

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 1 of 42

Chapter 6A: Classic Bluetooth – The Wireless Serial

Port Profile (SPP)

Time: 2 ½ Hours

At the end of this chapter you will understand the basics of Classic Bluetooth and how to create a simple

Classic Bluetooth project on WICED devices. This section is focused on the simplest Bluetooth

connection, one Master (Android, Mac or PC) and one Slave (your WICED Bluetooth Device). By the end

you should understand Inquiry, Page, Pair, Bond, SDP, L2CAP, RFCOMM and the Serial Port Profile (SPP).

6A.1 WICED BLUETOOTH CLASSIC SYSTEM LIFECYCLE OVERVIEW 2
6A.1.1 INQUIRY ... 4
6A.1.2 PAGE / CONNECT .. 4
6A.1.3 DISCOVER THE SERVICES USING SERVICE DISCOVERY PROTOCOL (SDP) .. 4
6A.1.4 PAIR & BOND ... 4
6A.1.5 EXCHANGE DATA WITH THE SERIAL PORT PROFILE... 5

6A.2 SERVICE DISCOVERY PROTOCOL (SDP) .. 5
6A.3 SECURE SIMPLE PAIRING ... 6
6A.4 L2CAP, RFCOMM & THE SERIAL PORT PROFILE ... 6

6A.4.1 L2CAP .. 8
6A.4.2 RFCOMM ... 8
6A.4.3 SERIAL PORT PROFILE ... 8

6A.5 WICED BLUETOOTH DESIGNER ... 9
6A.6 WICED BLUETOOTH STACK EVENTS ... 16
6A.7 WICED CLASSIC BLUETOOTH FIRMWARE ARCHITECTURE 17

6A.7.1 OVERVIEW ... 17
6A.7.2 APPLICATION CODE (<APPNAME>.C) ... 17
6A.7.3 SDP DATABASE (<APPNAME>_SDB_DB.C/.H) .. 18
6A.7.4 HANDLE PAIRING ... 19
6A.7.5 HANDLE BONDING ... 20
6A.7.6 SUPPORT THE SERIAL PORT PROFILE ... 22

6A.8 EXERCISES ... 27
EXERCISE - 6A.1 CREATE A SERIAL PORT PROFILE PROJECT .. 27
EXERCISE - 6A.2 ADD UART TRANSMIT .. 40
EXERCISE - 6A.3 (ADVANCED) IMPROVE SECURITY BY ADDING IO CAPABILITIES (YES/NO) 41
EXERCISE - 6A.4 (ADVANCED) ADD MULTIPLE DEVICE BONDING CAPABILITY ... 42

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 2 of 42

6A.1 WICED Bluetooth Classic System Lifecycle Overview

The Bluetooth Classic Spec has a bewildering amount of complexity. Clearly this must have been one of

the motivations for creating the much simpler BLE standard. Like Chapter 4 we will take the approach of

creating the simplest example project possible to get things going.

The simplest Bluetooth Classic scenario has two devices, a Master and a Slave. Slaves are passive – not

transmitting – until they hear an Inquiry broadcast from a Master, at which point the Slave broadcasts

basic information about itself (Name, BDADDR, Services). The Master then Pages (connects) to the Slave

and discovers the Services - i.e. the capabilities of the Slave. If the Master is interested, they will

establish a secure link which includes Pairing on the first connection. Finally, a service level connection is

established which in the simplest case is the Serial Port Profile.

The five steps are:

1. Inquiry – Master finds a Slave to Connect

2. Paging – Master connects to Slave

3. Service Discovery (SDP) – The Master figures out what the Slave can do

4. Pair & Bond – A secure, authenticated connection is created

5. Establish SPP connection and Exchange Data using the Serial Port Profile

The architecture of a Bluetooth Classic device is essentially the same as that of a BLE device. It is

composed of five layers.

 Application The code that you write to implement your system functionality.

Bluetooth Classic Stack Profile Library Source libraries including implementation of standard Bluetooth Profiles
such as SPP.

Host Stack Provides multiple connection paths to the application each with its own
features (reliable, ordered, time critical, etc.). It also provides Services to
the local and remote application.

Controller Establishes and maintain links between devices.

Hardware Radio RF magic & the best reason to use Cypress chips.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 3 of 42

Here is the overall picture of the simplest Bluetooth Classic system:

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 4 of 42

6A.1.1 Inquiry

The purpose of the Inquiry process is for a Bluetooth Master to find all the Bluetooth Slaves that are

within its radio range that might provide some interesting Service. This is exactly the opposite of BLE

where a Peripheral advertises it availability and the BLE Central Scans for those packets.

A Bluetooth Classic Slave sits in state called Inquiry Scan - i.e. a listening only state - until it hears a

Bluetooth Master broadcast an Inquiry Request message. The Slave Application is responsible for

putting the Stack into the Inquiry Scan state using the correct Stack API.

Upon hearing an Inquiry Request the Slave will broadcast an Extended Inquiry Response (EIR) packet

that contains its Name, Bluetooth Address (BDADR) and list of Services. These responses are handled

completely by the Controller part of the Stack - i.e. your Application is not aware of these Inquiry

Requests happening.

You should be aware that because of the vagaries of the Bluetooth Radio frequency hopping scheme,

these Inquires may take several seconds.

6A.1.2 Page / Connect

The Paging process is used for a Bluetooth Master to connect to a Bluetooth Slave. The Master is

"Paging" the Slave device (remember the old school pagers?).

A Bluetooth Classic Slave sits in state called Page Scan - i.e. a listening only state - until a Bluetooth

Master initiates the connection process by sending a Page Request. The Slave is responsible for putting

the Stack into the Page Scan state using the correct Stack API.

A Slave can - and often will be - in both the Page Scan and Inquiry Scan modes at the same time,

meaning a Master can initiate a connection to a Slave without Inquiring if it already knows of the

existence of the Slave from a previous connection.

6A.1.3 Discover the Services using Service Discovery Protocol (SDP)

A simple conceptual model of a Bluetooth Classic device is a Server that is running one or more Services

that are attached to Ports. This is the same model that we use in IP Networking.

