

CY62167EV30 Industrial MoBL®

16-Mbit (1M × 16/2M × 8) Static RAM

Features

■ TSOP I package configurable as 1M × 16 or 2M × 8 SRAM

■ Very high speed: 45 ns ■ Temperature ranges □ Industrial: –40 °C to +85 °C

■ Wide voltage range: 2.20 V to 3.60 V

■ Ultra-low standby power Typical standby current: 1.5 μA Maximum standby current: 12 μA

■ Ultra-low active power Typical active current: 7 mA at f = 1 MHz

■ Easy memory expansion with \overline{CE}_1 , CE_2 , and \overline{OE} Features

■ Automatic power-down when deselected

■ CMOS for optimum speed and power

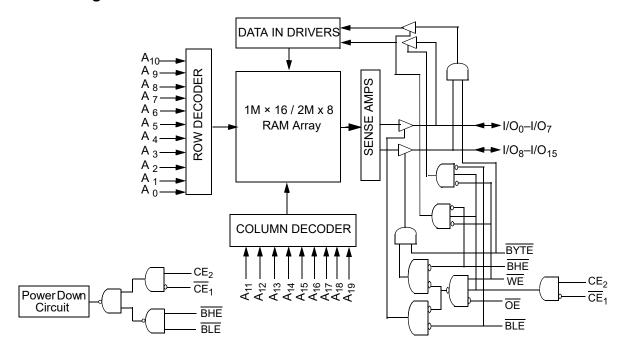
■ Offered in Pb-free 48-ball VFBGA and 48-pin TSOP I packages

Functional Description

The CY62167EV30 is a high-performance CMOS static RAM organized as 1M words by 16 bits or 2M words by 8 bits. This device features an advanced circuit design that provides an ultra low active current. Ultra low active current is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device also has an automatic power down feature that reduces power consumption by 99 percent when addresses are not toggling. Place the device in standby $\underline{\text{mod}}$ e when deselected ($\overline{\text{CE}}_1$ HIGH or $\overline{\text{CE}}_2$ LOW or both BHE and BLE are HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: the device is deselected (CE₁ HIGH or CE₂ LOW), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or a write operation is in progress (CE₁ LOW, CE_2 HIGH and \overline{WE} LOW).

To write to the device, take Chip Enables ($\overline{\text{CE}}_1$ LOW and CE_2 HIGH) and Write Enable ($\overline{\text{WE}}$) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₉). If Byte High Enable (BHE) is LOW, then data from the I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A_0 through A_{19}).

To read from the device, take Chip Enables (CE₁ LOW and CE₂ HIGH) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appears on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See Truth Table on page 14 for a complete description of read and write modes.


For a complete list of related documentation, click here.

Cypress Semiconductor Corporation 198 Champion Court Document Number: 002-24706 Rev. *A

San Jose, CA 95134-1709 408-943-2600

Logic Block Diagram

Contents

Pin Configuration	4
Product Portfolio	4
Maximum Ratings	5
Operating Range	
Electrical Characteristics	
Capacitance	7
Thermal Resistance	
AC Test Loads and Waveforms	7
Data Retention Characteristics	8
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	14

Ordering information	10
Ordering Code Definitions	15
Package Diagrams	16
Acronyms	18
Document Conventions	18
Units of Measure	18
Document History Page	19
Sales, Solutions, and Legal Information	20
Worldwide Sales and Design Support	20
Products	20
PSoC® Solutions	20
Cypress Developer Community	20
Technical Support	20

Pin Configuration

Figure 1. 48-ball VFBGA Pinout (Top View)^[1, 2]

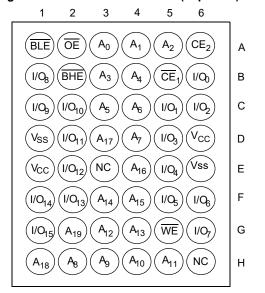
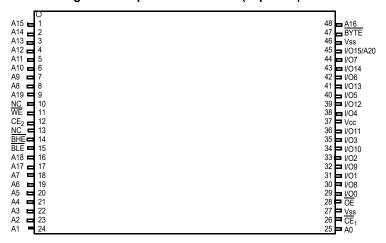



Figure 2. 48-pin TSOP I Pinout (Top View)[2, 3]

Product Portfolio

							ı	Power Di	ssipatio	n	
Product	Pango	V _{CC} Range (V)			Speed	Operating I _{CC} (mA)			A)	Standby I _{SB2}	
Product	Range				(ns)	f = 1 MHz		(ns) $f = 1 \text{ MHz}$ $f = f_{\text{max}}$		(μ A)	
		Min	Typ ^[4]	Max		Typ ^[4]	Max	Typ ^[4, 5]	Max ^[5]	Typ ^[4]	Max
CY62167EV30LL	Industrial	2.2	3.0	3.6	45	7	9	29	35	1.5	12

- 1. Ball H6 for the VFBGA package can be used to upgrade to a 32M density.
- 2. NC pins are not connected on the die.
- 3. The BYTE pin in the 48-pin TSOP I package has to be tied to V_{CC} to use the device as a 1 M × 16 SRAM. The 48-pin TSOP I package can also be used as a 2 M × 8 SRAM by tying the BYTE signal to V_{SS}. In the 2 M × 8 configuration, Pin 45 is A20, while BHE, BLE and I/O₈ to I/O₁₄ pins are not used.
- 4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
- 5. Refer to PIN#183401 for details of changes.

