# Synchronous SRAMs



# What is an Synchronous SRAM?





# Register

- A Register is an element which is capable of storing binary data.
- A clock is a stream of positive and negative pulses occurring at regular intervals.
   Positive pulse is always preceded or succeeded by a negative pulse.
- A register can be activated only at the edges of the clock.



- A combinatorial signal doesn't pass through registers.
- A combinatorial logic responds to any change in the inputs. It is not controlled by a clock.



# Sync. SRAM Overview Sync SRAM





# Sync. SRAM Overview

- •Each Family has numerous options as well:
- Density & Organization
  - 1 Mb 72 Mb
  - X18, X36 (X8, X9, X32, X72)
- Speed Grades
  - 400MHz,300MHz,250MHz, 167MHz, ...etc.
- Timing Options-> eg Read Latency
  - 1.5cycle, 2cycles, 2.5cycles
- Burst Options
  - Interleaved, Linear, Burst 2, Burst4
- Core Voltage
  - 3.3V, 2.5V, 1.8V
  - . . . .
- I/O Voltage
  - LVTTL: 3.3V, 2.5V, 1.8V,1.5V
  - HSTL, Variable impedance

# Sync. SRAM Overview

- •Each Family has even more options:
- Packages
  - 100 TQFP, 165 fBGA, 119 BGA, 209 BGA
- Temperature Ranges
  - Commercial, Industrial, Automotive
- Chip Enables
  - 2 CE vs 3 CE options
  - Address Locations
- JTAG
  - With EXTEST, No EXTEST
- Names
  - NoBL = ZBT = NtRAM = ZBL = ZERO SB = Etc.
  - QDR, SigmaRAM



# Sync SRAM Family



- Standard Sync SRAMs
- NoBL SRAMs
- QDR /QDR II/QDRII+
- DDR /DDR II/DDRII+



# **Standard Sync SRAM**





# Synchronous SRAM

### **Standard Sync SRAM**

- •Sync SRAM = Async SRAM + (Clock + Registers)
- •Common I/O
- Offered in both Pipeline and Flowthrough
  - •Single cycle deselect **SCD** (Flowthrough and Pipeline)
  - •Double Cycle Deselect DCD (Pipeline Only!)
- •Best for either dominated Reads or Writes



Flowthrough Timing Diagram



#### Flowthrough SRAM = Sync SRAM with only a register on I/P



Pipelined Timing Diagram



#### Pipelined SRAM = Flowthrough SRAM + Output register



#### SCD v/s DCD

#### SCD – Single-Cycle Deselect

- One clock cycle until chip deselects
- Available in Pipelined and Flowthrough

#### DCD – Double-Cycle Deselect

- Two clock cycles until chip deselects
- Available in Pipelined only



# Flowthrough vs. Pipeline

- Pipeline operates at higher frequency than Flowthrough
- Flowthrough is used where the initial latency is a critical issue and a Pipeline SRAM is used where the speed is a critical issue.
- Write operations can take a single clock cycle to complete for both Flowthrough and Pipeline.
- Read operations take 2 clock cycles in flowthrough and 3 clock cycles in Pipeline.
- In networking applications where read/write is balanced (Ratio ~1), both pipeline and flowthrough SRAMs are not as efficient.



#### NoBL<sup>TM</sup> SRAMs



## No Bus Latency (NoBL<sup>TM</sup>)

•Also Known as ZBT™

CYPRESS

- No dead cycles between reads and writes
- Optimized for 50% reads and 50% writes
- Best for Networking Applications
- Offered in both Pipelined and Flowthrough modes

### NoBL<sup>TM</sup> SRAMs



#### **NoBL Pipelined SRAM = Read and Write on Every Cycle!**



#### What is NOBL?

#### NoBL SRAMs = Stand Sync SRAMs(FL or PL) + NoBL logic



# Flowthrough NoBL Operation

#### No Dead Cycles between Reads and Writes





# **Pipelined NoBL Operation**





# Standard Sync Vs NoBL

#### STANDARD SYNC

- MOST EFFECTIVE FOR BURST READS OR WRITES FOR L2 CACHE
- IDEAL FOR DOMINANT READ OR WRITE
- LATENCY OCCURS WHEN SWITCHING FROM WRITE TO READ