One question that arises from this idea is: "How do I figure out what Services are available and what

Port each one is listening on?". The answer to both questions is the Service Discovery Protocol.

The SDP has a database embedded in it that contains a list of Services and what Port each one is running

on. The SDP Protocol allows both sides of a connection to query the SDP database.

More details on this in section 6A.2

6A.1.4 Pair & Bond

The whole Bluetooth communication system depends on having a shared symmetric encryption key

called the Link Key. Bluetooth Classic uses a process called Secure Simple Pairing that exchanges enough

https://www.youtube.com/watch?v=l7Og1DuMu3k&list=RDl7Og1DuMu3k&t=18

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 5 of 42

information for the Link Key to be created. (There are other legacy Pairing methods, but they are largely

obsolete at this point).

The Secure Simple Pairing process was designed to minimize the chances that the communication link

could be compromised by an eavesdropper or by a man-in-the-middle. The process is the same as BLE.

As with BLE, Bonding is just saving the BDADDR/Link Key into non-volatile memory so that it can be

reused to speed up re-initiating a connection.

I'll talk about this process in more detail in a minute in section 6A.3

6A.1.5 Exchange Data with the Serial Port Profile

Once Service Discovery is complete, the Bluetooth Master knows the Port number that it should use to

connect to the Serial Port Profile (SPP). The SPP is just one of these Servers (from the last section) that

acts like a serial port. You put bytes in one side and they come out the other.

The Bluetooth Master then opens a connection to the SPP Server running on the Bluetooth Slave. At

this point you can commence the final step in your first basic project: actually exchanging data.

Again, we'll talk about this in much more detail in section 6A.3

6A.2 Service Discovery Protocol (SDP)

From the Bluetooth Core Spec – "The service discovery protocol (SDP) provides a means for Applications

to discover which Services are available and to determine the characteristics of those available services."

The SDP sits on top of the L2CAP layer – and when communicating generates a bunch of L2CAP traffic.

The Bluetooth SIG specifies the SDP database format in Volume 3 Part B of the Bluetooth Core Spec.

The database is composed of one or more Service Records each containing one or more Service

Attributes. Each Service Attribute is a Key/Value pair. There are several Bluetooth SIG Specified Service

Attributes, but you can also create custom Attributes.

Some of the legal Attributes include:

ServiceRecordHandle – A 32-bit number uniquely identifying that Service in the SDP.

ServiceClassIDList – Identifies what type of Service this record represents, specifically a list of classes of

Service.

ProtocolDescriptorList – A list of the protocol stacks that may be used to access this Service.

ServiceName – A plain text description of the Service.

The SDP provides the means for the Client to Search for Services and Attributes and request the values

of the same.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 6 of 42

6A.3 Secure Simple Pairing

Classic Bluetooth has the same four Pairing methods as BLE:

Method 1 is called "Just works". In this mode you have no protection against MITM.

Method 2 is called "Out of Band". Both sides of the connection need to be able to share the PIN via

some other connection that is not Bluetooth such as NFC.

Method 3 is called "Numeric Comparison" (V2.PH.7.2.1). In this method, both sides display a 6-digit

number that is calculated with a nasty cryptographic function based on the random numbers used to

generate the shared key. The user observes both devices. If the number is the same on both, then the

user confirms on both sides. If there is a MITM, then the random numbers on both sides would be

different so the 6-digit codes would not match.

Method 4 is called "Passkey Entry" (V2.PH.7.2.3). For this method to work, at least one side needs to be

able to enter a 6-digit numeric code. The other side must either be able to display a code that is

randomly generated or else have the ability to enter the same code. In the latter case, the user chooses

their own random code that is entered on both sides. Then, an exchange and comparison process starts

with the Passkeys being divided up, encrypted, exchanged and compared with the other side.

6A.4 L2CAP, RFCOMM & the Serial Port Profile

The Bluetooth Classic system has a stack of software and hardware built into it. For the purposes of this

simple Bluetooth Classic example, three blocks in the Host are relevant: L2CAP, RFCOMM and the Serial

Port Profile.

You can see the three blocks in this simplified diagram of the Stack.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 7 of 42

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 8 of 42

6A.4.1 L2CAP

L2CAP is an acronym that stands for Logical Link Control and Adaptation-layer Protocol. L2CAP has one

main function in the system: it serves as a data packet multiplexor that lets you have multiple streamed

connections from the higher level going into one interlaced set of packets going out the Radio. It

obviously implements the de-multiplexor function as well, taking a single stream of interlaced packets

and turning it back into complete streams on the other side of the link.

The L2CAP divides up the streams of data into L2CAP Channels that:

1. Divides up streams of data into smaller packets that will fit through the Radio.

2. Provides quality of service to each of the L2CAP channels.

3. Provides flow control.

6A.4.2 RFCOMM

RFCOMM was built as a wired RS232 replacement protocol. It supports all the normal wires for a serial

port including Rx, Tx, CTS, RTS, DSR, DTR, CD and Ri. Depending on the implementation, RFCOMM gives

you up to 60 Server Channels of streams of serial data. The protocol is built on top of L2CAP (a packet-

based system). It appears to the Application developer with an API that makes it look like a UART.

6A.4.3 Serial Port Profile

The Serial Port Profile specifies all the protocols and procedures required to setup, discover and connect

two virtual serial ports over an RFCOMM connection. If you are replacing a serial port interface like RS-

232 or a UART with Bluetooth, then SPP is the profile you are looking for.

FYI, for iOS devices, the SPP is locked so it is only usable for MFi license holders. Their implementation is

called iAP2.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 9 of 42

6A.5 WICED Bluetooth Designer

As with BLE, WICED Bluetooth Designer can be used to help you create a WICED Bluetooth Classic

Project. Specifically, it will help you:

• Make a template project with all the required files

• Create the SDP Database

• Create a Make Target

To run the tool, go to File → New → WICED Bluetooth Designer

Give your project a name, in this case I call it "key_ClassicSpp". When you do this yourself, be sure to

make the name unique so that you will be able to identify which device is yours. For example,

<inits>_ClassicSpp where <inits> is your initials.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 10 of 42

Click "Finish" to open the configuration window.

