
Using HPI in Coprocessor Mode with OTG-Host - AN6010

Introduction
This application note is a guide for getting started using the
HPI interface with EZ-Host or EZ-OTG. It illustrates how to
interface an external master (CPU, DSP, ASIC, etc.) to the EZ-
OTG/EZ-Host Programmable Embedded USB
Host/Peripheral Controller utilizing the Host Port Interface
(HPI). The EZ-OTG (CY7C67200) and EZ-Host (CY7C67300)
will collectively be called OTG-Host throughout the remainder
of this document due to their similarity in respect to the HPI.
The HPI is a standard 16-bit parallel bus interface to an
external master that has been designed to handle the high-
bandwidth low-latency demands of today’s embedded host
applications. To help illustrate use of the HPI, this document
provides detailed hardware connectivity, typical data transfer,
and will explain the relationship between the two.

HPI Overview
OTG-Host has two main modes of operation: stand-alone
mode and coprocessor mode. In coprocessor mode there are
three physical interfaces available to the external master: Host
Port Interface (HPI), High Speed Serial (HSS), and Serial
Peripheral Interface (SPI). This application note addresses the
HPI for coprocessor communications with the external master.
The HSS and SPI interfaces will be described in a separate
application note. Typically, the HPI port is not needed in stand-
alone mode although it can be used in conjunction with stand-
alone operation. This application note is intended to cover
coprocessor mode of operation only. Downloading stand-

alone firmware over the coprocessor interface is addressed in
a separate application note.
The main difference between coprocessor mode and stand-
alone mode is that in coprocessor mode the external micropro-
cessor will build a Transfer Descriptor list (TD_list), send the
list to the OTG-Host BIOS to operate on, and then check the
status to determine what to do in the next frame. In stand-
alone mode this is all handled by the OTG-Host’s internal
CY16 microprocessor using Cypress’s provided frameworks.
The HPI interface is a slave-only interface and provides a
hardware interface into the CY16 processor of OTG-Host for
coprocessor communications. It does this through a bidirec-
tional Mailbox and Direct Memory Access (DMA). The DMA
channel is used to directly access the OTG-Host’s internal
memory space. While the coprocessor interfaces can do direct
memory access it does not support DMA transfers controlled
by typical DMA signaling (DREQ/DACK). The Mailbox channel
is used for Link Control Protocol (LCP) commands and
responses.
The OTG-Host BIOS implements the LCP for coprocessor
communications with an external master. Applications can
take full advantage of the features implemented by the BIOS
or they can implement their own custom protocol, although the
LCP protocol has proven to be very effective in most cases.
The key advantage of HPI over the serial interfaces (SPI or
HSS) is the speed. The 16-bit parallel interface is capable of
transfer rates of 16 MB/s.
Figure 1 shows a typical OTG-Host connection to an external
master via the HPI port.

GPIO/
HPI

CY16
Microprocessor

16K Int
RAM

External Memory
Interface

SIE1

USB-A

USB-B

SIE1

USB-A

USB-B

SIE2

8K Int
ROM

(BIOS)

HPI_INT (GPIO[24])
HPI_nRD (GPIO[23])
HPI_nWR (GPIO[22])
HPI_nCS (GPIO[21])
HPI_A[1] (GPIO[20])
HPI_A[0] (GPIO[19])

HPI_D[15:0] (GPIO[15:0])

GPIO
GPIO[31]
GPIO[30]

USB Kbd

HPI Bootstrap
GPIO[31:30]=00

O
pe

ra
tin

g
S

ys
te

m

A
pp

lic
at

io
n

USB Stack

H
C

D

U
SB

D

D
ev

ic
e

D
riv

er

I/O

HID driver in this example

EZ-Host or EZ-OTG External Master (DSP, uP, FPGA ...)

Figure 1. Host Port Interface (HPI)
April 20, 2006 Document No. 001-15441 Rev. ** - 1 -

[+] Feedback

http://www.usb.org
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_1

AN6010
Table 1 provides a collection of terms used throughout this document.

Table 1. Glossary of Terms

Term Description
OTG-Host Refers to either EZ-OTG or EZ-Host

CY16 OTG-Host 16-bit RISC based proprietary microcontroller

External Master System CPU, DSP, ASIC, etc. that is external to the OTG-Host

USB Keyboard Computer keyboard that has a USB Peripheral connection

PHY OTG-Host USB Physical Layer (D+/D– signaling)

SIE 1 OTG-Host USB Serial Interface Engine 1

OTG On-The-Go, supplement to the USB2.0 specification available at www.usb.org

Internal Memory OTG-Host Registers, 16 kBytes of internal SRAM, and 8 kBytes internal ROM BIOS

HPI Host Port Interface

HPI Bootstrap External pins (GPIO30 and GPIO31) that tell the BIOS how to configure OTG-Host at boot up (power-on or pin reset).

DMA Direct Memory Access (via HPI ADDRESS and HPI DATA port registers)

USB Stack HCD, USBD, and Class Driver

HCD Host Controller Driver

USBD USB Driver

Class Driver HID, Mass Storage, Printer, etc. Class drivers are specified by a collective group of contributors from various companies
to guarantee interoperability between different manufacturers.

HID Human Interface Device

OS Operating System (Linux, WinCE, etc.)

RTOS Real Time Operating system

App User Application

BIOS OTG-Host Basic Input Output System

LCP BIOS to External Master Link Control Protocol—It supports HPI Transport, HSS Transport, SPI Transport

HPI Transport ROM BIOS firmware to manage the HPI hardware interface for the LCP

TS Transaction Structure, made up of a Tdesc and its associated Tdata (optional)

Tdesc Transaction Descriptor

Tdata Transaction Data

TB Transaction Buffer, dynamically allocated internal memory that temporarily stores IN data

TD_list Transaction Descriptor List, a chain of Transaction Descriptors per USB frame (SOF to EOT)

SOF USB Start Of Frame

EOT End Of Transfer, All transactions should be completed by the time EOT is reached.

POR Power On Reset

GPIO General Purpose Input Output
April 20, 2006 Document No. 001-15441 Rev. ** - 2 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_2

AN6010
HPI Hardware Interface Pins Descriptions
The HPI shares General Purpose Input Output (GPIO) pins
with the Integrated Drive Electronics (IDE) subsystems.
Bootstrap pins (GPIO [31:30]) must be pulled low to configure
OTG-Host to use the HPI port, see Figure 1 on page 1. These
should be pulled low with a resistor since the pins are GPIO
pins and can be configured as outputs. During boot-up the
BIOS will sense the bootstrap pins and configure the GPIO
Control Register (0xC006) for coprocessor mode over the HPI
port and then perform initialization for LCP communication
over HPI. If a user would like a copy of the BIOS source code,
it can be requested through the Cypress Support system.
The OTG-Host HPI port IO signals are 5-volt tolerant, but will
only drive to 3.3 volts (see appropriate data sheet for exact
details). As long the external master has TTL or 3.3-volt CMOS
level inputs the OTG-Host HPI should not require voltage level
translation. It must be noted that when using the EZ-OTG
(CY7C67200) part, special caution must be taken in regards
to GPIO[24:19] and GPIO[15:8]. This is described in the
CY7C67200 data sheet in the Reset Pin section and is
repeated here for convenience.
The Reset pin is active LOW and requires a minimum pulse
duration of 16 12-MHz clock cycles (1.3 ms). A reset event will
restore all registers to their default POR settings. Code
execution will then begin 200 ms later at 0xFF00 with an
immediate jump to 0xE000, which is the start of BIOS. It should
be noted that for up to 3 ms after BIOS starts executing,
GPIO[24:19] and GPIO[15:8] will be driven as outputs for a test
mode. If these pins need to be used as inputs, a series resistor
is required (10 ohm–48 ohm is recommended). Please refer to
BIOS documentation for addition details.

HPI Port IO Signals
The following are the HPI port IO signals; they are subse-
quently described.
HPI_INT HPI interrupt pin.
HPI_nCS Low asserted chip select for the HPI.
HPI_A[1:0] Address bits 1 and 0 for the HPI interface to

determine the interface mode.
HPI_nWR Low asserted write enable pin for the HPI

interface. Data is latched on rising edge.
HPI_nRD Low asserted read enable pin for the HPI

interface.
HPI_D[15:0] Data bits 15 through 0 for the HPI interface. HPI

is a 16-bit bus only, it does not support an 8-bit
mode.

HPI_INT
The interrupt output pin is asserted high by the OTG-Host
during a programmable interrupt event. Some examples may
include the completion of a transaction or the connection of a
new peripheral device. The signal is asserted high until writing
to the associated interrupt clearing register in the OTG-Host,
which clears the interrupt event. The interrupt polarity is not
programmable, so an external inverter may be required if a
particular external master does not support active HIGH
interrupt signaling.

Note that the OTG-Host is a level-triggered interrupt. In other
words the HPI_INT pin will stay asserted until all of the events
that caused the interrupt are attended to. If the external master
uses an edge-triggered interrupt, caution must taken to
guarantee interrupt events are not missed. It is therefore
recommended that the external master implements a level-
triggered interrupt, when possible. This scheme will assist the
user’s application with processing back-to-back interrupt
events. To eliminate the possibility of missing an interrupt
event (i.e., while servicing another), the external master
should parse all pending interrupts before clearing the initial
HPI_INT pin interrupt event.
Note: The external master should mask spurious HPI_INT pin
activity during POR + 3 ms.
HPI_INT PIN PROGRAMMABLE INTERRUPT EVENTS
A “0” to “1” transition on any bit defined in the HPI STATUS port
register will assert the HPI_INT pin. Note that various interrupt
sources can be enabled or disabled via the Interrupt Routing
Register (0x0142). The external master cannot cause the
HPI_INT pin to assert.
There are three methods used by the external master to
service the HPI_INT pin event.
1. Any USB related interrupt event is serviced by accessing

either the Host1 Status register (0xC090) or the Host2
Status register (0xC0B0). Writing a “1” to the individual
interrupt source bit will clear all related status bits (HPI
STATUS and CPU Register) and deassert both the external
HPI_INT pin event and the internal interrupt event.

2. Reading from either the SIE1msg register (0x0144) or the
SIE2msg register (0x0148) will clear all related status bits
(HPI STATUS) and deassert the HPI interrupt event.

Note: The SIE1msg and SIE2msg registers make up a one-
way mailbox from the internal CY16 CPU to the external
master. For our example, the contents read from these
registers can be HUSB_TDListDone (0x1000). Note that
the message registers are only relevant when using the HPI
interface. See Appendix B for a complete list of messages
implemented by the BIOS.

3. Reading from the HPI MAILBOX port register will clear all
related status bits (HPI STATUS) and deassert the exter-
nal HPI_INT pin event.

A “1” to “0” transition on any bit defined in the HPI STATUS port
register will deassert the HPI_INT pin. The external master
can cause the HPI_INT pin to deassert.
Firmware running on OTG-Host can clear an interrupt event to
deassert the external HPI_INT pin event and the internal
interrupt event.