#### •NOBL

- IDEAL FOR NETWORK APPLICATIONS
- IDEAL FOR READ/WRITE RATIO OF 1
- ENABLES FASTER MEMORY PERFORMANCE - ELIMINATES THE LATENCY CYCLE
- 2X BANDWIDTH IN HEAVY READ / WRITE APPLICATIONS



#### **QDR**



#### QDR = Quad Data Rate

- Joint effort between Cypress and Other Industry Leaders
- Optimum for balanced Read/ Write Applications
- Separate Input and Output Ports = No bus contention
- Double Data Rate on Separate Ports = 4X Bandwidth
- HSTL(High Speed Transceiver Logic) I/O Levels
- Programmable output Impedance using ZQ pin

## QDRI Burst of 2 BLOCK DIAGRAM

- 2 Word Burst QDR SRAM
- Separate Read and Write control signals
- Vref signal due to HSTL I/O



# QDRI Burst of 2 Read Operation



## QDRI Burst of 2 Write Operation



## QDRI Burst of 4 BLOCK DIAGRAM

- •4 Word Burst QDR SRAM
- Burst of 2 and 4 are two different parts





## QDRI Burst of 4 Read Operation



## QDRI Burst of 4 Write Operation

PERFORM



# **QDR Advantages**

4x Network Performance

Features

**Benefits** 

- \* Simultaneous Accesses \* Improved Bandwidth(~2x)
- \* DDR Interface on Both Ports
   \* Improved Bandwidth(~2x)
- \* Pipeline Output
   \* Low Initial Latency
- \* Separate Input/Output Ports
   Contention
  - 165 FBGA Package

### **QDR to QDR-II Transition**





#### **QDR-II Features**

- QDR II Purpose:
  - Extend QDR Solution to 250MHz (From 166MHz)
- QDR-II Has Internal DLL (Delay Lock Loop)
  - Shorten Clock-Valid, Lengthen Data Hold
  - Source Synchronous Clocks (Echo Clock) Added
    - Echo Clock Outputs From SRAM
  - Guaranteed Relationship to Valid Data
- Additional 1/2 Clock of Latency



# **QDR-II Block Diagram**



Data Flows in one direction



# QDRII Burst of 2 Operation

#### Read/Write Access

YPRESS.





# QDRII Burst of 4 Operation

#### Read/Write Access





# **QDR-II Advantages**

#### The 2<sup>nd</sup> Generation

#### **Features**

#### **Benefits**

- \* 300Mhz Fmax
- \* 1.5 Clock cycle Pipeline
- \* 18Mb / 36Mb / 72Mb
- \* Echo clocks
- \* DLL
- \* 1.8V Power Supply
- \* Same 165FBGA Package

- \* Higher Bandwidth
- \* Low Initial Latency
- \* Higher Density
- \* Source-Sync. Output Data
- \* Faster Data Capture
- \* Lower Power
- \* Compatibility



## QDR vs QDR-II

#### **Summary of Differences**

|                                    | QDR                                       | QDR-II                                     |
|------------------------------------|-------------------------------------------|--------------------------------------------|
| Maximum Frequency                  | Burst of 2: 167MHz<br>Burst of 4: 200 MHz | Burst of 2: 167 MHz<br>Burst of 4: 300 MHz |
| Frequency Minimum (DLL Constraint) | N/A                                       | 100 MHz                                    |
| Data Valid Window                  | 1.4ns @ 167MHz                            | 1.9ns @ 167MHz<br>1.4ns @ 250MHz           |
| Initial Latency                    | 1 clock cycles*                           | 1.5 clock cycles*                          |
| Echo Clocks                        | No echo clocks                            | Echo clocks                                |
| Density                            | 9Mb / 18Mb / 36Mb                         | 18Mb / 36Mb / 72Mb+                        |
| Power Supply                       | 2.5V                                      | 1.8V                                       |

 $<sup>^{\</sup>star}$  By adding an  $\frac{1}{2}$  clock cycle of latency to QDR-II, the access time is reduced to 0.45ns from QDR's 2.5 ns.