The default setting is Single Mode LE, but we want a Bluetooth Classic BR/EDR project so change the

Bluetooth Mode to "Single Mode BR/EDR".

The biggest benefit of Bluetooth Designer is helping you build the "Service Discovery" database. Click on

the Service Discovery Tab at the bottom of the window.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 11 of 42

The SDP database starts with nothing in it. To add Services to the database, click on the drop-down

menu under "Add SDP Service", pick out the Service you want (in this case, Serial Port) then click "+".

Now the SDP Database (which shows up in the window titled SDP Services) has the Serial Port. Click on

the Arrow to the left of "Serial Port" to expand the Attributes that are created for the SPP:

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 12 of 42

The process of looking for any offered services is termed browsing. In SDP, the mechanism for browsing

for services is based on an attribute shared by all service classes. This attribute is called the “Browse

List” attribute. The value of this attribute contains a list of UUIDs. Each UUID represents a browse group

with which a service may be associated.

By default, the "Service Name" and "Browse List" are not included in the Attributes for the SPP. To add

them, select them from the "Add Optional SDP Service Attribute" menu and press the "+". Here I add

the "Service Name":

Next, I'll change the name to "SPP Service" by typing in the "Service Name" text box.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 13 of 42

To add the Browse List to the SPP Service, select "Browse List" from the Optional SDP Service Attribute

List and press "+".

I'll leave the settings for the Browse List at the default values.

This completes the setup for the SPP service.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 14 of 42

Next, I'll add another Service to the Database called the Device ID Service. This contains things like

vendor ID, product ID, etc. which you can use to convey information about your device.

After it is added, you can see all the Attributes that go with it. You can change some of the values by

clicking on the Attribute you want to modify and then entering the new values. Only certain values are

editable. The default value for Vendor ID is 0xFFFF. This is not a valid vendor ID, so it will not work

properly in all situations. Therefore, you MUST change this to a valid Vendor ID. In this case, I'll use

the Cypress Vendor ID which is 0x0131.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 15 of 42

The last step in the process of generating the project is to press the Generate Code button which will

create the project with C-code that you will customize later, and it will create a make target.

Here is the resulting workspace:

WICED Bluetooth Designer also creates a Make Target for your new project but it does not include the

options BT_DEVICE_ADDRESS=random. I'll add that now so that I don't end up with a conflicting address.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 16 of 42

6A.6 WICED Bluetooth Stack Events

The Stack generates Events based on what is happening in the Bluetooth world. After an event is

created, the Stack will call the callback function which you registered when you turned on the Stack.

Your callback firmware must look at the event code and the event parameter and take the appropriate

action.

For your Basic Application these are the relevant BTM Events:

Event Description
BTM_ENABLED_EVT When the Stack has everything going. This event data

will tell if you it happened with WICED_SUCCESS or
!WICED_SUCCESS. This is typically where you will
launch most of your application code.

BTM_SECURITY_REQUEST_EVT For BLE, this is used to retrieve the local identity key
for RPA. For Classic BT you don't need to do anything
for this event.

BTM_PAIRING_IO_CAPABILITIES_BR_EDR_REQUEST_EVT The Stack is asking what IO capabilities this device has
(Display, Keyboard etc.). You need to update the
structure sent to you in the event data.

BTM_PAIRING_COMPLETE_EVT The Stack is informing you that you are now paired.

BTM_ENCRYPTION_STATUS_EVT The Stack is informing you that the link is now
encrypted…or not depending on the event data.

BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT The Stack is asking you find and return the link key for
the BDADDR that was sent in the event data.

BTM_USER_CONFIRMATION_REQUEST_EVT

(for numeric comparison bonding method)

The Stack is asking you to ask the user if the PIN you
are displaying matches the PIN from the other side.
This state should print the passkey (e.g. to UART or
some other display). You can allow the user to verify
the key only on the other side, or you can verify the
user's input here before sending back the
confirmation.

BTM_PASSKEY_NOTIFICATION_EVT

(for passkey entry method)

The Stack is notifying you that the other side of the
connection wants a passkey. You should print the
passkey (e.g. to UART or some other display) so that
the user can enter it on the other device.

BTM_LOCAL_IDENTITY_KEYS_REQUEST_EVT The Stack is asking you to read the local identify keys
from the NVRAM and return them to the Stack.

BTM_PAIRING_IO_CAPABILITIES_BR_EDR_RESPONSE_EVT The Stack is informing you of the I/O capabilities of
the other side of the connection.

BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT The Stack is asking your firmware to store the
BDADDR/Link Keys (which are passed in the event
data).

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 17 of 42

6A.7 WICED Classic Bluetooth Firmware Architecture

6A.7.1 Overview

WICED Bluetooth Designer will create a skeleton of the firmware that you need start building your

device. The skeleton includes:

1. A file named <appname>.c which contains the application functions:

a. application_start which is the entry point for the firmware.

b. <appname>_app_init which provides a place for you to get your application stuff going.

c. <appname>_management_callback which is a template BTM event handler function.

2. A .c/.h pair of files called <appname>_sdp_db.c/.h containing:

a. The #defines for the SDP database.

b. A uint8_t structure holding the actual database.

3. A file called wiced_bt_config.h containing:

a. All the basic Bluetooth configuration settings to get the stack going.

6A.7.2 Application Code (<appname>.c)

As mentioned above, the application_start function is the entry point of the firmware. By default, that

function will:

• Initialize the memory pools (just like BLE)

• Configure the debugging UART if you want WICED_BT_TRACE messages

• Call wiced_bt_stack_init with the event handler to start the stack

The <appname>_app_init function is created for you as a place to initialize your application. It is called in

the BTM event handler after the stack starts. By default, this function:

• Makes your device pairable

• Initializes the SDP database

• Makes your device connectable (turns on Page Scan)

• Makes your device discoverable (turns on Inquiry Scan)

To make your project work you need to add the capability to <appname>.c to:

• Handle Pairing

• Handle Bonding

• Support the Serial Port Profile

These will each be covered in detail in a minute.

You also should change the code to route the debug messages to the PUART (i.e. uncomment the line to

use WICED_ROUTE_DEBUG_TO_PUART and comment the line to use

WICED_ROUTE_DEBUG_TO_WICED_UART).