HPI_nCS
HPI_nCS is asserted low by the external master to select the
HPI for read and write operations. HPI_nCS fundamentally
signals that the transaction is intended for OTG-Host as
opposed to another IC sharing the same bus. If the OTG-Host
is the only IC on the bus, HPI_nCS can be continuously
asserted.
April 20, 2006 Document No. 001-15441 Rev. ** - 3 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_3

AN6010
HPI A [1:0]
The HPI A[1:0] signals are driven by the external master to
access one of four port registers, as shown in Table 2.

HPI DATA Port Register
WRITE: A data block write by the external master to the OTG-
Host internal memory begins by writing the beginning memory
address to the HPI ADDRESS port register (HPI A[1:0] = 10),
followed by writing the data block contiguously to the HPI
DATA port register (HPI A[1:0] = 00). The internal memory
address will be automatically incremented with each
sequential write of the HPI DATA port register.
READ: A data block read by the external master from the
OTG-Host internal memory begins by writing the beginning
memory address to the HPI ADDRESS port register (HPI
A[1:0] = 10), followed by reading the data block contiguously
from the HPI DATA port register (HPI A[1:0] = 00). The internal
memory address will be automatically incremented with each
sequential read of the HPI DATA port register.
Figure 7 on page 15 shows a typical access to the HPI DATA
port register (shows a HPI DATA Write).

HPI MAILBOX Port Register
The external master’s access to the BIOS implemented LCP
is through the two-way HPI MAILBOX port register. Writing a
LCP command to the HPI MAILBOX port register causes an
internal interrupt that notifies the on-chip processor a new
command is ready to be processed by the BIOS. The BIOS
writes a response to the HPI MAILBOX port register, which
causes an interrupt to the external processor via the HPI_INT
pin. The HPI_INT pin deasserts automatically when the

external master reads from the HPI MAILBOX port register.
Complete LCP control flow diagrams are shown in the OTG-
Host BIOS User Manual.
Figure 8 on page 16 shows a typical access to the HPI
MAILBOX port register.

HPI ADDRESS Port Register
The HPI interface pre-fetches data from the on-chip memory
system when the HPI ADDRESS port register is loaded, and
after every read from the HPI DATA port register. Therefore,
reading a block of n words from the HPI port results in n+1 read
accesses to the on-chip memory system. The pre-fetch
pipeline also delays the read data.
Loading the HPI ADDRESS port register must precede
changing read/write direction. The memory addresses are
auto-incremented after each access to the HPI DATA port
register. Therefore any read or write to a new starting location
must be preceded with a write to the HPI Address register to
indicate the new starting address location.
Figure 9 on page 16 shows a typical access to the HPI
ADDRESS port register.
It is important to note Table 3, which describes the memory
access range of the HPI. The external master can write and
read directly in this range only. LCP commands must be used
to access areas outside of these ranges.

HPI STATUS Port Register
This port register reports the status of OTG-Host. Table 4
shows the grouping of interrupt sources available to the
external master in the HPI STATUS port register.

Figure 10 on page 17 shows a typical read from the HPI STATUS port register.

Table 2. HPI Address Pins to Port Register Map

Port Registers HPI A [1] HPI A [0] Access
HPI DATA 0 0 RW
HPI MAILBOX 0 1 RW
HPI ADDRESS 1 0 W
HPI STATUS 1 1 R

Table 3. Address Ranges Accessible Directly Over HPI

Address Range Purpose
0x0000 – 0x3FFF Internal RAM

0xC080 – 0xC09F SIE1

0xC0A0 – 0xC0BB SIE2

0xE000 – 0xFFFF Internal ROM

Table 4. HPI STATUS Bit Fields

Bit16 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8
VBUS Flag ID Flag Reserved SOF/EOP2

Flag
Reserved SOF/EOP1

Flag
Reset2 Flag Mailbox IN

Flag

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0
Resume2 Flag Resume1 Flag SIE2msg SIE1msg Done2 Flag Done1 Flag Reset1 Flag Mailbox OUT

Flag
April 20, 2006 Document No. 001-15441 Rev. ** - 4 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_4

AN6010
HPI_nWR
HPI_nWR is an active low signal driven by the external master
during a write transaction. During a write transaction HPI_nCS
must also be asserted in order for the OTG-Host to recognize
the assertion of the HPI_nWR signal. HPI_nWR is asserted
low for a minimum of tWP. Data is written from the external
master to the OTG-Host on the rising edge of HPI_nWR. The
data must remain valid on the bus for tWDH after HPI_nWR is
deasserted in order for it to be properly latched by OTG-Host.
The minimum spacing between HPI_nWR assertions is tCYC.

HPI_nRD
HPI_nRD is an active low signal driven by the external master
during a read transaction. During a read transaction HPI_nCS
must also be asserted in order for the OTG-Host to recognize
the assertion of the HPI_nRD signal. The minimum width of
the HPI_nRD pulse is tRP. TACC after the assertion of HPI_nRD
the HPI D[15:0] signals switch from high impedance to driving
mode and drive the data bus until tRDH after HPI_nRD or
HPI_nCS is deasserted. The minimum spacing in between
HPI_nRD assertions is tCYC.
Note: Please refer to the current EZ-Host or EZ-OTG data
sheet for complete HPI timing parameter specifications.

HPI_D[15:0]
The OTG-Host bidirectional data bus is used to transfer data
in and out of registers or memory. The data bus is normally
held in a high-impedance state unless both HPI_nCS and
HPI_nRD are asserted during a read transaction.
The maximum data transfer rate is one word every 6T, where
T is 1/48 MHz, resulting in a rate of 16 Mbytes/second.

Basic OTG-Host HPI Schematic
Figure 2 illustrates the minimum hardware requirements for a
typical application utilizing the HPI.

BIOS Boot Procedure
During boot-up the BIOS examines the status of GPIO[31:30]
pins to determine which mode to configure itself. The four
bootstrap modes are stand-alone, HPI, HSS and SPI. For HPI
mode, these two pins are pulled low. These pins should be
pulled low with a resistor since the pins are GPIO pins and thus
can be configured as outputs. Connecting these pins directly
to ground is not recommended.
Note: GPIO[31:30] are sampled by the BIOS during boot-up
or after nRESET is deasserted. After boot-up these pins are
available to the application as general purpose I/O.
A complete description of the boot up process can be found in
the OTG-Host BIOS User Manual. While this application note
mainly addresses co-processor mode, where the external
processor interacts with the BIOS to initiate USB traffic, the
OTG-Host products can also operate in stand-alone mode.
Stand-alone code can be compiled separately and
downloaded over the HPI interface. Downloading firmware
over the HPI interface is commonly done when stand-alone
firmware interacts with an external processor over the HPI
interface. The method of accomplishing this is addressed in a
separate application note.
Note: After a reset pin event occurs, the BIOS boot-up
procedure executes for up to 3msec. Check the data sheet for
the part you are using to understand interface interactions after
an assertion of nRESET. For example, the EZ-OTG part will
drive some of the HPI pins after reset. In some designs this
can cause bus contentions and undesirable results.

XOUT

XIN
12MHz

22pf

22pf

nRESET
Reset
Logic

* Parallel Resonant
 Fundamental Mode
 500uW
 20-33pf ±5%

VCC, AVCC,
BoostVCC

VReg

DMinus
DPlus

Standard-A
or Mini-AB

D+
VBus

GND

D-

SHIELD

Reserved

GND, AGND,
Boost GND

Pin 38 (EZ-Host Only)

VCC

47k

CY7C67200 / 300

HPI nWR
HPI nCS

HPI A0
HPI D[15:0]

HPI INT

HPI A1

HPI nRD

GPIO[15:0]

GPIO[24]
GPIO[23]
GPIO[22]
GPIO[21]
GPIO[20]
GPIO[19]

GPIO[30]
GPIO[31]

10k10k

HPI
Bootstrap

To
External
Master

OTGID (Optional)ID GPIO[29]

Figure 2. Example OTG-Host HPI Schematic
April 20, 2006 Document No. 001-15441 Rev. ** - 5 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_5

AN6010
BIOS Interaction
OTG-Host has 8 KBytes of internal ROM containing the BIOS
firmware. The BIOS firmware was written in assembly and is
very compact code. The BIOS firmware source can be
requested from Cypress through standard support proce-
dures. The BIOS implements the HPI Transport, which
exposes the LCP via the HPI hardware interface. The
transport is capable of receiving LCP commands from an
external master and sending back response via the HPI
MAILBOX.
LCP adds the ability for the external master to access any CPU
register and to access the external memory space of the CY16
processor.
The LCP is primarily used in co-processor mode embedded
host or peripheral applications. Standalone applications will
typically not use LCP, although they can. To understand how
to enable the LCP processor when running in stand-alone
mode please request a copy of the BIOS source code from
Cypress support. This firmware example will show how to
configure and initialize the LCP.
Figure 3 shows an example of issuing a command to the OTG-
Host over the HPI interface using LCP. This is accomplished
by writing a command (COMM_RESET in this example) to the
HPI MAILBOX port register, which causes an internal interrupt
that notifies the on-chip processor (BIOS) a new command is
ready to be processed.
The on-chip processor writes a response (LCP) to the HPI
MAILBOX port register to cause an external interrupt event
(HPI_INT asserts). The HPI_INT pin de-asserts automatically
when the external master reads from the HPI MAILBOX port
register. Complete LCP control flow diagrams for all LCP
commands are shown in the OTG-Host BIOS User Manual.

The BIOS always enables the debug UART, GPIO[28:27] at
boot up time. The UART is normally dedicated for serial debug,
which is described in the BIOS User Manual.
It is important to note that the BIOS will configure the SIEs in
the following manner at power up:
• In coprocessor mode: BIOS will not configure either

PORT1A or PORT2A

• In standalone mode: BIOS configures:

– PORT1A as a peripheral with the D+ pull-up resistor
enabled if the OTG_ID pin = “1”

– PORT1A as a host if the OTG_ID pin = “0”

– PORT2A as a peripheral and connected (D+ pull-up
enabled).

• The BIOS does not support PORT1B and PORT2B auto-
matically at boot time.

USB Stack
HCD
The HCD builds a Transaction Descriptor List (TD_List) for
each frame. The TD_List is first loaded into the OTG-Host’s
on-chip memory. The OTG-Host device then transfers the data
associated with this TD_List to or from USB.
The HCD is informed of the previous transaction completion
via the SIE mailbox at which time it checks the TD_List status.
The HCD then builds a new TD_List for the next frame and
loads it into the OTG-Host device. While the TD_List transfer
is executed, the HCD can copy the previous frame’s IN data
from the OTG-Host part.
The LCP is the low-level hardware abstraction layer imple-
mented within the HCD.
Note: Typically, this layer will need to be ported for each new
hardware/software platform.