#### **DDR**



#### DDR = "Double Data Rate"

- Shared Input and Output Buses
- Optimized for Dominant Reads OR Writes
- Double Data Rate Interface
- Commonly referred to as "Networking" DDR and DDR-II
- Data transferred on both edges of the clock
- Two and Four Word Burst Devices



#### QDR vs. DDR



#### **DDR Characteristics**

- Double Data Rate
- •Common I/O

#### **QDR Characteristics**

- Double Data Rate
- •Simultaneous R/W Access possible
- Separate Input and Output ports





# **DDR Block Diagram**



### **DDR II**

### •Changes from DDR

- Internal DLL
  - Higher clock frequency
  - Latency increased by half a cycle
- Increase Data Valid Window



# **DDR-II Block Diagram**





### **DDR & DDR-II**

# 2 Reads OR 2 Writes / Clock Cycle = DDR & DDR-II I/O Bus is the Only Major Difference From QDR & QDR-II

|                        | Feature                              | Benefit                              |  |  |
|------------------------|--------------------------------------|--------------------------------------|--|--|
|                        | DDR Interfaces                       | Higher Mb/s                          |  |  |
| Bandwidth              | DDR: 200MHz<br>DDR-II: 300MHz        | Higher Mb/s                          |  |  |
| Package Pin/Ball Count | Shared I/O bus<br>(DDR & DDR-II CIO) | Reduces ball count                   |  |  |
| Bus Contention         | Split I/O buses<br>(DDR-II SIO)      | Eliminates bus contention            |  |  |
| (B2 @ ≥ 200MHz)        | Single address per clock cycle       | Reduced address rate relative to QDR |  |  |

### **DDR II SIO**





### **DDR II SIO**

#### DDR-Separate I/O (SIO)

- Separate Input and Output Buses
  - Only One Operation Per Clock
    - Can Not Perform Data Forwarding Feature
- Eliminates Bus Contention
- •Two Word Burst Only



# QDR & DDR SRAM Architectures

- QDR<sup>TM</sup>/QDRII<sup>TM</sup>
  - Separate Input and Output Buses
  - Double Data Rate Interface on Both Buses
  - 4X Increase in Bandwidth From NoBL<sup>TM</sup>
- DDR<sup>TM</sup> / DDRII<sup>TM</sup>
  - Single I/O Bus
  - Double Data Rate Interface
  - 2X Increase in Bandwidth, Reduces ASIC/FPGA Pin Count
- DDRII Separate I/O
  - Operates like a QDRII-burst of 2 device with access on only one port per clock cycle
  - Separate Input and Output Buses
  - Double Data Rate Interface on Both Buses
  - 2X Increase in Bandwidth From NoBL<sup>TM</sup>



### QDR - DDR Summary

- QDR and QDRII are optimized for systems with Balanced READ and WRITE operations
  - Packet memory
  - Linked-list
  - Lookup Table
  - Statistics Storage
- DDR and DDRII are optimized for data streaming operations or READ/WRITE unbalanced systems
  - L2 Cache
  - Microprocessor, network processor, DSP memory
- DDR Separate I/O optimized for 1 address/clock 2-word burst systems
  - Minimized bus latency, maximized frequency



### QDRII+/DDRII+ Overview

#### What is it?

Latest QDR Consortium Defined QDR SRAM

#### Why do you care?

- Frequency Support up to 500MHz
- Simplify Board Design

#### What are the Main Differences to QDRII?

- Read Latency of 2.0 Offered for Latency Critical Applications
- Read Latency of 2.5 Offered for Frequency Critical Applications
- Data Valid Pin

#### What Densities? Speeds?

18M, 36M, 72M, 144M

|            | Maximum CY Frequency |                   |  |  |  |  |  |  |
|------------|----------------------|-------------------|--|--|--|--|--|--|
| Technology | 2.0 Cycle Latency    | 2.5 Cycle Latency |  |  |  |  |  |  |
| 90-nm      | 375MHz               | 400MHz            |  |  |  |  |  |  |
| 65-nm      | 400MHz               | 500MHz            |  |  |  |  |  |  |