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 18 of 42

6A.7.3 SDP Database (<appname>_sdb_db.c/.h)

The Service Discovery Database is created for you based on the configuration settings in BT Designer. It

creates the files <appname>_sdp_db.c/.h

The file <appname>_sdp_db.h for the simple project with the SPP and Device ID Services that we

created using BT Designer is shown here:

#ifndef __SDP_DATABASE_H__

#define __SDP_DATABASE_H__

// SDP Record for Serial Port

#define HDLR_SERIAL_PORT 0x10001

#define SERIAL_PORT_SCN 0x01

// SDP Record for Device ID

#define HDLR_DEVICE_ID 0x10002

// External definitions

extern const uint8_t sdp_database[];

extern const uint16_t sdp_database_len;

#endif /* __SDP_DATABASE_H__ */

The file <appname>_sdp_db.c simply contains the two Service Records that we defined in BT Designer:

the SPP and the Device Info.

const uint8_t sdp_database[] = // Define SDP database

{

 SDP_ATTR_SEQUENCE_1(157),

 // SDP Record for Serial Port

 SDP_ATTR_SEQUENCE_1(84),

 SDP_ATTR_RECORD_HANDLE(HDLR_SERIAL_PORT),

 SDP_ATTR_CLASS_ID(UUID_SERVCLASS_SERIAL_PORT),

 SDP_ATTR_RFCOMM_PROTOCOL_DESC_LIST(SERIAL_PORT_SCN),

 SDP_ATTR_BROWSE_LIST,

 SDP_ATTR_LANGUAGE_BASE_ATTR_ID_LIST,

 SDP_ATTR_PROFILE_DESC_LIST(UUID_SERVCLASS_SERIAL_PORT, 0x0102),

 SDP_ATTR_SERVICE_NAME(11),

 'S', 'P', 'P', ' ', 'S', 'e', 'r', 'v', 'i', 'c', 'e',

 // SDP Record for Device ID

 SDP_ATTR_SEQUENCE_1(69),

 SDP_ATTR_RECORD_HANDLE(HDLR_DEVICE_ID),

 SDP_ATTR_CLASS_ID(UUID_SERVCLASS_PNP_INFORMATION),

 SDP_ATTR_PROTOCOL_DESC_LIST(1),

 SDP_ATTR_UINT2(ATTR_ID_SPECIFICATION_ID, 0x103),

 SDP_ATTR_UINT2(ATTR_ID_VENDOR_ID, 0x0131),

 SDP_ATTR_UINT2(ATTR_ID_PRODUCT_ID, 0xFFFF),

 SDP_ATTR_UINT2(ATTR_ID_PRODUCT_VERSION, 0xFFFF),

 SDP_ATTR_BOOLEAN(ATTR_ID_PRIMARY_RECORD, 0x01),

 SDP_ATTR_UINT2(ATTR_ID_VENDOR_ID_SOURCE, DI_VENDOR_ID_SOURCE_BTSIG),

};

// Length of the SDP database

const uint16_t sdp_database_len = sizeof(sdp_database);

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 19 of 42

The sequence numbers that you see above (SDP_ATTR_SEQUENCE) indicate the length of the database

items. For example, 157 is the total number of bytes in the database (excluding itself). Likewise, 84 is the

total number of bytes in the SPP service (again excluding itself).

The only action required by your application firmware to interact with the database is to register it. This

is inserted into the function <appname>_app_init for you automatically by BT Designer:

/* Initialize SDP Database */

wiced_bt_sdp_db_init((uint8_t*)sdp_database, sdp_database_len);

6A.7.4 Handle Pairing

In the file <appname>.c you need to add code to handle pairing since it is not done completely by

WICED Bluetooth Designer.

The BTM events involved in Pairing are:

• BTM_PAIRING_IO_CAPABILITIES_BR_EDR_RESPONSE_EVT

• BTM_PAIRING_IO_CAPABILITIES_BR_EDR_REQUEST_EVT

• BTM_USER_CONFIRMATION_REQUEST_EVT (for numeric comparison)

• BTM_PASSKEY_NOTIFICATION_EVT (for passkey entry)

• BTM_PAIRING_COMPLETE_EVT

When the Master attempts to Pair with you, it sends its I/O capabilities. When you get that event, you

can decide what to do including nothing. In this case, we just print out the I/O capabilities. By default,

BT Designer does not include this event in the template.

 case BTM_PAIRING_IO_CAPABILITIES_BR_EDR_RESPONSE_EVT:
 WICED_BT_TRACE(
 "IO_CAPABILITIES_BR_EDR_RESPONSE peer_bd_addr: %B, peer_io_cap: %d, peer_oob_data: %d, peer_auth_req: %d\n",
 p_event_data->pairing_io_capabilities_br_edr_response.bd_addr,
 p_event_data->pairing_io_capabilities_br_edr_response.io_cap,
 p_event_data->pairing_io_capabilities_br_edr_response.oob_data,
 p_event_data->pairing_io_capabilities_br_edr_response.auth_req);
 break;

When you get the event asking for your I/O Capabilities, you need to respond by changing the event

data. By default, BT Designer gives you an incomplete filling of the structure. You need to add the local

IO capabilities. For example, if your device has a display and you want to use numeric comparison, you

could use BTM_IO_CAPABILITIES_DISPLAY_AND_YES_NO_INPUT as shown here:

 case BTM_PAIRING_IO_CAPABILITIES_BR_EDR_REQUEST_EVT:
 /* Request for Pairing IO Capabilities (BR/EDR) */
 WICED_BT_TRACE("BR/EDR Pairing IO Capabilities Request\n");
 p_event_data->pairing_io_capabilities_br_edr_request.oob_data = BTM_OOB_NONE;
 p_event_data->pairing_io_capabilities_br_edr_request.auth_req = BTM_AUTH_SINGLE_PROFILE_GENERAL_BONDING_YES;
 p_event_data->pairing_io_capabilities_br_edr_request.is_orig = WICED_FALSE;
 p_event_data->pairing_io_capabilities_br_edr_request.local_io_cap = BTM_IO_CAPABILITIES_DISPLAY_AND_YES_NO_INPUT;
 break;

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 20 of 42

Depending on the IO capabilities of both devices, a pairing method is negotiated. If the devices have

sufficient IO capabilities, you will either get a confirmation request event (for Numeric Comparison) or a

passkey notification event (for Passkey Entry).