USBD
Typically, the Operating Systems (OS) ships with the USBD
layer implemented. If the system being designed does not use
an RTOS that includes the USBD, it will need to be done by
the developer. The stand-alone frameworks provided with the
OTG-Host Kits can be an essential resource for this effort.
Device Driver: This can include any type of USB peripheral
device and may include Class devices such as HID, Mass
Storage, Printer, etc.

Example EZ-Host/EZ-OTG HPI Registers
Table 5 gives a brief summary of typical registers accessed by
both the external master and the on-chip CY16 microcontroller
during HPI transactions. Other important registers and
address locations are summarized in Appendix A of this
document.

HOST CPU
HPI Master

COMM_RESETSend 16- byte
Command

 Response Wait for
Response

OTG-Host
HPI MailBox

Figure 3. LCP Flow Control Diagram Table 5. Registers Associated with the HPI Port

Register Name
CY16

Access
External
Access

Interrupt Routing Register 0x0142 via DMA

SIE1msg Register[1] 0x0144 via DMA

SIE2msg Register[1] 0x0148 via DMA

Host1 Status register 0xC090 via DMA
Host2 Status register 0xC0B0 via DMA
HPI MAILBOX Port Register 0xC0C6 HPI A[1:0]=01
HPI STATUS Port Register NA HPI A[1:0]=11
April 20, 2006 Document No. 001-15441 Rev. ** - 6 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_6

AN6010
Example Data Transfer to Enumerate a USB
Keyboard
Below are the steps required to enumerate a USB keyboard
using OTG-Host. This section starts from a high level view of
HPI bus transactions, describes the USB packet level
transfers and then shows the step by step instructions of how
to accomplish the tasks. Keep in mind that this particular
example is basic and does not show all of the steps that might

normally be done. For example getting the insert interrupt,
determining the speed of the attached device and completing
the full enumeration. There are systems where code space is
a premium and the device to be used is well enough known
that some steps can be eliminated.
Figure 4 is a diagram of the HPI high level transactions. The
first step is an initialization step configuring the part. Step 2
sends the USB reset to the device and starts the USB traffic,
enumerating the USB keyboard as seen in steps 3 and 4.
These steps use a combination of direct writes to OTG-Host
memory locations and LCP commands.
Note: The steps in the text are aligned with the steps in the
diagrams.

HPI Transactions (high-level view)

Note: Figure 5 hides the “Keep Alive” packets to reduce clutter.

Note
1. SIE1msg and SIE2msg values are BIOS dependent.

Table 5. Registers Associated with the HPI Port

Tdesc
(Setup)

Tdata
(Setup)

Tdesc
(Status)

STEP 3:
USB SET ADDRESS

LCP
(HUSB_RESET_INT)

STEP 2:
USB RESET

LCP
(HUSB_SIE1_INIT_INT)

STEP1:
EZ-HOST/EZ-OTG CONFIGURATION

Power On Reset
(POR)

Initialize
Registers:

Clear Interrupts, ETC.

USB Keyboard
Attach

STEP 4:
USB GET DEVICE DESCRIPTOR

BIOS Boot Sequence
Done

HPI
BUS TRANSACTIONS

Tdesc
(Setup)

Tdata
(Setup)

1a 1b

Figure 4. HPI Transactions Time-line for USB Keyboard Enumeration (details below)
April 20, 2006 Document No. 001-15441 Rev. ** - 7 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_7

AN6010
USB Transfers (associated with HPI Transactions)
Figure 5 correlates the USB traffic with the HPI transactions shown in Figure 4. This figure was captured using a CATC™ USB
analyzer, which captures the USB traffic. There are several USB protocol analyzers available on the market that provide similar
information.

Step-by-Step HPI Bus Transactions Time-line
for USB Keyboard Enumeration Details (low-
level view)
STEP 1a:
Initialize EZ-Host/EZ-OTG registers—clear pending inter-
rupts/status, initialize EOT, enable interrupts, etc.

a. Write SIE1msg Register (0x0144) to the HPI ADDRESS
port register.

b. Write 0x0000 to the HPI DATA port register to clear
SIE1msg register.

c. Write Host 1 Status Register (0xC090) to the HPI
ADDRESS port register.

d. Write 0xFFFF to the HPI DATA port register to clear USB
interrupts/status.

e. Write HUSB_pEOT (0x01B4) to the HPI ADDRESS port
register.

f. Write 0x12C0 (4800 full-speed bit times) to the HPI
DATA port register to initialize EOT. This value is user-
specific and thus can be adjusted depending on the
system.

g. Write Interrupt Routing Register (0x0142) to the HPI
ADDRESS port register.

h. Write 0x0C40 (SOF/EOP1 to HPI enable, SOF/EOP1 to
CPU enable, Resume1 to HPI enable) to the HPI DATA
port register to enable USB interrupts.

i. Write Host 1 Interrupt Enable Register (0xC08C) to the
HPI ADDRESS port register.

j. Write 0x0030 (Port A Connect Change Interrupt enable,
Port B Connect Change Interrupt enable) to the HPI
DATA port register to enable insert and remove inter-
rupts.

Note: The sequence of events outlined in STEP 1a above
should be considered as a starting point for your own initial-
ization analysis. Keep in mind initialization is application- and
OS-dependent. Another thing to keep in mind is you will likely
have a limited number of peripherals you will be supporting
and thus can increase or decrease the initialization and
enumeration sequence depending on known conditions of
your design.

STEP 1b:
To configure SIE1 (both ports) as a HOST the
HUSB_SIE1_INIT_INT interrupt will be initiated using the
COMM_EXEC_INT LCP command. Figure 6 shows the LCP
flow diagram for the COMM_EXEC_INT. To execute this
interrupt, do the following:

k. Write COMM_INT_NUM (0x01C2) to the HPI
ADDRESS port register.

 Reset 59.129 ms
1.006 ms

Idle

0 ns
Time

0
Transfer

S
L

SET
Control

0
ADDR

0
ENDP

SET_ADDRESS
bRequest

New address 2
wValue

0x4B
ACK

0
Transaction

S
L

0xB4
SETUP

0
ADDR

0
ENDP

SET_ADDRESS
bRequest

New address 2
wValue

H->D
D

S
T

D
R

0x0000
wIndex

0
wLength

0x4B
ACK

1
Transaction

S
L

0x96
IN

0
ADDR

0
ENDP DATA

1
T

Setup Phase Tdesc

Status Phase Tdesc Tdata

STEP 2:

STEP 3:

DURATION

0 ns
Time

1
Transfer

S
L

GET
Control

2
ADDR

0
ENDP

GET_DESCRIPTOR
bRequest

DEVICE type
wValue

0x4B
ACK

2
Transaction

S
L

0xB4
SETUP

2
ADDR

0
ENDP

GET_DESCRIPTOR
bRequest

DEVICE type
wValue

D->H
D

S
T

D
R

0x0000
wIndex

8
wLength

0x4B
ACK

3
Transaction

S
L

0x96
IN

2
ADDR

0
ENDP

12 01 10 01 00 00 00 08
DATA

1
T

Setup Phase Tdesc

Status Phase Tdesc

Tdata

STEP 4: 0x0000
wIndex

DEVICE descriptor
Descriptors

0x4B
ACK

4
Transaction

S
L

0x87
OUT

2
ADDR

0
ENDP DATA

1
T

Data Phase Tdesc

Copied to Transaction Buffer
(allocated for IN data)

Figure 5. USB Transactions Time-line for USB Keyboard Enumeration (details below)
April 20, 2006 Document No. 001-15441 Rev. ** - 8 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_8

AN6010
l. Write HUSB_SIE1_INIT_INT (0x0072) to the HPI DATA
port register.

m. Write COMM_EXEC_INT (0xCE01) to the HPI
MAILBOX port register.

Background: HUSB_SIEx_INIT_INT is used to execute the
Transaction Descriptor List (TD_List). It has the following
functions:
• Set SIE as Host and perform initialize: The

HUSB_SIEx_INIT_INT sets SIEx as a host and does ini-
tialization.

• Check for pending TD_List: At the beginning of every
frame, it checks to see if there is a TD_List waiting for
transfer. If true, it begins the TD_List transfer.

• Schedule and perform transfer: It transfers all TD data over
USB.

• Update status and error handling: It updates the TD status
after every transaction. It also does error handling for con-
trol and bulk transfers. For ISO and Interrupt transfer er-
rors, it will let the HCD handle the error. The ActiveFlag is
not changed to inactive for ISO and Interrupt transfers.

• After the TD_List is finished, the BIOS sends
HUSB_TDListDone to the HCD via the SIE mailbox. It also
sets a semaphore at HUSB_SIEx_pTDListDone_Sem for
the HCD.

Before going on to STEP 2 do the following:
a. Wait for the HPI_INT pin to assert (previous command

processed).
b. Read HPI STATUS port register to determine why

HPI_INT pin asserted.
c. Read HPI MAILBOX port register to see COMM_ACK

(0x0FED) or COMM_NACK (0xDEAD).
Note: Reading HPI MAILBOX port register clears status and
deasserts the external interrupt: It is good practice to write
R0–R13 even when they are not required for the interrupt. This
keeps everything initialized. It is also good practice to read R0

after the interrupt is complete even if it has no relevance to the
interrupt. This can be seen in Figure 6.

STEP 2:
To issue USB_RESET over SIE1 (Port 0) do the following:

a. Write COMM_INT_NUM (0x01C2) to the HPI
ADDRESS port register.

b. Write HUSB_RESET_INT (0x0074) to the HPI DATA
port register.

c. Write COMM_R0 (0x01C4) to the HPI ADDRESS port
register.

d. Write DURATION (0x003C) to the HPI DATA port
register.

e. Write COMM_R1 (0x01C6) to the HPI ADDRESS port
register.

f. Write the port number (0x0000 - for this example) to the
HPI DATA port register.

g. Write COMM_EXEC_INT (0xCE01) to the HPI
MAILBOX port register.

Background: HUSB_RESET_INT performs three functions:
• USB Reset: Before accessing a USB device, the

HUSB_RESET_INT will generate a USB reset, which forc-
es the peripheral device to its default address of zero. After
USB reset, configuration software can read the device’s
descriptor at the default address.

• Speed Detect: The HUSB_RESET_INT will detect the
full/low speed of the attached device and then return the
port status: FULL SPEED, LOW SPEED or NO DEVICE.

• SOF/EOP Generation: Based on the device speed
HUSB_RESET_INT will generate SOF for full speed and
EOP for low speed. If no device is attached on this port,
there will be no SOF/EOP.