# QDRII+/DDRII+ Overview

#### QDRII+/DDRII+ Differences to QDRII/DDRII

|                                   | QDR II / DDRII             | QDRII+ / DDRII+     | Remark                                                                        |
|-----------------------------------|----------------------------|---------------------|-------------------------------------------------------------------------------|
| Frequency (DLL ON)                | 119MHz~333MHz              | 300MHz~500MHz       |                                                                               |
| Organization                      | x8, x9, x18, x36           | x9, x18, x36        |                                                                               |
| VDD                               | 1.8V +/-0.1V               | 1.8V +/-0.1V        |                                                                               |
| VDDQ                              | 1.8V+/-0.1V or 1.5V+/-0.1V | 1.5V +/-0.1V        |                                                                               |
| Read Latency                      | 1.5 clocks                 | 2.0 & 2.5 clocks    | QDRII+ read latency is not user selectable. Offered as two different devices. |
| Input Clocks                      | Single Ended (K,K#)        | Single Ended (K,K#) |                                                                               |
| Output Clocks(C,C#)               | Yes                        | No                  |                                                                               |
| A0 (DDR B2)                       | Yes                        | No                  |                                                                               |
| Echo Clock Number                 | 1 Pair                     | 1 Pair              | Echo Clocks are Single Ended.                                                 |
| PKG                               | 165 ball FBGA              | 165 ball FBGA       |                                                                               |
| Individual Byte Write (BWa#,BWb#) | Yes                        | Yes                 |                                                                               |
| QVLD                              | No                         | Yes                 | Edge Aligned with Echo Clocks                                                 |

# Guide to Support QDRII/DDRII & QDRII+/DDRII+

#### QDR & DDR Pinout

- P6 Design to use as C Clock or QVLD
- R6 Design to use as C# Clock or No Connect

#### **DDR B2 Specific Pinout**

- Design Controller to Always Start the Access/Burst with A0 = 0
  - A0 Becomes a No Connect with DDRII+

#### I/O Voltage

Use 1.5V HSTL I/O

#### Host Design

- Design to Support 1.5, 2.0 and 2.5 Cycles for Read Latencies
  - Write Latency Remains 1.0 Cycle for QDRII & QDRII+
- Recommend to use Echo Clocks to Latch Read Data

#### **Board Design**

- Design to Take Advantage of QValid Output
- Analyze Timing up to 400MHz

# QDRII+ (x18) Pinout Differences

QDRII - B4

| CY7C1513V18 (4M x 18) |      |                       |           |                  |                  |                 |                  |           |           |                  |     |
|-----------------------|------|-----------------------|-----------|------------------|------------------|-----------------|------------------|-----------|-----------|------------------|-----|
|                       | 1    | 2                     | 3         | 4                | 5                | 6               | 7                | 8         | 9         | 10               | 11  |
| Α                     | CQ   | V <sub>SS</sub> /144M | А         | WPS              | BWS <sub>1</sub> | K               | NC/288M          | RPS       | Α         | Α                | CQ  |
| В                     | NC   | Q9                    | D9        | Α                | NC               | K               | BWS <sub>0</sub> | Α         | NC        | NC               | Q8  |
| С                     | NC   | NC                    | D10       | V <sub>SS</sub>  | А                | NC              | Α                | $V_{SS}$  | NC        | Q7               | D8  |
| D                     | NC   | D11                   | Q10       | V <sub>SS</sub>  | V <sub>SS</sub>  | V <sub>SS</sub> | $V_{SS}$         | $V_{SS}$  | NC        | NC               | D7  |
| E                     | NC   | NC                    | Q11       | $V_{DDQ}$        | V <sub>SS</sub>  | V <sub>SS</sub> | $V_{SS}$         | $V_{DDQ}$ | NC        | D6               | Q6  |
| F                     | NC   | Q12                   | D12       | $V_{DDQ}$        | V <sub>DD</sub>  | V <sub>SS</sub> | $V_{DD}$         | $V_{DDQ}$ | NC        | NC               | Q5  |
| G                     | NC   | D13                   | Q13       | V <sub>DDQ</sub> | V <sub>DD</sub>  | V <sub>SS</sub> | $V_{DD}$         | $V_{DDQ}$ | NC        | NC               | D5  |
| Н                     | DOFF | V <sub>REF</sub>      | $V_{DDQ}$ | V <sub>DDQ</sub> | V <sub>DD</sub>  | V <sub>SS</sub> | V <sub>DD</sub>  | $V_{DDQ}$ | $V_{DDQ}$ | V <sub>REF</sub> | ZQ  |
| J                     | NC   | NC                    | D14       | $V_{DDQ}$        | $V_{DD}$         | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | NC        | Q4               | D4  |
| K                     | NC   | NC                    | Q14       | V <sub>DDQ</sub> | $V_{DD}$         | Vss             | $V_{DD}$         | $V_{DDQ}$ | NC        | D3               | Q3  |
| L                     | NC   | Q15                   | D15       | V <sub>DDQ</sub> | $V_{SS}$         | $V_{SS}$        | $V_{SS}$         | $V_{DDQ}$ | NC        | NC               | Q2  |
| M                     | NC   | NC                    | D16       | $V_{SS}$         | V <sub>SS</sub>  | $V_{SS}$        | $V_{SS}$         | $V_{SS}$  | NC        | Q1               | D2  |
| N                     | NC   | D17                   | Q16       | V <sub>SS</sub>  | А                | А               | Α                | $V_{SS}$  | NC        | NC               | D1  |
| Р                     | NC   | NC                    | Q17       | Α                | Α                | С               | Α                | Α         | NC        | D0               | Q0  |
| R                     | TDO  | TCK                   | Α         | Α                | А                | <del>c</del>    | А                | Α         | А         | TMS              | TDI |