For numeric comparison, you need to display the value so that the user can confirm the value is the

same on both devices. At that point, you can wait for user input to confirm the value, or you can just

automatically confirm. If you do the latter, then you are depending on the other side of the connection

to confirm the value. If the other side also automatically confirms, then the numeric comparison method

doesn't protect you against MIM. By default, WICED Bluetooth Designer includes the following code to

print the numeric value and confirm it automatically:

 case BTM_USER_CONFIRMATION_REQUEST_EVT:
 /* Pairing request, TODO: handle confirmation of numeric compare here if desired */
 WICED_BT_TRACE("numeric_value: %d\n", p_event_data->user_confirmation_request.numeric_value);
 wiced_bt_dev_confirm_req_reply(WICED_BT_SUCCESS , p_event_data->user_confirmation_request.bd_addr);
 break;

For passkey entry, you just need to display the Passkey on your device so that the user can enter it on

the other device. WICED Bluetooth Designer does NOT include this state so you must include it if you are

using Passkey Entry.

 case BTM_PASSKEY_NOTIFICATION_EVT: /* Print passkey to the screen so that the user can enter it. */
WICED_BT_TRACE("Passkey Notification\n\r");
WICED_BT_TRACE(">>>>>>>>>>>>>>>>>>>>>>>> PassKey Required for BDA %B, Enter Key: %06d \n\r",
 p_event_data->user_passkey_notification.bd_addr, p_event_data->user_passkey_notification.passkey);
break;

When the pairing process is complete you can print a message (BT Designer does this for you by

default), or more likely initialize some variable for that session (which you would have to do yourself).

 case BTM_PAIRING_COMPLETE_EVT:
 /* Pairing is Complete */
 p_br_edr_info = &p_event_data->pairing_complete.pairing_complete_info.br_edr;
 WICED_BT_TRACE("Pairing Complete %d.\n", p_br_edr_info->status);
 break;

6A.7.5 Handle Bonding

As with Paring, the code to handle Bonding must be added to <appname>.c.

To handle Bonding, you need to act on the BTM Events that request you to find the saved link key for a

specific BD Address (BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT) and to save the Link Key when it

is created or updated for a specific address (BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT).

This is best done by reserving a block of the NVRAM VSIDs to hold the key/BDADDR tuple. The VSID is

just a row number in the NVRAM. Each Volatile Sector in the NVRAM is 255 bytes long. Each WICED

Device has #defines for the WICED_NVRAM_VSID_START and WICED_NVRAM_VSID_END in

wiced_hal_nvram.h.

BT Designer provides a template for the keys request event. To enable it you just need to change the #if

value from 0 to 1. You will also need to provide the function <appname>_read_link_keys which we will

do in a minute.

 case BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT:

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 21 of 42

 /* Paired Device Link Keys Request */
 WICED_BT_TRACE("Paired Device Link Request Keys Event\n");
 /* Device/app-specific TODO: HANDLE PAIRED DEVICE LINK REQUEST KEY - retrieve from NVRAM, etc */
#if 1
 if (key_classicspp_read_link_keys(&p_event_data->paired_device_link_keys_request))
 {
 WICED_BT_TRACE("Key Retrieval Success\n");
 }
 else
#endif
 /* Until key retrieval implemented above, just fail the request - will cause re-pairing */
 {
 WICED_BT_TRACE("Key Retrieval Failure\n");
 status = WICED_BT_ERROR;
 }
 break;

BT Designer does not provide a template for the keys update event. So, you need to add the case for

that event, which simply calls a write function that we will create next.

 case BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT:
 WICED_BT_TRACE("BTM_PAIRED_DEVICE_LINK_KEYS_UPDATE_EVT\n");
 key_classicspp_write_link_keys(&p_event_data->paired_device_link_keys_update);
 break;

Next, you need to write the <appname>_read_link_keys and <appname>_write_link_keys functions. In

our case we will write them so that they each support only one set of saved link keys, and they each use

an entire VSID row.

// This function reads the first VSID row into the link keys
int key_classicspp_read_link_keys(wiced_bt_device_link_keys_t *keys)
{

 wiced_result_t result;
 int bytes_read;

 bytes_read = wiced_hal_read_nvram(WICED_NVRAM_VSID_START,sizeof(wiced_bt_device_link_keys_t),
 (uint8_t *)keys,&result);
 WICED_BT_TRACE("NVRAM ID:%d read :%d bytes result:%d\n", WICED_NVRAM_VSID_START, bytes_read, result);

 return bytes_read;

}

// This function write the link keys into the first VSID row
int key_classicspp_write_link_keys(wiced_bt_device_link_keys_t *keys)
{

 wiced_result_t result;
 int bytes_written = wiced_hal_write_nvram(WICED_NVRAM_VSID_START, sizeof(wiced_bt_device_link_keys_t),
 (uint8_t*)keys, &result);

 WICED_BT_TRACE("NVRAM ID:%d written :%d bytes result:%d\n", WICED_NVRAM_VSID_START, bytes_written, result);
 return (bytes_written);
}

After you write these two functions you need to add a forward declaration for each of them at the top

of the file.

int key_classicspp_read_link_keys(wiced_bt_device_link_keys_t *keys);
int key_classicspp_write_link_keys(wiced_bt_device_link_keys_t *keys);

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 22 of 42

6A.7.6 Support the Serial Port Profile

To make the SPP work you need to initialize the server and provide callbacks for starting and stopping

the connection and for receiving data. The WICED Bluetooth SDK contains all the code to implement an

SPP server in two places: (1) the low-level functions are in a library called "spp_lib" and; (2) an example

application that demonstrates how to use the SPP library functions is in apps/snip/bt/spp.

After you have created your SPP project with the BT Designer tool, you can open snip/bt/spp/spp.c

example to copy the additional blocks of code that you need. Typically, I create separate files spp.h and

spp.c in my project to handle all the SPP server functionality.