STEP 3:
To issue USB_SET_ADDRESS over SIE1 (Port 0) do the
following:

a. External master creates the following Tdesc (0x050C,
0x0008, 0x00D0, 0x0001, 0x0013, 0x0514). The
definition for each of the fields is described in the BIOS
User Manual and the appropriate data sheet and is
summarized here:

HOST CPU
HPI Master

COMM_EXEC_INT

 Response

Wait for
Response

HPI MailBox

SET COMM_INT_NUMSet Int
Number and

Register
Values

OTG - Host
HPI Direct
Memory
Access

Execute INT
and send
Response

SET COMM_R0

SET COMM_R13

 Get COMM_R0 Optionally
read

COMM_R0

Figure 6. COMM_EXEC_INT HPI Flow Diagram

Table 6. SET ADDRESS Setup Phase Tdesc (12-bytes)
Contents

Field Description

Value for USB
Keyboard
Example

0x00-01 Base Address of Data Buffer (BaseAd-
dress)

0x050C

0x02-03 Port Number and Data Length 0x0008
0x04 PID (SETUP) and Endpoint

Number (0)
0xD0

0x05 Device Address (DevAdd) 0x00
0x06 TD Control 0x01
0x07 Transaction Status 0x00
April 20, 2006 Document No. 001-15441 Rev. ** - 9 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_9

AN6010
When writing the TD descriptor, caution must be taken to make
sure the byte fields are written into memory correctly. The
following table shows how this is done for the CY16, which is
a little-endian processor.

b. External master creates the following Tdata starting at
location 0x050C because this is where the Base
Address of the Data Buffer was pointed to in the previous
Tdesc: (0x0500, 0x0002, 0x0000, 0x0000).0x08 Active Flag, Transfer Type, Retry

Count
0x13

0x09 Residue 0x00
0x0A-0B Pointer to Next TD

(NextTDPointer)
0x0514

Table 7. Little Endian Word values for Set ADDRESS
Tdesc

Byte
Address

Byte
Value

Word
Value

Byte
Address

Byte
Value

Word
Value

0x0500 0x0C 0x050C 0x0506 0x01 0x0001

0x0501 0x05 0x0507 0x00

0x0502 0x08 0x0008 0x0508 0x13 0x0013

0x0503 0x00 0x0509 0x00

0x0504 0xD0 0x00D0 0x050A 0x14 0x0514

0x0505 0x00 0x050B 0x05

Table 6. SET ADDRESS Setup Phase Tdesc (12-bytes)
Contents

Table 8. SET ADDRESS Setup Phase Tdata (8-bytes)

Field Description
Value for USB Keyboard

Example
0x00 bmRequestType 0x00

0x01 bRequest 0x05

0x02-03 wValue 0x0002

0x04-05 wIndex 0x0000

0x06-07 wLength 0x0000

Table 9. Little-Endian Word Values for SET ADDRESS
Tdata

Byte
Address

Byte
Value

Word
Value

Byte
Address

Byte
Value

Word
Value

0x050C 0x00 0x0500 0x0510 0x00 0x0000
0x050D 0x05 0x0511 0x00
0x050E 0x02 0x0002 0x0512 0x00 0x0000
0x050F 0x00 0x0513 0x00
April 20, 2006 Document No. 001-15441 Rev. ** - 10 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_10

AN6010
c. External master creates the following Tdesc for the
Status Phase, which is a zero length packet with an IN
PID (0x0000, 0x0000, 0x0090, 0x0041, 0x0013,
0x0000):

Note: Contiguously arrange the TL above to take advantage
of the HPI ADDRESS auto-increment feature.

d. Write base address of TD_List (0x0500) to the HPI
ADDRESS port register. This is the starting address
location where the TD_List will be placed in OTG-Host’s
internal memory.

e. Write the entire contents of TD_List (0x050C, 0x0008,
0x00D0, 0x0001, 0x0013, 0x0514, 0x0500, 0x0002,
0x0000, 0x0000, 0x0000, 0x0000, 0x0090, 0x0041,
0x0013, 0x0000) to the HPI DATA port register to copy
it into the OTG-Host’s internal memory at offset 0x0500.

f. Write HUSB_SIE1_pCurrentTDPtr (0x01B0) to the HPI
ADDRESS port register so the address of our TD_List
can be written to HUSB_SIE1_pCurrentTDPtr, which will
submit the TD_List.

g. Write base address of TD_List (0x0500) to the HPI DATA
port register to submit the TD_List.

h. Wait for the HPI_INT pin to assert (previous TD_List
completed).

i. Read HPI STATUS port to determine why HPI_INT pin
asserted.

j. Assuming that the SIE1msg bit is set in the HPI STATUS
register (see Table 4 on page 4), write SIE1msg register
(0x0144) to the HPI ADDRESS port register so we can
read the message that the BIOS wrote.

k. Again, assuming the TD_List completed without errors,
you should read HUSB_TDListDone (0x1000) from the
HPI DATA port register. Reading this will clear status and
interrupts.

l. Now we want to read back the Status Byte (byte 0x07)
and Active flag in RetryCnt (byte 0x08). In some imple-
mentations the entire TD_List is read back and parsed
for convenience because it can be one simple function
and you may need information from other bytes in the
TD_List anyway. For this simple example we will just
read back the information we need at the moment. To
read back the Status Byte write the address of 0x0506
to the HPI ADDRESS port register.

m. Read from the HPI DATA port register to check the status
of the first TS. Since we read back words and the CY16
is little endian, the word read back will contain the Status
byte and the Control byte.

n. Again read from the HPI DATA port. Since reads are
auto-incremented it is not required to write the HPI
ADDRESS again but you can if it is more code efficient
in your application. This time you will read back the word
from address 0x0508, which will contain the Residue
Byte and the RetryCnt bytes. The Active Flag in the
RetryCnt byte should be cleared and ideally the Retry
Bits will still be equal to 3 indicating that no retries were
required.

o. Steps l through n should be repeated for each Tdesc in
the list and appropriate action taken depending on the
results.

This completes the SET_ADDRESS for step 3. Refer to
Figure 5 on page 8 to correlate the steps that have been taken
thus far. The device should now have a USB device address
of 2 so all further communications to this device will be at
address 2.

STEP 4:
The next step in our example is to send a GET DEVICE
DESCRIPTOR to the keyboard. The main difference, as
compared to the previous TD_List, is that we have three
phases. Referring again to Figure 5 on page 8, in step 4 we
see that there is a setup phase, a data phase, and a status
phase. The setup phase will require data to be sent as part of
the transfer. This data is pointed to in BaseAddress of the
Tdesc. The next Tdesc, will initiate the IN Transfer to actually
get the data. This Tdesc, will point to buffer space (BaseAd-
dress) where the returned data from the IN Token is placed.
The third Tdesc will send the status phase, which is a zero
length OUT Token. To issue USB_GET_DEVICE_DESCRIPTOR
over SIE1 (Port 0) do the following:

Table 10.SET ADDRESS Status Phase Tdesc Contents
(12 Bytes)

Field Description
Value for our USB
Keyboard Example

0x00-01 Base Address of Data Buffer
(BaseAddress)

0x0000 (don’t care)

0x02-03 Port Number and Data Length 0x0000
0x04 PID (IN) and Endpoint

Number (0)
0x90

0x05 Device Address (DevAdd) 0x00
0x06 TD Control 0x41
0x07 Transaction Status 0x00
0x08 Active Flag, Transfer Type,

Retry Count
0x13

0x09 Residue 0x00
0x0A-0B Pointer to Next TD

(NextTDPointer)
0x0000 (NULL)

Table 11.Little-Endian Word Values for Status Phase Tdesc

Byte
Address

Byte
Value

Word
Value

Byte
Address

Byte
Value

Word
Value

0x0514 0x00 0x0000 0x051A 0x41 0x0041
0x0515 0x00 0x051B 0x00
0x0516 0x00 0x0000 0x051C 0x13 0x0013
0x0517 0x00 0x051D 0x00
0x0518 0x90 0x0090 0x051E 0x00 0x0000
0x0519 0x00 0x051F 0x00
April 20, 2006 Document No. 001-15441 Rev. ** - 11 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_11

AN6010
a. Create a SETUP Tdesc as shown in Table 12 (0x050C,
0x0008, 0x02D0, 0x0001, 0x0013, 0x0514):

b. The data that will be sent in the SETUP packet is defined
in the USB 2.0 specification. Create the following Tdata
(0x0680, 0x0100, 0x0000, 0x0008):

c. Next, the external master creates the following Tdesc for
the IN Token and points to address 0x052C as the
address location to place the data returned from the
peripheral (0x052C, 0x0008, 0x0290, 0x0041, 0x0013,
0x0x0528):

Note: EZ-Host/EZ-OTG will fill the Transaction Buffer (TB)
with the 8 bytes of IN data from the USB Keyboard starting at
offset 0x052C, which is after the last Tdesc.

d. The last Tdesc for this TD_List is to send a zero length
OUT packet to the device. To do this the external master

Table 12.GET DEVICE DESCRIPTOR Setup Phase Tdesc
Contents (12 Bytes)

Field Description
Value for USB

Keyboard Example
0x00-01 Base Address of Data Buffer

(BaseAddress)
0x050C

0x02-03 Port Number and Data Length 0x0008

0x04 PID (SETUP) and Endpoint
Number (0)

0xD0

0x05 Device Address (DevAdd) 0x02

0x06 TD Control 0x01

0x07 Transaction Status 0x00

0x08 Active Flag, Transfer Type,
Retry Count

0x13

0x09 Residue 0x00

0x0A-0B Pointer to Next TD
(NextTDPointer)

0x0514

Table 13.Little endian word values for
GET DEVICE DESCRIPTOR

Byte
Address

Byte
Value

Word
Value

Byte
Address

Byte
Value

Word
Value

0x0500 0x0C
0x050C

0x0506 0x01
0x0001

0x0501 0x05 0x0507 0x00

0x0502 0x08
0x0008

0x0508 0x13
0x0013

0x0503 0x00 0x0509 0x00

0x0504 0xD0
0x02D0

0x050A 0x14
0x0514

0x0505 0x02 0x050B 0x05

Table 14.GET DEVICE DESCRIPTOR Setup Phase Tdata (8
Bytes)

Field Description
Value for USB Keyboard

Example
0x00 bmRequestType 0x80
0x01 bRequest 0x06
0x02-03 wValue 0x0100
0x04-05 wIndex 0x0000
0x06-07 wLength 0x0008

Table 15.GET DESCRIPTOR Data Buffer in Little-Endian
Format

Byte
Address

Byte
Value

Word
Value

Byte
Address

Byte
Value

Word
Value

0x050C 0x80
0x0680

0x0510 0x00
0x0000

0x050D 0x06 0x0511 0x00
0x050E 0x00

0x0100
0x0512 0x08

0x0008
0x050F 0x01 0x0513 0x00

Table 16.GET DEVICE DESCRIPTOR Data Phase Tdesc (12
Bytes) Contents

Field Description
Value for our USB
Keyboard Example

0x00-01 Base Address of Data Buffer
(BaseAddress)

0x052C

0x02-03 Port Number and Data
Length

0x0008

0x04 PID (IN) and Endpoint Num-
ber (0)

0x90

0x05 Device Address (DevAdd) 0x02
0x06 TD Control 0x41
0x07 Transaction Status 0x00
0x08 Active Flag, Transfer Type,