CY7C1563V18 (4M × 18)-15 × 17 FBGA

|   | 1    | 2         | 3         | 4               | 5                | 6               | 7               | 8         | 9         | 10        | 11  |
|---|------|-----------|-----------|-----------------|------------------|-----------------|-----------------|-----------|-----------|-----------|-----|
| Α | CQ   | NC/144M   | Α         | WPS             | BWS <sub>1</sub> | K               | NC/288M         | RPS       | Α         | Α         | CQ  |
| В | NC   | Q9        | D9        | Α               | NC               | K               | BWS₀            | А         | NC        | NC        | Q8  |
| С | NC   | NC        | D10       | $V_{SS}$        | Α                | NC              | Α               | $V_{SS}$  | NC        | Q7        | D8  |
| D | NC   | D11       | Q10       | $V_{SS}$        | $V_{SS}$         | $V_{SS}$        | $V_{SS}$        | $V_{SS}$  | NC        | NC        | D7  |
| Е | NC   | NC        | Q11       | $V_{DDQ}$       | V <sub>SS</sub>  | V <sub>SS</sub> | V <sub>SS</sub> | $V_{DDQ}$ | NC        | D6        | Q6  |
| F | NC   | Q12       | D12       | $V_{DDQ}$       | $V_{DD}$         | $V_{SS}$        | $V_{DD}$        | $V_{DDQ}$ | NC        | NC        | Q5  |
| G | NC   | D13       | Q13       | $V_{DDQ}$       | $V_{DD}$         | $V_{SS}$        | $V_{DD}$        | $V_{DDQ}$ | NC        | NC        | D5  |
| Н | DOFF | $V_{REF}$ | $V_{DDQ}$ | $V_{DDQ}$       | $V_{DD}$         | $V_{SS}$        | $V_{DD}$        | $V_{DDQ}$ | $V_{DDQ}$ | $V_{REF}$ | ZQ  |
| J | NC   | NC        | D14       | $V_{DDQ}$       | $V_{DD}$         | $V_{SS}$        | $V_{DD}$        | $V_{DDQ}$ | NC        | Q4        | D4  |
| K | NC   | NC        | Q14       | $V_{DDQ}$       | $V_{DD}$         | $V_{SS}$        | $V_{DD}$        | $V_{DDQ}$ | NC        | D3        | Q3  |
| L | NC   | Q15       | D15       | $V_{DDQ}$       | $V_{SS}$         | $V_{SS}$        | $V_{SS}$        | $V_{DDQ}$ | NC        | NC        | Q2  |
| M | NC   | NC        | D16       | V <sub>SS</sub> | V <sub>SS</sub>  | V <sub>SS</sub> | $V_{SS}$        | $V_{SS}$  | NC        | Q1        | D2  |
| N | NC   | D17       | Q16       | V <sub>SS</sub> | А                | А               | Α               | $V_{SS}$  | NC        | NC        | D1  |
| Р | NC   | NC        | Q17       | Α               | Α                | QVLD            | Α               | Α         | NC        | D0        | Q0  |
| R | TDO  | TCK       | А         | А               | Α                | NC              | А               | Α         | Α         | TMS       | TDI |