Note: If you don't see snip/bt/spp in your workspace, follow these steps:

1. In the Project Explorer window, right click on "snip" and select New -> Folder.

2. Click the "Advanced >>" button.

3. Select "Link to alternate location (Linked Folder)".

4. Click the "Browse…" button.

5. Navigate to the WICED Studio Installation location (e.g. <User>/Documents/WICED-Studio-

<version>) and select the folder "…/common/apps/snip/bt". The window should look like this:

6. Click on "OK".

7. Click on "Finish".

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 23 of 42

makefile.mk

There are two changes that need to happen to the file makefile.mk. First, you need to add spp_lib.a so

that you can link the SPP library functions. Second, when you add new source files to your project (like

spp.c) you need to add them to makefile.mk as well:

APP_SRC = key_ClassicSpp.c

APP_SRC += key_ClassicSpp_sdp_db.c

APP_SRC += wiced_bt_cfg.c

APP_SRC += spp.c

C_FLAGS += -DWICED_BT_TRACE_ENABLE

If defined, HCI traces are sent over transport/WICED HCI interface

C_FLAGS += -DHCI_TRACE_OVER_TRANSPORT

$(NAME)_COMPONENTS := spp_lib.a

spp.h

Create a new file in the project folder called spp.h. In that file, I just add the #pragma once and then

provide a function prototype for the public interface to the server:

#pragma ONCE
void spp_start();

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 24 of 42

spp.c

Create another new file in the project folder called spp.c. First, I'll add the #defines that are needed to

get access to the required functions:

In spp.c you first need add #includes to get all the required functions and #defines for some SPP

parameters:

#include "spp.h"
#include "wiced.h"
#include "stddef.h"
#include "bt_types.h"
#include "wiced_bt_spp.h"
#include "wiced_bt_trace.h"

#define SPP_RFCOMM_SCN (1)
#define MAX_TX_BUFFER (1017)

Next you need to include forward declarations for the SPP handler functions that we will write in a

minute.

static void spp_connection_up_callback(uint16_t handle, uint8_t* bda);
static void spp_connection_down_callback(uint16_t handle);
static wiced_bool_t spp_rx_data_callback(uint16_t handle, uint8_t* p_data, uint32_t data_len);

Then you declare a variable called spp_handle to hold the current handle of the SPP connection and a

structure of type wiced_bt_spp_reg_t called spp_reg which holds all the configuration information for

the SPP Server.

static uint16_t spp_handle;

wiced_bt_spp_reg_t spp_reg =
{
 SPP_RFCOMM_SCN, /* RFCOMM service channel number for SPP connection */
 MAX_TX_BUFFER, /* RFCOMM MTU for SPP connection */
 spp_connection_up_callback, /* SPP connection established */
 NULL, /* SPP connection establishment failed, not used because

 this app never initiates connection */
 NULL, /* SPP service not found, not used because this app never

 initiates connection */
 spp_connection_down_callback, /* SPP connection disconnected */
 spp_rx_data_callback, /* Data packet received */
};

Then write a function to startup the SPP server. It just needs to call the startup function from the library

with the configuration structure you defined above.

void spp_start()
{
 // Initialize SPP library
 wiced_bt_spp_startup(&spp_reg);
}

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 25 of 42

The connection up and down callbacks send information via the BT Trace and set/unset a global variable

that keeps track of the SPP handle.

/*
 * SPP connection up callback
 */
static void spp_connection_up_callback(uint16_t handle, uint8_t* bda)
{
 WICED_BT_TRACE("%s handle:%d address:%B\n", __FUNCTION__, handle, bda);
 spp_handle = handle;
}

/*
 * SPP connection down callback
 */
static void spp_connection_down_callback(uint16_t handle)
{
 WICED_BT_TRACE("%s handle:%d\n", __FUNCTION__, handle);
 spp_handle = 0;
}

When you receive data just dump it out onto the screen in the RX data callback.

/*
 * Process data received over EA session. Return TRUE if we were able to allocate buffer to
 * deliver to the host.
 */
static wiced_bool_t spp_rx_data_callback(uint16_t handle, uint8_t* p_data, uint32_t data_len)
{
 int i;
// wiced_bt_buffer_statistics_t buffer_stats[4];

// wiced_bt_get_buffer_usage (buffer_stats, sizeof(buffer_stats));

// WICED_BT_TRACE("0:%d/%d 1:%d/%d 2:%d/%d 3:%d/%d\n", buffer_stats[0].current_allocated_count,
buffer_stats[0].max_allocated_count,
// buffer_stats[1].current_allocated_count, buffer_stats[1].max_allocated_count,
// buffer_stats[2].current_allocated_count, buffer_stats[2].max_allocated_count,
// buffer_stats[3].current_allocated_count, buffer_stats[3].max_allocated_count);

// wiced_result_t wiced_bt_get_buffer_usage (&buffer_stats, sizeof(buffer_stats));

 WICED_BT_TRACE("%s handle:%d len:%d %02x-%02x\n", __FUNCTION__, handle, data_len, p_data[0],
p_data[data_len - 1]);

 for(i=0;i<data_len;i++)
 WICED_BT_TRACE("%c",p_data[i]);
 WICED_BT_TRACE("\n");

#if LOOPBACK_DATA
 wiced_bt_spp_send_session_data(handle, p_data, data_len);
#endif
 return WICED_TRUE;
}

Note that the implementation above does not send data – it is RX only – but if you look at the #if

LOOPBACK_DATA directive you can see how data can be sent using the

wiced_bt_spp_send_session_data function. That function can be called anywhere in your application to

send data over the SPP interface. It needs the handle to the SPP service, a pointer to the data to send,

and the length of the data in bytes. Since it requires the handle, it is easiest to include an additional

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 26 of 42

function (e.g. spp_send_tx_data) in spp.c/.h as part of the public interface so that it has access to the

spp_handle variable that we created earlier.