Retry Count
0x13

0x09 Residue 0x00
0x0A-0B Pointer to Next TD (NextTD-

Pointer)
0x0528

Table 17.GET DESCRIPTOR Data Phase Tdesc in
Little-Endian Format

Byte
Address

Byte
Value

Word
Value

Byte
Address

Byte
Value

Word
Value

0x0514 0x2C
0x052C

0x051A 0x41
0x0041

0x0515 0x05 0x051B 0x00
0x0516 0x08

0x0008
0x051C 0x13

0x0013
0x0517 0x00 0x051D 0x00
0x0518 0x90

0x0290
0x051E 0x28

0x0528
0x0519 0x02 0x051F 0x05
April 20, 2006 Document No. 001-15441 Rev. ** - 12 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_12

AN6010
creates the following Tdesc (0x0000, 0x0000, 0x0210,
0x0041, 0x0013, 0x0000):

Note: Contiguously arrange the TL above to take advantage
of the HPI ADDRESS auto-increment feature.

e. Write base address of TL (0x0500) to the HPI ADDRESS
port, which will be our starting location for the TD_list.

f. Write the entire contents of TL (0x050C, 0x0008,
0x02D0, 0x0001, 0x0013, 0x0514, 0x0680, 0x0100,
0x0000, 0x0008, 0x0520, 0x0008, 0x0290, 0x0041,
0x0013, 0x0x052C, 0x0000, 0x0000, 0x0210, 0x0041,
0x0013, 0x0000) to the HPI DATA port register to copy
it into the OTG-Host internal memory at offset 0x0500.

g. Write HUSB_SIE1_pCurrentTDPtr (0x01B0) to the HPI
ADDRESS port register.

h. Write base address of TD_List (0x0500) to the HPI DATA
port register to submit the TD_List

i. Wait for the HPI_INT pin to assert (previous TD_List
completed)

j. Read HPI STATUS port register to determine why
HPI_INT pin asserted.

k. Assuming that the status was that there is an SIE1msg,
write SIE1msg register (0x0144) to the HPI ADDRESS
port register.

l. Read the message value, which should be
HUSB_TDListDone (0x1000), from the HPI DATA port
register to clear status and interrupts.

m. Now we want to read back the Status Byte (byte 0x07)
and Active flag in RetryCnt (byte 0x08). In some imple-
mentations the entire TD_List is read back and parsed
for convenience because it can be one simple function
and you may need information from other bytes in the
TD_List anyway. For this simple example we will just
read back the information we need at the moment. To
read back the Status Byte write the address of 0x0506
to the HPI ADDRESS port register.

n. Read from the HPI DATA port register to check the status
of the first TS. Since we read back words and the CY16
is little endian, the word read back will contain the Status
byte and the Control byte.

o. Again read from the HPI DATA port. Since reads are
auto-incremented it is not required to write the HPI
ADDRESS again but you can if it is more code efficient
in your application. This time you will read back the word
from address 0x0508, which will contain the Residue
Byte and the RetryCnt bytes. The Active Flag in the
RetryCnt byte should be cleared and ideally the Retry
Bits will still be equal to 3 indicating that no retries were
required.

p. Steps m through o should be repeated for each Tdesc
in the list and appropriate action taken depending on the
results.

Note: At this point, if it has been determined that all TS
successfully completed then copy the contents of the Trans-
action Buffer (the 8 bytes of IN data starting at 0x052C) to the
external master to process.
To complete enumeration we still need to issue the following
sequence: GET CONFIGURATION DESCRIPTOR, SET
CONFIGURATION, HID Boot Protocol, and HID Set Idle. For
device specific information it is recommended that you acquire
the current specification found on the USB-IF web site
(http://www.usb.org). It is always useful to have a USB
analyzer and compare how you are communicating with the
peripheral as compared to how a full operating system like
Windows XP is communicating with the peripheral.

HPI Breakpoint Register (for debug)
The HPI has a breakpoint register that can be used for debug
although usually the developer will use the tools provided for
the external system for this. This register is found at address
0x0140 and can be accessed directly by the HPI port. When
the program counter matches the address found in the HPI
Breakpoint Register, INT 127 will trigger. For more information
on this interrupt refer to the BIOS User Manual. For a copy of
the debugger stub used by gdb contact Cypress support.
Note: Typically, debug is performed via UART or USB.

Table 18.GET DEVICE DESCRIPTOR Status Phase Tdesc
(12 Bytes) Contents

Field Description
Value for our USB
Keyboard Example

0x00-01 Base Address of Data Buffer
(BaseAddress)

0x0000 (don’t care)

0x02-03 Port Number and Data
Length

0x0000

0x04 PID (OUT) and Endpoint
Number (0)

0x10

0x05 Device Address (DevAdd) 0x02
0x06 TD Control 0x41
0x07 Transaction Status 0x00
0x08 Active Flag, Transfer Type,

Retry Count
0x13

0x09 Residue 0x00
0x0A-0B Pointer to Next TD (NextTD-

Pointer)
0x0000 (NULL)

Table 19.GET DEVICE DESCRIPTOR Status Phase Tdesc
in Little-Endian Format

Byte
Address

Byte
Value

Word
Value

Byte
Address

Byte
Value

Word
Value

0x0520 0x00
0x0000

0x0526 0x41
0x0041

0x0521 0x00 0x0527 0x00

0x0522 0x00
0x0000

0x0528 0x13
0x0013

0x0523 0x00 0x0529 0x00

0x0524 0x10
0x0210

0x052A 0x00
0x0000

0x0525 0x02 0x052B 0x00
April 20, 2006 Document No. 001-15441 Rev. ** - 13 -

[+] Feedback

http://www.cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_13

AN6010
Using Asynchronous Ports on an External
CPU/DSP
It is important to note that some processors have async ports
that will be used for HPI communications. In this case it is
important to pay attention to how the master behaves on inter-
rupts and when communicating with other async ports on the
same part. In a configuration such as this it is possible that

interrupts can happen in the middle of a HPI request and
cause undesirable results.
Things to consider when a HPI read/write is in progress:
• No interrupts can start

• If in an interrupt, it cannot end until HPI traffic is completed

• Do not communicate with other async ports.
April 20, 2006 Document No. 001-15441 Rev. ** - 14 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_14

AN6010
Appendix A: Logic Analyzer Screens for HPI Communication

Example Transactions
This appendix contains typical signalling (communication) on the HPI for OTG-Host. These examples were captured on a logic
analyzer in timing mode when connected to the CY3663 SBC, which is part of the OTG-Host DVK.

HPI DATA

Figure 7. HPI DATA Bus Transaction (Write HUSB_RESET_INT (0x74) to COMM_INT_NUM (0x01C2))
April 20, 2006 Document No. 001-15441 Rev. ** - 15 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_15

AN6010
HPI MAILBOX

HPI ADDRESS

HPI STATUS

Figure 8. Write to HPI MAILBOX Port Register (Write COMM_EXEC_INT to mailbox)

Figure 9. Write to HPI ADDRESS Followed By a Read from HPI DATA to Access SIE1msg Register (0x1000 = DONE)
April 20, 2006 Document No. 001-15441 Rev. ** - 16 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_16

AN6010
Figure 10. Read from HPI STATUS (0x0010 = SIE1msg)
April 20, 2006 Document No. 001-15441 Rev. ** - 17 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_17

AN6010
Appendix B: Important Values used in HPI Communications

OTG-Host LCP equate values from lcp_cmd.h
OTG-Host Port Commands Value

COMM_RESET 0xFA50

COMM_JUMP2CODE 0xCE00

COMM_EXEC_INT 0xCE01

COMM_READ_CTRL_REG 0XCE02

COMM_WRITE_CTRL_REG 0XCE03

COMM_CALL_CODE 0xCE04

COMM_READ_XMEM 0xCE05

COMM_WRITE_XMEM 0xCE06

C0MM_CONFIG 0xCE07

COMM_READ_MEM 0xCE08

COMM_WRITE_MEM 0xCE09

Responses from LCP

COMM_ACK 0x0FED

COMM_NAK 0xDEAD

COMM_ASYNC 0xFOOD

Message for SIE1 and SIE2 in register 0x0144 and 0x0148
Message Value

HUSB_TDListDone 0x1000

HUSB_SOF 0x2000

HUSB_ARMV 0x0001

HUSB_AINS_FS 0x0002

HUSB_AINS_LS 0x0004

HUSB_AWakeUp 0x0008

HUSB_BRMV 0x0010

HUSB_BINS_FS 0x0020

HUSB_BINS_LS 0x0040

HUSB_BWakeUp 0x0080

Message for SIE1 and SIE2 in register 0x0144 and 0x0148
Message Value

SUSB_EP0_MSG 0x0001

SUSB_EP1_MSG 0x0002

SUSB_EP2_MSG 0x0004

SUSB_EP3_MSG 0x0008

SUSB_EP4_MSG 0x0010

SUSB_EP5_MSG 0x0020

SUSB_EP6_MSG 0x0040

SUSB_EP7_MSG 0x0080

SUSB_RST_MSG 0x0100

SUSB_SOF_MSG 0x0200

SUSB_CFG_MSG 0x0400

SUSB_SUS_MSG 0x0800

SUSB_ID_MSG 0x4000

SUSB_VBUS_MSG 0x8000

Important Memory addresses for host mode
Name Address Comment

HUSB_SIE1_pCurrentTDPtr 0x01B0 Address for SIE1 current TD pointer

HUSB_SIE2_pCurrentTDPtr 0x01B2 Address for SIE2 current TD pointer

HUSB_pEOT 0x01B4 Address for End of Transfer value

HUSB_SIE1_pTDListDone_Sem 0x01B6 Address for SIE1 TD List Done Semaphore

HUSB_SIE2_pTDListDone_Sem 0x01B8 Address for SIE2 TD List Done Semaphore
April 20, 2006 Document No. 001-15441 Rev. ** - 18 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_18

AN6010
Important Memory addresses for LCP commands
Name Address Comment

COMM_MEM_ADDR 0x01BC Address for COMM_RD/WR_MEM

COMM_MEM_LEN 0x01BE Address for COMM_RD/WR_MEM

COMM_LAST_DATA 0x01C0

COMM_CTRL_REG_ADDR 0x01BC Address for COMM_RD/WR_CTRL_REG

COMM_CTRL_REG_DATA 0x01BE Address for COMM_RD/WR_CTRL_REG

COMM_CTRL_REG_LOGIC 0x01C0 Address used for AND/OR

REG_WRITE_FLG 0x0000 Value for COMM_CTRL_REG_LOGIC

REG_AND_FLG 0x0001 Value for COMM_CTRL_REG_LOGIC

REG_OR_FLG 0x0002 Value for COMM_CTRL_REG_LOGIC

COMM_TIMEOUT 0x01BE Address setting Timeout for sending response to host

COMM_CODE_ADDR 0x01BC Address for COMM_CALL_CODE and COMM_JUMP2CODE

COMM_INT_NUM 0x01C2 Address used for COMM_EXEC_INT

COMM_R0 0x01C4

COMM_R1 0x01C6

COMM_R2 0x01C8

COMM_R3 0x01CA

COMM_R4 0x01CC

COMM_R5 0x01CE

COMM_R6 0x01D0

COMM_R7 0x01D2

COMM_R8 0x01D4

COMM_R9 0x01D6

COMM_R10 0x01D8

COMM_R11 0x01DA

COMM_R12 0x01DC

COMM_R13 0x01DE
April 20, 2006 Document No. 001-15441 Rev. ** - 19 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_19

AN6010
Appendix C: Example HPI Communication from Cypress Linux Driver
The following information was captured in state mode on a
logic analyzer. The states are captured on the rising and falling
edges of either HPI_nRD or HPI_nWR on the Cypress
CY3663 EZ-Host Mezzanine board while in HPI co-processor
mode. The data is then parsed to remove any activity that is

not specific to the HPI interface and then annotated in the right
column.
The first example is for a HUSB_INIT_INT (Interrupt 0x72).
This is followed by miscellaneous reads and writes including a
write to 0xC008 (CPU Speed Register).

