /* output */ .f0_blk_stat(),

 /* output */ .f1_bus_stat(),

 /* output */ .f1_blk_stat()

);

Only the clock and the

CFGRAM address are

connected to varying

signals

12

Guidelines

 All if-then-else statements should have a final else clause.

 Case statements should be fully defined, that is, circuit behavior for all possibilities of inputs must
be defined. Additionally, it is good practice to add the default statement.

If an if-then-else statement does not have the final else clause, a latch will be created. Similarly, case
statements that are not fully defined could also produce latches. Avoid latches in PSoC 3 and
PSoC 5LP designs. The results can be unexpected and synchronization to the rest of the design
becomes an issue.

 Code all intentional priority encoders using if-else-if statements.

 Do not use non-constants as indices for any array (Code 12). The logic produced is very large.

Code 12. Do Not Use Non-Constants as Array Indices

 Use the Datapath for arithmetic operations on variables. (See Table 2)

Table 2. Comparison of PLD and Datapath Resource Usage for Arithmetic Operations

Function

Resource
consumption in

PLDs only

Resource
consumption in
datapaths only

PLDs
%

Used
Datapath

%
Used

ADD8 5 10.4% 1 4.2%

SUB8 5 10.4% 1 4.2%

CMP8 3 6.3% 1 4.2%

SHIFT8 3 6.3% 1 4.2%

 Always prefer synchronous reset/preset over asynchronous. In any situation where you have a
choice, use synchronous signals as a good design practice.

 Use synchronous reset/preset if the affected component has a continuously running clock.

 Limit the use of reset and preset to a choice of either (not both) for any single flip-flop.

Asynchronous presets and resets can be applied at any time. They can introduce timing problems into
a circuit. Reserve Asynchronous presets and resets for purposes such as power-up conditioning or in
the case where the Component clock is not running and the Component needs to be reset. This might
be the case for certain state machines. PSoC 3 and PSoC 5LP architecture has a single signal that you
can use as either a reset or a preset.

 All clocks passed to a Component should be phase aligned with BUS_CLOCK. This is ensured by
adding a Sync Component.

 Do not modify a clock input with combinatorial logic (such as gating a clock).

Since the CPU and DMA may be in a different clock domain from the Component clock, all clocks used
in a design must be synchronized with BUS_CLOCK to prevent problems caused by metastability or

http://en.wikipedia.org/wiki/Priority_encoder

13

clock domain crossing. For a detailed discussion of timing-related issues and how to solve them, see
AN81623 – Digital Design Best Practices.

Generate Construct

A generate block is used to conditionally generate code within a module based on a parameter

(constant) passed to the module at compile-time. Read section 2.9.6 of the Warp Verilog Reference
Guide for more information. Appendix B contains an example of the generate statement.

Final Words

The appendices contain examples to illustrate the concepts taught in this guide. However, these
examples are not exhaustive. Since state machines are particularly important, Cypress recommends
reading the Verilog code for the SeqDetect Component from AN82250. AN82156 - PSoC 3 and PSoC
5LP® - Designing PSoC Creator Components with UDB Datapaths contains good examples on
Datapath-based Component development. For Verilog syntax-related needs, use the Warp Verilog
Reference Guide or a Verilog textbook of choice. For more guidelines and Verilog best practices, see
section 11.6 of the Component Author Guide in PSoC Creator Help>Documentation. Finally, there is
nothing like learning by doing. So go ahead and start building your own Verilog designs in PSoC!

http://www.cypress.com/?rID=67774
http://www.cypress.com/?rID=69773
http://www.cypress.com/?rID=69774

14

Appendix A: 4-bit Counter Custom Component
//`#start header` -- edit after this line, do not edit this line

// ===

// Count4Bit_v1_20.v (from AN82250)

//

// Parameter:

// uint8 period - 4-bit period value

//

// Inputs:

// en - Hardware enable. If low, outputs are still active but the component does not change states.