QDRII+ - B4



# DDRII+ (x18) Pinout Differences

DDRII - B2

|   | CY7C1418AV18 (2M x 18) |           |           |                  |                  |                 |                  |           |           |           |     |  |
|---|------------------------|-----------|-----------|------------------|------------------|-----------------|------------------|-----------|-----------|-----------|-----|--|
|   | 1                      | 2         | 3         | 4                | 5                | 6               | 7                | 8         | 9         | 10        | 11  |  |
| Α | CQ                     | NC/72M    | Α         | R/W              | BWS <sub>1</sub> | K               | NC/144M          | LD        | А         | А         | CQ  |  |
| В | NC                     | DQ9       | NC        | Α                | NC/288M          | K               | BWS <sub>0</sub> | Α         | NC        | NC        | DQ8 |  |
| С | NC                     | NC        | NC        | V <sub>SS</sub>  | Α                | A0              | Α                | $V_{SS}$  | NC        | DQ7       | NC  |  |
| D | NC                     | NC        | DQ10      | V <sub>SS</sub>  | V <sub>SS</sub>  | V <sub>SS</sub> | $V_{SS}$         | $V_{SS}$  | NC        | NC        | NC  |  |
| E | NC                     | NC        | DQ11      | V <sub>DDQ</sub> | V <sub>SS</sub>  | $V_{SS}$        | $V_{SS}$         | $V_{DDQ}$ | NC        | NC        | DQ6 |  |
| F | NC                     | DQ12      | NC        | V <sub>DDQ</sub> | V <sub>DD</sub>  | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | NC        | NC        | DQ5 |  |
| G | NC                     | NC        | DQ13      | V <sub>DDQ</sub> | V <sub>DD</sub>  | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | NC        | NC        | NC  |  |
| Н | DOFF                   | $V_{REF}$ | $V_{DDQ}$ | V <sub>DDQ</sub> | $V_{DD}$         | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | $V_{DDQ}$ | $V_{REF}$ | ZQ  |  |
| J | NC                     | NC        | NC        | V <sub>DDQ</sub> | $V_{DD}$         | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | NC        | DQ4       | NC  |  |
| K | NC                     | NC        | DQ14      | V <sub>DDQ</sub> | V <sub>DD</sub>  | V <sub>SS</sub> | $V_{DD}$         | $V_{DDQ}$ | NC        | NC        | DQ3 |  |
| L | NC                     | DQ15      | NC        | $V_{DDQ}$        | $V_{SS}$         | $V_{SS}$        | $V_{SS}$         | $V_{DDQ}$ | NC        | NC        | DQ2 |  |
| M | NC                     | NC        | NC        | V <sub>SS</sub>  | $V_{SS}$         | $V_{SS}$        | $V_{SS}$         | $V_{SS}$  | NC        | DQ1       | NC  |  |
| N | NC                     | NC        | DQ16      | V <sub>SS</sub>  | Α                | А               | Α                | $V_{SS}$  | NC        | NC        | NC  |  |
| Р | NC                     | NC        | DQ17      | А                | Α                | С               | А                | А         | NC        | NC        | DQ0 |  |
| R | TDO                    | TCK       | Α         | Δ                | Α                | <u>-</u>        | А                | Δ         | Α         | TMS       | TDI |  |

CY7C1268AV18 (2M x 18)