MACHINE 1 - State Listing (see step 1b in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
CommentBase-> Hex Hex Hex Symbol Hex Hex

Write 0x0072 to COMM_INT_NUM

-62 0 0 1 ADDR 01C2 0 Wrt Add 0x01C2

-60 0 0 1 DATA 0072 0 Wrt 0x0072 to Add 0x01C2 + 0

Write COMM_R0 through COMM_R13

-58 0 0 1 ADDR 01C4 0 Wrt Add 0x01C4

-56 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01C4 + 0

-54 0 0 1 ADDR 01C6 0 Wrt Add 0x01C6

-52 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01C6 + 0

-50 0 0 1 ADDR 01C8 0 Wrt Add 0x01C8

-48 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01C8 + 0

-46 0 0 1 ADDR 01CA 0 Wrt Add 0x01CA

-44 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01CA + 0

-42 0 0 1 ADDR 01CC 0 Wrt Add 0x01CC

-40 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01CC + 0

-38 0 0 1 ADDR 01CE 0 Wrt Add 0x01CE

-36 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01CE + 0

-34 0 0 1 ADDR 01D0 0 Wrt Add 0x01D0

-32 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01D0 + 0

-30 0 0 1 ADDR 01D2 0 Wrt Add 0x01D2

-28 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01D2 + 0

-26 0 0 1 ADDR 01D4 0 Wrt Add 0x01D4

-24 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01D4 + 0

-22 0 0 1 ADDR 01D6 0 Wrt Add 0x01D6

-20 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01D6 + 0

-16 0 0 1 ADDR 01D8 0 Wrt Add 0x01D8

-14 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01D8 + 0

-12 0 0 1 ADDR 01DA 0 Wrt Add 0x01DA

-10 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01DA + 0

-8 0 0 1 ADDR 01DC 0 Wrt Add 0x01DC

-6 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01DC + 0

-4 0 0 1 ADDR 01DE 0 Wrt Add 0x01DE

-2 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01DE + 0

Write COMM_EXEC_INT (0xCE01) to mailbox to initiate interrupt.

0 0 0 1 MBX CE01 0 Wrt HPI Mailbox with 0xCE01

6 0 0 1 ADDR C08C 0 Wrt Add 0xC08C
April 20, 2006 Document No. 001-15441 Rev. ** - 20 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_20

AN6010
8 0 1 0 DATA C800 0 Rd 0xC800 from Add 0xC08C + 0

10 0 0 1 ADDR C08C 0 Wrt Add 0xC08C

12 0 0 1 DATA C800 0 Wrt 0xC800 to Add 0xC08C + 0

68 0 1 0 STAT 0001 1 Rd HPI Status Reg with 0x0001

Read back HPI mailbox, which equals COMM_ACK (0x0FED)

70 0 1 0 MBX 0FED 1 Rd HPI Mailbox = 0x0FED

Write COMM_R0 (0x01C4) with 0x0000

74 0 0 1 ADDR 01C4 0 Wrt Add 0x01C4

76 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x01C4 + 0

78 0 0 1 ADDR C08C 0 Wrt Add 0xC08C

80 0 1 0 DATA C201 0 Rd 0xC201 from Add 0xC08C + 0

82 0 0 1 ADDR C08C 0 Wrt Add 0xC08C

84 0 0 1 DATA C2F1 0 Wrt 0xC2F1 to Add 0xC08C + 0

86 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

Write COMM_CTRL_REG_ADDR (0x01BC) to 0xC008 (CPU Speed Register)

98 0 0 1 ADDR 01BC 0 Wrt Add 0x01BC

100 0 0 1 DATA C008 0 Wrt 0xC008 to Add 0x01BC + 0

Write COMM_CTRL_REG_DATA (0x01BE) to 0x0001

102 0 0 1 ADDR 01BE 0 Wrt Add 0x01BE

104 0 0 1 DATA 0001 0 Wrt 0x0001 to Add 0x01BE + 0

Write COMM_CTRL_REG_LOGIC (0x01C0) to 0x0000 (REG_WRITE_FLG)

106 0 0 1 ADDR 01C0 0 Wrt Add 0x01C0

108 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01C0 + 0

Write COMM_WRITE_CTRL_REG (0xCE03) to HPI mailbox

110 0 0 1 MBX CE03 0 Wrt HPI Mailbox with 0xCE03

116 0 0 1 ADDR C08C 0 Wrt Add 0xC08C

118 0 1 0 DATA C2F1 0 Rd 0xC2F1 from Add 0xC08C + 0

120 0 0 1 ADDR C08C 0 Wrt Add 0xC08C

122 0 0 1 DATA C2D1 0 Wrt 0xC2D1 to Add 0xC08C + 0

124 0 1 0 STAT 0001 1 Rd HPI Status Reg with 0x0001

Read back HPI mailbox, which equals COMM_ACK (0x0FED)

126 0 1 0 MBX 0FED 1 Rd HPI Mailbox = 0x0FED

Write COMM_R0 (0x01C4) with 0x0000

130 0 0 1 ADDR 01C4 0 Wrt Add 0x01C4

132 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x01C4 + 0

Write COMM_CTRL_REG_ADDR (0x01BC) to 0xC008 (CPU Speed Register)

136 0 0 1 ADDR 01BC 0 Wrt Add 0x01BC

138 0 0 1 DATA C008 0 Wrt 0xC008 to Add 0x01BC + 0

Write COMM_CTRL_REG_DATA (0x01BE) to 0x0001

140 0 0 1 ADDR 01BE 0 Wrt Add 0x01BE

MACHINE 1 - State Listing (continued) (see step 1b in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
CommentBase-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 21 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_21

AN6010
142 0 0 1 DATA 0001 0 Wrt 0x0001 to Add 0x01BE + 0

Write COMM_CTRL_REG_LOGIC (0x01C0) to 0x0000 (REG_WRITE_FLG)

144 0 0 1 ADDR 01C0 0 Wrt Add 0x01C0

146 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x01C0 + 0

Write COMM_WRITE_CTRL_REG (0xCE03) to HPI mailbox

148 0 0 1 MBX CE03 0 Wrt HPI Mailbox with 0xCE03

150 0 1 0 STAT 0100 0 Rd HPI Status Reg with 0x0100

152 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

162 0 1 0 STAT 0001 1 Rd HPI Status Reg with 0x0001

Read back HPI mailbox, which equals COMM_ACK (0x0FED)

164 0 1 0 MBX 0FED 1 Rd HPI Mailbox = 0x0FED

166 0 0 1 ADDR 01C4 0 Wrt Add 0x01C4

168 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x01C4 + 0

170 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

MACHINE 1 - State Listing (continued) (see step 1b in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
CommentBase-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 22 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_22

AN6010
The following table shows the state listing when doing a Set
Address (address = 0x02) to a USB keyboard. Note that in this

example the starting location of the buffer is located at address
0x1010. The starting location for the TD_list is at 0x0E10.

MACHINE 1 - State Listing (see step 3 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex

-568 0 0 1 ADDR C090 1 Wrt Add 0xC090

-566 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

-564 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

-72 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

-64 0 0 1 ADDR C096 1 Wrt Add 0xC096

-62 0 1 0 DATA 01CB 1 Rd 0x01CB from Add 0xC096 + 0

Write information for Set Address starting at 0x1010

-2 0 0 1 ADDR 1010 1 Wrt Add 0x1010

0 0 0 1 DATA 0500 1 Wrt 0x0500 to Add 0x1010 + 0

2 0 0 1 DATA 0002 1 Wrt 0x0002 to Add 0x1010 + 1

4 0 0 1 DATA 0000 1 Wrt 0x0000 to Add 0x1010 + 2

6 0 0 1 DATA 0000 1 Wrt 0x0000 to Add 0x1010 + 3

Write TD_list at address 0x0E10 pointing to the buffer at 0x1010. Setup (D) to EP0 at device address 0.

8 0 0 1 ADDR 0E10 1 Wrt Add 0x0E10

10 0 0 1 DATA 1010 1 Wrt 0x1010 to Add 0x0E10 + 0

12 0 0 1 DATA 0008 1 Wrt 0x0008 to Add 0x0E10 + 1

14 0 0 1 DATA 00D0 1 Wrt 0x00D0 to Add 0x0E10 + 2

16 0 0 1 DATA 0001 1 Wrt 0x0001 to Add 0x0E10 + 3

18 0 0 1 DATA 0013 1 Wrt 0x0013 to Add 0x0E10 + 4

20 0 0 1 DATA 0000 1 Wrt 0x0000 to Add 0x0E10 + 5

Write the address of the TD_list (0x0E10) to the SIE1_CurrentTDPtr (0x01B0)

22 0 0 1 ADDR 01B0 1 Wrt Add 0x01B0

24 0 0 1 DATA 0E10 1 Wrt 0x0E10 to Add 0x01B0 + 0

28 0 0 1 ADDR C090 1 Wrt Add 0xC090

30 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

32 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

1456 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

1464 0 0 1 ADDR C090 1 Wrt Add 0xC090

1466 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

1468 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

1630 0 1 0 STAT 0010 1 Rd HPI Status Reg with 0x0010

SIE1msg (0x0144) = 0x1000 or DONE

1632 0 0 1 ADDR 0144 1 Wrt Add 0x0144

1634 0 1 0 DATA 1000 0 Rd 0x1000 from Add 0x0144 + 0

1636 0 0 1 ADDR 0144 0 Wrt Add 0x0144

1638 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0144 + 0

Read back last TD_list to check status

1640 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10
April 20, 2006 Document No. 001-15441 Rev. ** - 23 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_23

AN6010
1642 0 1 0 DATA 1010 0 Rd 0x1010 from Add 0x0E10 + 0

1644 0 1 0 DATA 0008 0 Rd 0x0008 from Add 0x0E10 + 1

1646 0 1 0 DATA 00D0 0 Rd 0x00D0 from Add 0x0E10 + 2

1648 0 1 0 DATA 0001 0 Rd 0x0001 from Add 0x0E10 + 3

1650 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E10 + 4

1652 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 5

1658 0 0 1 ADDR C096 0 Wrt Add 0xC096

1660 0 1 0 DATA 01CC 0 Rd 0x01CC from Add 0xC096 + 0

Write next TD_list at 0x01E0. This time is IN (9) on EP0 at Device Address 0 (Status Stage)