<appname>.c

In the main application, you need to add an include for spp.h:

#include "spp.h"

Then you need to initialize and start the SPP server at the end of the <appname>_app_init function:

/* Start the SPP server */
spp_start();

wiced_bt_cfg.c

The last thing we need to do is to increase the buffer pool sizes. This is necessary because the SPP uses

more memory than is allocated by BT Designer, so it will not work with the default values. Specifically,

the MTU is set in the config file to 515 so the large buffer pool must be at least 527 (MTU + 12).

const wiced_bt_cfg_buf_pool_t wiced_bt_cfg_buf_pools[WICED_BT_CFG_NUM_BUF_POOLS] =
{
/* { buf_size, buf_count, }, */
 { 64, 16, }, /* Small Buffer Pool */
 { 272, 8, }, /* Medium Buffer Pool (used for HCI & RFCOMM control messages, min
recommended size is 360) */
 { 1056, 3, }, /* Large Buffer Pool (used for HCI ACL messages) */
 { 1056, 2, }, /* Extra Large Buffer Pool (used for SDP Discovery) */
};

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 27 of 42

6A.8 Exercises

Exercise - 6A.1 Create a Serial Port Profile Project

Project Creation

For this example, you will need to:

1. Follow the instructions in section 6A.5 to create a new project using BT Designer.

2. Update the project to handle pairing as documented in section 6A.7.4

3. Update the project to handle bonding as documented in section 6A.7.5

4. Update the project with the SPP functionality as documented in section 6A.7.6

Hint: Remember to use your initials in the project name (i.e. device name) so that you can find it in

the list of devices that will be advertising.

Hint: Remember to add the option BT_DEVICE_ADDRESS=random to the make target so that your

device's address will not conflict with another kit in the class.

Once the project has been created, you can move it into the wbt101/ch06a folder if you want to

keep things organized (e.g. apps/wbt101/ch06a/ex01_<inits>_ClassicSpp). If you do that, remember

to update the Make Target path too.

Testing

Once your project seems to be working, you can attach to it using Windows 7, Windows 10, MacOS or

Android. Instructions for each are provided below.

Note that iOS does not support SPP directly, so you can't use an iPhone to test this project. Apple

supports Classic Bluetooth with iAP2 (iPod Accessory Protocol) which works a bit differently than SPP

and requires an MFi license.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 28 of 42

PC Instructions (Windows 7)

The first step is to pair your PC with the WICED Bluetooth device. Go to Control Panel -> Hardware and

Sound -> Devices and Printers -> Add a Device.

Wait until your device shows up in the list. Select it and click "Next".

Compare the 6-digit code with the one displayed on your UART terminal. If the two numbers match,

make sure "Yes" is selected and click "Next".

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 29 of 42

Click "Close" once the device has been added. Your device will now show up in the list of devices and

drivers will automatically install.

Go to the Device Manager and look under Ports (COM & LPT) to find the COM port for the SPP interface

of your Bluetooth device. It will be listed as "Standard Serial over Bluetooth link". If you see multiple

ports listed for Standard Serial over Bluetooth link, the lowest numbered port is the one you want to

use.

Open a serial terminal program of your choice (such as Putty) and connect to the SPP COM port. Now

you can type in characters in the terminal window for the Bluetooth device and you will see them being

received in the WICED kit by watching in terminal window connected to the kit's PUART.

When you are done testing, close the Bluetooth SPP terminal window and then go to Control Panel ->

Hardware and Sound -> Devices and Printers. Right click on the WICED Bluetooth device, select "Remove

Device" and click "Yes" to remove the device's paring information.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 30 of 42

PC Instructions (Widows 10)

For Windows 10 you can use the same procedure as for Windows 7. Alternately, in Windows 10 you

have the option to install the "Bluetooth Serial Terminal" from the Microsoft App Store which provides a

"slick" interface. That option is discussed here.

First, go to the Windows 10 Apps store (https://www.microsoft.com/en-us/windows/windows-10-apps),

search for "Bluetooth Serial Terminal", and install it.

https://www.microsoft.com/en-us/windows/windows-10-apps

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 31 of 42

As with Windows 7, you need to pair with your device before it will show up as a serial port. To do this,

go to Settings -> Devices -> Add Bluetooth or other device -> Bluetooth. When you see your device in the

list, click on it. Compare the 6-digit code with the one displayed on your UART terminal. If the two

numbers match, click on "Connect". Click "Done". Your device should now show up in the list of devices

as "Paired":

Now open the Bluetooth Serial Terminal app that you installed earlier. Your device should show up in

the list. If not click "Refresh List".

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 32 of 42

Once you see it in the list, click "Connect". Now you can type strings in the Transmit window and click

"Send" to send them to the WICED SPP Project. Observe the strings being received in the WICED kit by

watching in the UART terminal.

When you are done testing, click "Disconnect", close the Bluetooth Serial Terminal app and then go into

the computer's Bluetooth settings to remove the device's paring information (Settings -> Devices ->

<appname>_ClassicSpp -> Remove device -> Yes).

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 33 of 42

Android Instructions

On an Android phone, you can install "Serial Bluetooth Terminal" from the Google Play Store. When you

run the App, you will need to pair with your development kit. To do that open the menu (3 lines near

the upper left corner) and tap on "Devices". From the Devices page, click on the "Gear" icon. This will

take you to your phone's Bluetooth settings.

Find your device in the list and Pair with it (the exact procedure may be slightly different depending on

the version of Android you are running).

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 34 of 42

Once the device has been added, press the back arrow and you will see that your device appears in the

Devices list. Tap on it to make it the active device (it will have a green bar to the left of the name when it

is active). Then open the menu and select "Terminal" to see the blank terminal window. Next, tap the

plug icon near the upper right corner to open the SPP server connection to your development kit. It will

say "Connected" in the terminal window.

Now you can send data to the SPP server by entering it at the bottom of the window and clicking the

Send arrow. You will see the data transmitted on the PUART terminal window for the kit.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 35 of 42

When you press the plug again, it will disconnect. You can then go back to the menu, select Devices,

click on the Gear icon, and delete the Bonding information for your device (aka Forget) from the

Bluetooth settings. Again, the exact procedure to forget the device will vary based on the version of

Android you are running.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 36 of 42

Mac Instructions

Install "Serial" from Decisive Tactics onto your Mac. You can get it in the App Store.

Once you have programmed the development kit you need to connect to it from the Mac. In the Serial

program choose File → Open Bluetooth.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 37 of 42

Then click on your project and press "Select". This will pair to the development kit and open a window.