// reset - Active high, synchronous reset

// clock - Operating frequency of component

//

// Outputs:

// tc - Synchronous terminal count. Goes high for 1 clock cycle when count value equals period value.

// count - 4-bit current count value

// ===

`include "cypress.v"

`ifdef Count4Bit_v1_20_V_ALREADY_INCLUDED

`else

`define Count4Bit_v1_20_V_ALREADY_INCLUDED

//`#end` -- edit above this line, do not edit this line

// Component: Count4Bit_v1_20

module Count4Bit_v1_20 (

 output reg [3:0] count,

 output reg tc,

 input clock,

 input en,

 input reset

);

 parameter period = 0;

 //`#start body` -- edit after this line, do not edit this line

 always @ (posedge clock)

 begin

 if(reset) /* Initialize the counter */

 begin

 count <= 4'b0000;

 tc <= 1'b0;

 end

 else /* counter is not in reset */

 begin

 if(en) /* start counting */

 begin

 if(count == period) /* reached terminal count */

 begin

 tc <= 1'b1;

 count <= 4'b0000;

 end

 else /* count is less than the period, so count up */

 begin

 count <= count + 1;

 tc <= 1'b0;

 end

 end

 else /* enable is 0 - so preserve the output states */

 begin

 count <= count;

 tc <= tc;

 end

 end

 end

//`#end` -- edit above this line, do not edit this line

endmodule

//`#start footer` -- edit after this line, do not edit this line

`endif /* Count4Bit_v1_20_V_ALREADY_INCLUDED */

//`#end` -- edit above this line, do not edit this line

15

Appendix B: EdgeDetect Cypress Catalog Component
/***

* File Name: EdgeDetect_v1_0.v

* Version `$CY_MAJOR_VERSION`.`$CY_MINOR_VERSION`

*

* Description:

* The Edge Detector component samples the connected signal and produces a pulse when the selected edge

* occurs. This file describes the component functionality in Verilog.

**

* I*O Signals:

**

* Name Direction Description

* det output Detected edge

* clock input Sampling clock

* d input Signal to sample for edge

**

`include "cypress.v"

`ifdef EdgeDetect_v1_0_V_ALREADY_INCLUDED

`else

`define EdgeDetect_v1_0_V_ALREADY_INCLUDED

module EdgeDetect_v1_0 (

 det, /* Detected edge */

 clock, /* Sampling clock */

 d /* Signal to sample for edge */

);

 /***

 * Parameters

 ***/

 parameter [1:0] EdgeType = 0;

 /***

 * Interface Definition

 ***/

 output wire det;

 input wire clock;

 input wire d;

 /* Edge Types */

 localparam [1:0] EDGE_DETECT_EDGETYPE_RISING = 2'd0;

 localparam [1:0] EDGE_DETECT_EDGETYPE_FALLING = 2'd1;

 localparam [1:0] EDGE_DETECT_EDGETYPE_EITHER = 2'd2;

 reg last;

 always @(posedge clock)

 begin

 last <= d;

 end

 generate

 if (EdgeType == EDGE_DETECT_EDGETYPE_RISING)

 begin

 assign det = (~last & d);

 end

 else if (EdgeType == EDGE_DETECT_EDGETYPE_FALLING)

 begin

 assign det = (last & ~d);

 end

 else if (EdgeType == EDGE_DETECT_EDGETYPE_EITHER)

 begin

 assign det = (last ^ d);

 end

 endgenerate

endmodule

`endif /* EdgeDetect_v1_0_V_ALREADY_INCLUDED */

	Introduction
	C and Verilog
	Modules
	Data Types: Wire vs Reg
	Registering Outputs
	Declarations
	Constants
	Always Construct
	Sensitivity List

	Assignments
	Continuous Assignment
	Procedural Assignment

	Parameters
	Instantiation
	Guidelines
	Generate Construct
	Final Words
	Appendix A: 4-bit Counter Custom Component
	Appendix B: EdgeDetect Cypress Catalog Component