1662 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

1664 0 0 1 DATA 1010 0 Wrt 0x1010 to Add 0x0E10 + 0

1666 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0E10 + 1

1668 0 0 1 DATA 0090 0 Wrt 0x0090 to Add 0x0E10 + 2

1670 0 0 1 DATA 0041 0 Wrt 0x0041 to Add 0x0E10 + 3

1672 0 0 1 DATA 0013 0 Wrt 0x0013 to Add 0x0E10 + 4

1674 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0E10 + 5

Submit the TD_list by writing address of TD_list (0x0E10) to SIE1_CurrentTDPtr (0x01B0)

1676 0 0 1 ADDR 01B0 0 Wrt Add 0x01B0

1678 0 0 1 DATA 0E10 0 Wrt 0x0E10 to Add 0x01B0 + 0

1682 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

2928 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

2930 0 0 1 ADDR C090 1 Wrt Add 0xC090

2932 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

2934 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

3032 0 1 0 STAT 0010 1 Rd HPI Status Reg with 0x0010

SIE1msg (0x0144) = 0x1000 or DONE

3034 0 0 1 ADDR 0144 1 Wrt Add 0x0144

3036 0 1 0 DATA 1000 0 Rd 0x1000 from Add 0x0144 + 0

3038 0 0 1 ADDR 0144 0 Wrt Add 0x0144

3040 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0144 + 0

Read back last TD_list to check status

3042 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

3044 0 1 0 DATA 1010 0 Rd 0x1010 from Add 0x0E10 + 0

3046 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 1

3048 0 1 0 DATA 0090 0 Rd 0x0090 from Add 0x0E10 + 2

3050 0 1 0 DATA 0041 0 Rd 0x0041 from Add 0x0E10 + 3

3052 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E10 + 4

3054 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 5

3064 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

4380 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

4382 0 0 1 ADDR C090 1 Wrt Add 0xC090

4384 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

MACHINE 1 - State Listing (continued) (see step 3 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 24 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_24

AN6010
4386 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

5818 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

5820 0 0 1 ADDR C090 1 Wrt Add 0xC090

5822 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

5824 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

7284 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

7286 0 0 1 ADDR C090 1 Wrt Add 0xC090

7288 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

7290 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

8756 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

8758 0 0 1 ADDR C090 1 Wrt Add 0xC090

8760 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

8762 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

MACHINE 1 - State Listing (continued) (see step 3 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 25 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_25

AN6010
The following table shows the state listing when doing a Get
Device Descriptor from the USB keyboard at device address
0x02. Note that in this example the starting location of the

buffer is located at address 0x1010. The starting location for
the TD_List is at 0x0E10.

MACHINE 1 - State Listing (see step 4 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex

-24 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

-22 0 0 1 ADDR C096 1 Wrt Add 0xC096

-20 0 1 0 DATA 0170 1 Rd 0x0170 from Add 0xC096 + 0

Start writing of buffer at 0x1010 for a GET_DESCRIPTOR (6), Type = DEVICE (1), wLength = 8

-2 0 0 1 ADDR 1010 1 Wrt Add 0x1010

0 0 0 1 DATA 0680 1 Wrt 0x0680 to Add 0x1010 + 0

2 0 0 1 DATA 0100 1 Wrt 0x0100 to Add 0x1010 + 1

4 0 0 1 DATA 0000 1 Wrt 0x0000 to Add 0x1010 + 2

6 0 0 1 DATA 0008 1 Wrt 0x0008 to Add 0x1010 + 3

Write the TD_list to address 0x0E10. This TD_list will do a SETUP (D) to EP0, Device Address 2 and the
data for the SETUP packet is located at address 0x1010

8 0 0 1 ADDR 0E10 1 Wrt Add 0x0E10

10 0 0 1 DATA 1010 1 Wrt 0x1010 to Add 0x0E10 + 0

12 0 0 1 DATA 0008 1 Wrt 0x0008 to Add 0x0E10 + 1

14 0 0 1 DATA 02D0 1 Wrt 0x02D0 to Add 0x0E10 + 2

16 0 0 1 DATA 0001 1 Wrt 0x0001 to Add 0x0E10 + 3

18 0 0 1 DATA 0013 1 Wrt 0x0013 to Add 0x0E10 + 4

20 0 0 1 DATA 0000 1 Wrt 0x0000 to Add 0x0E10 + 5

Write the TD_list address (0x0E10) to the HUSB_SIE1_pCurrentTDPtr (0x01B0) to submit (Setup Stage)

22 0 0 1 ADDR 01B0 1 Wrt Add 0x01B0

24 0 0 1 DATA 0E10 1 Wrt 0x0E10 to Add 0x01B0 + 0

26 0 0 1 ADDR C090 1 Wrt Add 0xC090

28 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

30 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

1468 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

1470 0 0 1 ADDR C090 1 Wrt Add 0xC090

1472 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

1474 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

1636 0 1 0 STAT 0010 1 Rd HPI Status Reg with 0x0010

Read SIE1msg Register (0x1000 = DONE)

1638 0 0 1 ADDR 0144 1 Wrt Add 0x0144

1640 0 1 0 DATA 1000 0 Rd 0x1000 from Add 0x0144 + 0

1642 0 0 1 ADDR 0144 0 Wrt Add 0x0144

1644 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0144 + 0

Now read back TD_list to check status

1646 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

1648 0 1 0 DATA 1010 0 Rd 0x1010 from Add 0x0E10 + 0

1650 0 1 0 DATA 0008 0 Rd 0x0008 from Add 0x0E10 + 1

1652 0 1 0 DATA 02D0 0 Rd 0x02D0 from Add 0x0E10 + 2

1654 0 1 0 DATA 0001 0 Rd 0x0001 from Add 0x0E10 + 3
April 20, 2006 Document No. 001-15441 Rev. ** - 26 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_26

AN6010
1656 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E10 + 4

1658 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 5

1664 0 0 1 ADDR C096 0 Wrt Add 0xC096

1666 0 1 0 DATA 0171 0 Rd 0x0171 from Add 0xC096 + 0

Write next TD_list at 0x01E0. This time is IN (9) on EP0 at Device Address 02 (Data Stage)

1674 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

1676 0 0 1 DATA 1010 0 Wrt 0x1010 to Add 0x0E10 + 0

1678 0 0 1 DATA 0008 0 Wrt 0x0008 to Add 0x0E10 + 1

1680 0 0 1 DATA 0290 0 Wrt 0x0290 to Add 0x0E10 + 2

1682 0 0 1 DATA 0041 0 Wrt 0x0041 to Add 0x0E10 + 3

1684 0 0 1 DATA 0013 0 Wrt 0x0013 to Add 0x0E10 + 4

1686 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0E10 + 5

Write the TD_list address (0x0E10) to the HUSB_SIE1_pCurrentTDPtr (0x01B0) to submit

1688 0 0 1 ADDR 01B0 0 Wrt Add 0x01B0

1690 0 0 1 DATA 0E10 0 Wrt 0x0E10 to Add 0x01B0 + 0

1694 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

2952 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

2954 0 0 1 ADDR C090 1 Wrt Add 0xC090

2956 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

2958 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

3116 0 1 0 STAT 0010 1 Rd HPI Status Reg with 0x0010

Read SIE1msg Register (0x1000 = DONE)

3118 0 0 1 ADDR 0144 1 Wrt Add 0x0144

3120 0 1 0 DATA 1000 0 Rd 0x1000 from Add 0x0144 + 0

3122 0 0 1 ADDR 0144 0 Wrt Add 0x0144

3124 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0144 + 0

Now read back TD_list to check status

3126 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

3128 0 1 0 DATA 1010 0 Rd 0x1010 from Add 0x0E10 + 0

3130 0 1 0 DATA 0008 0 Rd 0x0008 from Add 0x0E10 + 1

3132 0 1 0 DATA 0290 0 Rd 0x0290 from Add 0x0E10 + 2

3134 0 1 0 DATA 0041 0 Rd 0x0041 from Add 0x0E10 + 3

3136 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E10 + 4

3138 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 5

Read Device Descriptor data from buffer (0x1010)

3140 0 0 1 ADDR 1010 0 Wrt Add 0x1010

3142 0 1 0 DATA 0112 0 Rd 0x0112 from Add 0x1010 + 0

3144 0 1 0 DATA 0200 0 Rd 0x0200 from Add 0x1010 + 1

3146 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x1010 + 2

3150 0 1 0 DATA 0800 0 Rd 0x0800 from Add 0x1010 + 3

3154 0 0 1 ADDR C096 0 Wrt Add 0xC096

3156 0 1 0 DATA 0172 0 Rd 0x0172 from Add 0xC096 + 0

MACHINE 1 - State Listing (continued) (see step 4 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 27 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_27

AN6010
Write next TD_list at 0x01E0. This time is OUT (1) on EP0 at Device Address 02 (Status Stage)

3158 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

3160 0 0 1 DATA 1010 0 Wrt 0x1010 to Add 0x0E10 + 0

3162 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0E10 + 1

3164 0 0 1 DATA 0210 0 Wrt 0x0210 to Add 0x0E10 + 2

3166 0 0 1 DATA 0041 0 Wrt 0x0041 to Add 0x0E10 + 3

3168 0 0 1 DATA 0013 0 Wrt 0x0013 to Add 0x0E10 + 4

3170 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0E10 + 5

Write the TD_list address (0x0E10) to the HUSB_SIE1_pCurrentTDPtr (0x01B0) to submit

3172 0 0 1 ADDR 01B0 0 Wrt Add 0x01B0

3174 0 0 1 DATA 0E10 0 Wrt 0x0E10 to Add 0x01B0 + 0

3176 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

4450 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

4452 0 0 1 ADDR C090 1 Wrt Add 0xC090

4454 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

4456 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

4554 0 1 0 STAT 0010 1 Rd HPI Status Reg with 0x0010

Read SIE1msg Register (0x1000 = DONE)

4556 0 0 1 ADDR 0144 1 Wrt Add 0x0144

4558 0 1 0 DATA 1000 0 Rd 0x1000 from Add 0x0144 + 0

4560 0 0 1 ADDR 0144 0 Wrt Add 0x0144

4562 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0144 + 0

Now read back TD_list to check status

4564 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

4566 0 1 0 DATA 1010 0 Rd 0x1010 from Add 0x0E10 + 0

4568 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 1

4570 0 1 0 DATA 0210 0 Rd 0x0210 from Add 0x0E10 + 2

4572 0 1 0 DATA 0041 0 Rd 0x0041 from Add 0x0E10 + 3

4574 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E10 + 4

4576 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 5

4584 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

5904 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

5912 0 0 1 ADDR C096 1 Wrt Add 0xC096

5914 0 1 0 DATA 0174 1 Rd 0x0174 from Add 0xC096 + 0

Start writing of buffer at 0x1010 for a GET_DESCRIPTOR (6), Type = DEVICE (1), wLength = 18