You will be asked to confirm the connection.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 38 of 42

Once it is connected, everything you type will appear in the console window of the WICED Development

kit. Below you can see that I typed "asdf".

To unpair your development kit, select the Bluetooth symbol and pick "Open Bluetooth Preferences"

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 39 of 42

Select your device and click the "X".

You will need to confirm that you want to remove the Bonding information from the Mac BT Stack.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 40 of 42

Exercise - 6A.2 Add UART Transmit

Make a copy of Exercise - 6A.1 and modify it to include a transmit function so that you can send data in

both directions. You will read characters from the PUART terminal window so that when you type keys

on your PC keyboard those values will be transmitted over Bluetooth to the Bluetooth Serial window.

Hint: There is an example in the Peripherals chapter that receives characters from a terminal window.

Refer to that if you need help determining how to read characters from the PUART.

Hint: Add a new function called spp_tx_data to spp.c and spp.h to send the data. It will take a pointer to

the data to send and the length as parameters and will call the wiced_bt_spp_send_session_data

function to send the data. You will call the spp_tx_data function from the main application whenever a

keystroke is received from the PUART.

Hint: You can rename the project/files in the new project if desired. If you want to change the name of

the device that shows up on the Bluetooth scan, it is inside the file wiced_bt_cfg.c.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 41 of 42

Exercise - 6A.3 (Advanced) Improve Security by Adding IO Capabilities (Yes/No)

In this exercise, we are going change the previous exercise to add confirmation on the WICED device. As

before, a value will be displayed on both ends of the connection (WICED device and the phone or PC).

The user will need to compare the two values and then perform the confirmation step on both devices

before the connection is established.

Note: the phone or PC may or may not display the value and it may or may not require user input – this

is up to the phone/PC application. In the case where the phone/PC automatically confirms the value you

will still have to accept the connection on the WICED device end.

You will add the capability for the user to confirm that the numeric comparison value is correct on the

WICED device using the "y" and "n" keys in the UART terminal.

To make this work you need to:

1. Make a copy of Exercise - 6A.2 and modify it as follows:

a. Add code to the BTM_USER_CONFIRMATION_REQUEST_EVT that will turn on the

interrupts for the two mechanical buttons and inform the user that they should press

the correct button.

i. Hint: This event will provide the BDADDR for the master that is trying to pair.

You should save this value (hint: memcpy) to a global since you will need it

when you reply in the interrupt.

b. Add a global variable called "doCompare" that is set when the user confirmation request

is made and is reset after the user enters their Yes or No response.

c. In the PUART RX interrupt, if doCompare is set, look for "y" or "n" and then call

wiced_bt_dev_confirm_req_reply() with the appropriate response. If doCompare is not

set, then just send the value to the SPP interface as before.

i. Hint: Look at the function declaration to determine what information you need

to send with the reply based on which button was pressed.

ii. Hint: Make sure you remove the existing wiced_bt_dev_confirm_req_reply() call

from the BTM_USER_CONFIRMATION_REQUEST_EVT.

Hint: You can rename the project/files in the new project if desired. If you want to change the name of

the device that shows up on the Bluetooth scan, it is inside the file wiced_bt_cfg.c.

Chapter 6A Classic Bluetooth – The Wireless Serial Port Profile (SPP) Page 42 of 42

Exercise - 6A.4 (Advanced) Add Multiple Device Bonding Capability

In this exercise, you will add the capability to store bonding information from multiple devices. You will

need to make two changes to your current SPP implementation:

1. Handle saving multiple link keys into the NVRAM. Let's use 8 for the maximum number of saved

link keys. Use one VSID to save a one-byte count of how many are being used. Then use VSID =

VSID_Start+count to save each additional Address/Key Bonding pair.

2. Handle reading multiple link keys. When you get the event

BTM_PAIRED_DEVICE_LINK_KEYS_REQUEST_EVT, the event data will be a pointer to a

wiced_bt_device_link_keys_t structure. That structure contains the BDADDR of the device that

is trying to pair. You need to search through the VSIDs to find the BDADDR of the saved link

keys. If you find one that matches return it. Otherwise return a WICED_ERROR so that a new

device can be added.

Hint: You can rename the project/files in the new project if desired. If you want to change the name of

the device that shows up on the Bluetooth scan, it is inside the file wiced_bt_cfg.c.

Once you have the project completed, try bonding with two different devices (e.g. phone and PC).

Connect and disconnect back and forth to verify that bonding information for both is retained and is

used when reconnecting.

	6A.1 WICED Bluetooth Classic System Lifecycle Overview
	6A.1.1 Inquiry
	6A.1.2 Page / Connect
	6A.1.3 Discover the Services using Service Discovery Protocol (SDP)
	6A.1.4 Pair & Bond
	6A.1.5 Exchange Data with the Serial Port Profile

	6A.2 Service Discovery Protocol (SDP)
	6A.3 Secure Simple Pairing
	6A.4 L2CAP, RFCOMM & the Serial Port Profile
	6A.4.1 L2CAP
	6A.4.2 RFCOMM
	6A.4.3 Serial Port Profile

	6A.5 WICED Bluetooth Designer
	6A.6 WICED Bluetooth Stack Events
	6A.7 WICED Classic Bluetooth Firmware Architecture
	6A.7.1 Overview
	6A.7.2 Application Code (<appname>.c)
	6A.7.3 SDP Database (<appname>_sdb_db.c/.h)
	6A.7.4 Handle Pairing
	6A.7.5 Handle Bonding
	6A.7.6 Support the Serial Port Profile
	makefile.mk
	spp.h
	spp.c
	<appname>.c
	wiced_bt_cfg.c

	6A.8 Exercises
	Exercise - 6A.1 Create a Serial Port Profile Project
	Project Creation
	Testing
	PC Instructions (Windows 7)
	PC Instructions (Widows 10)
	Android Instructions
	Mac Instructions

	Exercise - 6A.2 Add UART Transmit
	Exercise - 6A.3 (Advanced) Improve Security by Adding IO Capabilities (Yes/No)
	Exercise - 6A.4 (Advanced) Add Multiple Device Bonding Capability