|   |          | 1    | 2         | 3         | 4                | 5                | 6               | 7                | 8         | 9         | 10        | 11  |
|---|----------|------|-----------|-----------|------------------|------------------|-----------------|------------------|-----------|-----------|-----------|-----|
| A | \        | CQ   | NC/72M    | А         | R∕W              | BWS <sub>1</sub> | K               | NC/144M          | D         | А         | Α         | CQ  |
| E | 3        | NC   | DQ9       | NC        | Α                | NC/288M          | K               | BWS <sub>0</sub> | Α         | NC        | NC        | DQ8 |
| C | ;        | NC   | NC        | NC        | $V_{SS}$         | Α                | NC              | Α                | $V_{SS}$  | NC        | DQ7       | NC  |
|   | )        | NC   | NC        | DQ10      | $V_{SS}$         | $V_{SS}$         | V <sub>SS</sub> | $V_{SS}$         | $V_{SS}$  | NC        | NC        | NC  |
| E |          | NC   | NC        | DQ11      | $V_{DDQ}$        | V <sub>SS</sub>  | V <sub>SS</sub> | $V_{SS}$         | $V_{DDQ}$ | NC        | NC        | DQ6 |
| F | :        | NC   | DQ12      | NC        | $V_{DDQ}$        | $V_{DD}$         | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | NC        | NC        | DQ5 |
| G | <b>à</b> | NC   | NC        | DQ13      | $V_{DDQ}$        | $V_{DD}$         | V <sub>SS</sub> | $V_{DD}$         | $V_{DDQ}$ | NC        | NC        | NC  |
| H | 1        | DOFF | $V_{REF}$ | $V_{DDQ}$ | V <sub>DDQ</sub> | $V_{DD}$         | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | $V_{DDQ}$ | $V_{REF}$ | ZQ  |
| J | I        | NC   | NC        | NC        | $V_{DDQ}$        | $V_{DD}$         | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | NC        | DQ4       | NC  |
| K | (        | NC   | NC        | DQ14      | $V_{DDQ}$        | $V_{DD}$         | $V_{SS}$        | $V_{DD}$         | $V_{DDQ}$ | NC        | NC        | DQ3 |
| L | .        | NC   | DQ15      | NC        | $V_{DDQ}$        | V <sub>SS</sub>  | V <sub>SS</sub> | $V_{SS}$         | $V_{DDQ}$ | NC        | NC        | DQ2 |
| N | 1        | NC   | NC        | NC        | $V_{SS}$         | $V_{SS}$         | $V_{SS}$        | $V_{SS}$         | $V_{SS}$  | NC        | DQ1       | NC  |
| N | 1        | NC   | NC        | DQ16      | V <sub>SS</sub>  | А                | А               | Α                | $V_{SS}$  | NC        | NC        | NC  |
| F | · T      | NC   | NC        | DQ17      | А                | Α                | QVLD            | Α                | А         | NC        | NC        | DQ0 |
| F | ≀        | TDO  | TCK       | А         | Α                | А                | NC              | А                | А         | А         | TMS       | TDI |

DDRII+ - B2



### **Architecture Comparison**

| Parameter               | Std. Sync                  | NoBL <sup>TM</sup> ,        | DDR / DDR-<br>II/DDRII+                           | QDR <sup>TM</sup> / QDR <sup>TM</sup> -II/<br>QDR <sup>TM</sup> -II+ |
|-------------------------|----------------------------|-----------------------------|---------------------------------------------------|----------------------------------------------------------------------|
| Data Rate               | Single                     | Single                      | Double                                            | Double                                                               |
| Data Bus                | Common I/O                 | Common I/O                  | Common I/O* &<br>Separate I/O**                   | Separate I/O                                                         |
| Data Bus<br>Utilization | NOP between reads & writes | 100%***                     | NOP between<br>reads* / 50% of<br>Separate I/Os** | 100% reading &<br>100% writing                                       |
| $V_{DD}$                | 3.3V / 2.5V                | 3.3V / 2.5V                 | 2.5V / 1.8V                                       | 2.5V / 1.8V                                                          |
| $V_{DDQ}$               | LVTTL<br>3.3V / 2.5V       | LVTTL<br>3.3V / 2.5V / 1.8V | HSTL<br>(1.5V / 1.8V)                             | HSTL<br>(1.5V / 1.8V)                                                |
| Clock<br>Frequency      | 250 MHz                    | 250 MHz                     | 200 MHz /<br>300 MHz/400MHz                       | 200 MHz /<br>300 MHz/400MHz                                          |

<sup>\*</sup> DDR & DDR-II CIO have a common bus and require 1-2 NOP(s) between reads and writes.

<sup>\*\*</sup> DDR-II SIO has separate input and output buses. Because only one bus can be used at a time, bus utilization is exactly 50%.

<sup>\*\*\*</sup> Applies to clock frequency ≤ 166 MHz. Clock frequencies above this typically requires an NOP.