5916 0 0 1 ADDR 1010 1 Wrt Add 0x1010

5918 0 0 1 DATA 0680 1 Wrt 0x0680 to Add 0x1010 + 0

5920 0 0 1 DATA 0100 1 Wrt 0x0100 to Add 0x1010 + 1

5922 0 0 1 DATA 0000 1 Wrt 0x0000 to Add 0x1010 + 2

5924 0 0 1 DATA 0012 1 Wrt 0x0012 to Add 0x1010 + 3

Write the TD_list to address 0x0E10. This TD_list will do a SETUP (D) to EP0, Device Address 2 and the
data for the SETUP packet is located at address 0x1010

MACHINE 1 - State Listing (continued) (see step 4 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 28 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_28

AN6010
5926 0 0 1 ADDR 0E10 1 Wrt Add 0x0E10

5928 0 0 1 DATA 1010 1 Wrt 0x1010 to Add 0x0E10 + 0

5930 0 0 1 DATA 0008 1 Wrt 0x0008 to Add 0x0E10 + 1

5932 0 0 1 DATA 02D0 1 Wrt 0x02D0 to Add 0x0E10 + 2

5934 0 0 1 DATA 0001 1 Wrt 0x0001 to Add 0x0E10 + 3

5936 0 0 1 DATA 0013 1 Wrt 0x0013 to Add 0x0E10 + 4

5938 0 0 1 DATA 0000 1 Wrt 0x0000 to Add 0x0E10 + 5

Write the TD_list address (0x0E10) to the HUSB_SIE1_pCurrentTDPtr (0x01B0) to submit (Setup Stage)

5940 0 0 1 ADDR 01B0 1 Wrt Add 0x01B0

5942 0 0 1 DATA 0E10 1 Wrt 0x0E10 to Add 0x01B0 + 0

5944 0 0 1 ADDR C090 1 Wrt Add 0xC090

5946 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

5948 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

7400 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

7402 0 0 1 ADDR C090 1 Wrt Add 0xC090

7404 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

7406 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

7570 0 1 0 STAT 0010 1 Rd HPI Status Reg with 0x0010

Read SIE1msg Register (0x1000 = DONE)

7572 0 0 1 ADDR 0144 1 Wrt Add 0x0144

7574 0 1 0 DATA 1000 0 Rd 0x1000 from Add 0x0144 + 0

7576 0 0 1 ADDR 0144 0 Wrt Add 0x0144

7578 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0144 + 0

Now read back TD_list to check status

7580 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

7582 0 1 0 DATA 1010 0 Rd 0x1010 from Add 0x0E10 + 0

7584 0 1 0 DATA 0008 0 Rd 0x0008 from Add 0x0E10 + 1

7586 0 1 0 DATA 02D0 0 Rd 0x02D0 from Add 0x0E10 + 2

7588 0 1 0 DATA 0001 0 Rd 0x0001 from Add 0x0E10 + 3

7590 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E10 + 4

7592 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E10 + 5

7594 0 0 1 ADDR C096 0 Wrt Add 0xC096

7596 0 1 0 DATA 0175 0 Rd 0x0175 from Add 0xC096 + 0

Write next TD_list at 0x0E10. This time is IN (9) on EP0 at Device Address 02 (Data Stage)

7664 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

7666 0 0 1 DATA 1010 0 Wrt 0x1010 to Add 0x0E10 + 0

7668 0 0 1 DATA 0008 0 Wrt 0x0008 to Add 0x0E10 + 1

7670 0 0 1 DATA 0290 0 Wrt 0x0290 to Add 0x0E10 + 2

7672 0 0 1 DATA 0041 0 Wrt 0x0041 to Add 0x0E10 + 3

7674 0 0 1 DATA 0013 0 Wrt 0x0013 to Add 0x0E10 + 4

7676 0 0 1 DATA 0E1C 0 Wrt 0x0E1C to Add 0x0E10 + 5

Write next TD_list at 0x01EC. This time is IN (9) on EP0 at Device Address 02 (Data Stage)

MACHINE 1 - State Listing (continued) (see step 4 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 29 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_29

AN6010
7678 0 0 1 ADDR 0E1C 0 Wrt Add 0x0E1C

7680 0 0 1 DATA 1018 0 Wrt 0x1018 to Add 0x0E1C + 0

7682 0 0 1 DATA 0008 0 Wrt 0x0008 to Add 0x0E1C + 1

7684 0 0 1 DATA 0290 0 Wrt 0x0290 to Add 0x0E1C + 2

7686 0 0 1 DATA 0001 0 Wrt 0x0001 to Add 0x0E1C + 3

7688 0 0 1 DATA 0013 0 Wrt 0x0013 to Add 0x0E1C + 4

7690 0 0 1 DATA 0E28 0 Wrt 0x0E28 to Add 0x0E1C + 5

Write next TD_list at 0x0E28. This time is IN (9) on EP0 at Device Address 02 (Data Stage)

7692 0 0 1 ADDR 0E28 0 Wrt Add 0x0E28

7694 0 0 1 DATA 1020 0 Wrt 0x1020 to Add 0x0E28 + 0

7696 0 0 1 DATA 0002 0 Wrt 0x0002 to Add 0x0E28 + 1

7698 0 0 1 DATA 0290 0 Wrt 0x0290 to Add 0x0E28 + 2

7700 0 0 1 DATA 0041 0 Wrt 0x0041 to Add 0x0E28 + 3

7702 0 0 1 DATA 0013 0 Wrt 0x0013 to Add 0x0E28 + 4

7704 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0E28 + 5

Write the TD_list address (0x0E10) to the HUSB_SIE1_pCurrentTDPtr (0x01B0) to submit (Data Stage)

7706 0 0 1 ADDR 01B0 0 Wrt Add 0x01B0

7708 0 0 1 DATA 0E10 0 Wrt 0x0E10 to Add 0x01B0 + 0

7710 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

8972 0 1 0 STAT 0400 1 Rd HPI Status Reg with 0x0400

8974 0 0 1 ADDR C090 1 Wrt Add 0xC090

8976 0 0 1 DATA 0200 1 Wrt 0x0200 to Add 0xC090 + 0

8978 0 1 0 STAT 0000 0 Rd HPI Status Reg with 0x0000

9706 0 1 0 STAT 0010 1 Rd HPI Status Reg with 0x0010

Read SIE1msg Register (0x1000 = DONE)

9708 0 0 1 ADDR 0144 1 Wrt Add 0x0144

9710 0 1 0 DATA 1000 0 Rd 0x1000 from Add 0x0144 + 0

9712 0 0 1 ADDR 0144 0 Wrt Add 0x0144

9714 0 0 1 DATA 0000 0 Wrt 0x0000 to Add 0x0144 + 0

Now read back TD_list to check status

9716 0 0 1 ADDR 0E10 0 Wrt Add 0x0E10

9718 0 1 0 DATA 1010 0 Rd 0x1010 from Add 0x0E10 + 0

9720 0 1 0 DATA 0008 0 Rd 0x0008 from Add 0x0E10 + 1

9722 0 1 0 DATA 0290 0 Rd 0x0290 from Add 0x0E10 + 2

9724 0 1 0 DATA 0041 0 Rd 0x0041 from Add 0x0E10 + 3

9726 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E10 + 4

9728 0 1 0 DATA 0E1C 0 Rd 0x0E1C from Add 0x0E10 + 5

Read back the Data from Get Device Descriptor

9730 0 0 1 ADDR 1010 0 Wrt Add 0x1010

9732 0 1 0 DATA 0112 0 Rd 0x0112 from Add 0x1010 + 0

9734 0 1 0 DATA 0200 0 Rd 0x0200 from Add 0x1010 + 1

9736 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x1010 + 2

MACHINE 1 - State Listing (continued) (see step 4 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 30 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_30

AN6010
EZ-USB is a registered trademark and EZ-OTG and EZ-Host are trademarks of Cypress
Semiconductor. All product and company names mentioned in this document are the trade-
marks of their respective holders.

9738 0 1 0 DATA 0800 0 Rd 0x0800 from Add 0x1010 + 3

Now read back TD_list to check status

9740 0 0 1 ADDR 0E1C 0 Wrt Add 0x0E1C

9742 0 1 0 DATA 1018 0 Rd 0x1018 from Add 0x0E1C + 0

9744 0 1 0 DATA 0008 0 Rd 0x0008 from Add 0x0E1C + 1

9746 0 1 0 DATA 0290 0 Rd 0x0290 from Add 0x0E1C + 2

9748 0 1 0 DATA 0001 0 Rd 0x0001 from Add 0x0E1C + 3

9750 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E1C + 4

9752 0 1 0 DATA 0E28 0 Rd 0x0E28 from Add 0x0E1C + 5

Read back the Data from Get Device Descriptor (next packet)

9754 0 0 1 ADDR 1018 0 Wrt Add 0x1018

9756 0 1 0 DATA 04B4 0 Rd 0x04B4 from Add 0x1018 + 0

9758 0 1 0 DATA 120D 0 Rd 0x120D from Add 0x1018 + 1

9760 0 1 0 DATA 0100 0 Rd 0x0100 from Add 0x1018 + 2

9762 0 1 0 DATA 0201 0 Rd 0x0201 from Add 0x1018 + 3

Now read back TD_list to check status

9764 0 0 1 ADDR 0E28 0 Wrt Add 0x0E28

9766 0 1 0 DATA 1020 0 Rd 0x1020 from Add 0x0E28 + 0

9768 0 1 0 DATA 0002 0 Rd 0x0002 from Add 0x0E28 + 1

9770 0 1 0 DATA 0290 0 Rd 0x0290 from Add 0x0E28 + 2

9772 0 1 0 DATA 0041 0 Rd 0x0041 from Add 0x0E28 + 3

9774 0 1 0 DATA 0003 0 Rd 0x0003 from Add 0x0E28 + 4

9776 0 1 0 DATA 0000 0 Rd 0x0000 from Add 0x0E28 + 5

Read back the Data from Get Device Descriptor (next packet)

9778 0 0 1 ADDR 1020 0 Wrt Add 0x1020

9780 0 1 0 DATA 0100 0 Rd 0x0100 from Add 0x1020 + 0

MACHINE 1 - State Listing (continued) (see step 4 in example)

Label-> nCS nWR nRD A1/A0 D[15:0] Interrupt
Comment

Base-> Hex Hex Hex Symbol Hex Hex
April 20, 2006 Document No. 001-15441 Rev. ** - 31 -

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_31

AN6010
Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com

© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for
the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only
in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except
as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in
life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

April 20, 2006 Document No. 001-15441 Rev. ** - 32 -

[+] Feedback

http://www.cypress.com
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_using_hpi_in_coprocessor_mode_with_otg_host___an6010_12_pdf_p_32