Maximum Ratings

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

device. Oser guidelines are not tested.
Storage temperature65 °C to + 150 °C
Ambient temperature with power applied55 °C to + 125 °C
Supply voltage to ground potential $^{[9, 7]}$ 0.3 V to 3.9 V ($V_{CC(max)}$ + 0.3 V)
DC voltage applied to outputs in High Z state $^{[9, 7]}$ 0.3 V to 3.9 V ($V_{CC(max)}$ + 0.3 V)
DC input voltage ^[9, 7] –0.3 V to 3.9 V ($V_{CC(max)}$ + 0.3 V)
Output current into outputs (LOW)20 mA
Static discharge voltage (MIL-STD-883, Method 3015)>2001 V
Latch-up current>140 mA

Operating Range

Device	Range	Ambient Temperature	V cc ^[8]	
CY62167EV30LL	Industrial	–40 °C to +85 °C	2.2 V to 3.6 V	

- Notes
 6. V_{IL(min)} = -2.0 V for pulse durations less than 20 ns.
 7. V_{IH(max)} = V_{CC} + 0.75 V for pulse durations less than 20 ns.
 8. Full Device AC operation assumes a 100 μs ramp time from 0 to V_{CC(min)} and 200 μs wait time after V_{CC} stabilization.

Electrical Characteristics

Over the Operating Range

D	Do a suite 4i a sa	Test Conditions			45 ns (Industrial)			
Parameter	Description				Typ ^[9]	Max	Unit	
V _{OH}	Output HIGH voltage	2.2 ≤ V _{CC} ≤ 2.7	$I_{OH} = -0.1 \text{ mA}$	2.0	_	_	V	
		2.7 ≤ V _{CC} ≤ 3.6	I _{OH} = -1.0 mA	2.4	_	_	V	
V _{OL}	Output LOW voltage	2.2 ≤ V _{CC} ≤ 2.7	I _{OL} = 0.1 mA	-	_	0.4	V	
		2.7 ≤ V _{CC} ≤ 3.6	I _{OL} = 2.1 mA	_	_	0.4	V	
V _{IH}	Input HIGH voltage	2.2 ≤ V _{CC} ≤ 2.7		1.8	_	V _{CC} + 0.3	V	
		2.7 ≤ V _{CC} ≤ 3.6		2.2	_	V _{CC} + 0.3	V	
V _{IL}	Input LOW voltage	2.2 ≤ V _{CC} ≤ 2.7		-0.3	_	0.6	V	
		2.7 ≤ V _{CC} ≤ 3.6	For VFBGA package	-0.3	_	0.8	V	
			For TSOP I package	-0.3	_	0.7 ^[10]	V	
I _{IX}	Input leakage current	$GND \le V_1 \le V_{CC}$		-1	_	+1	μΑ	
I _{OZ}	Output leakage current	$GND \le V_O \le V_{CC}$, Output disabled			_	+1	μΑ	
I _{CC} ^[11]	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CC(max)}$	-	29	35	mA	
		f = 1 MHz	I _{OUT} = 0 mA CMOS levels	-	7.0	9.0	mA	
I _{SB1} ^[12]	Automatic power down current – CMOS inputs	$\overline{\text{CE}}_1 \ge \text{V}_{\text{CC}} - 0.2 \text{ V or } \text{CE}_2 \le 0.2 \text{ V}$ or $(\overline{\text{BHE}} \text{ and } \overline{\text{BLE}}) \ge \text{V}_{\text{CC}} - 0.2 \text{ V},$ $\text{V}_{\text{IN}} \ge \text{V}_{\text{CC}} - 0.2 \text{ V}, \text{V}_{\text{IN}} \le 0.2 \text{ V},$ $\text{f} = \text{f}_{\text{max}} \text{ (address and data only)},$			1.5	12	μΑ	
ı [12]		$f = 0$ (\overline{OE} , and \overline{WE}), $V_{CC} = V_{CC}$			4.5	3.0 ^[13]	_	
I _{SB2} ^[12]	Automatic power down current – CMOS inputs	$\overline{CE}_1 \ge V_{CC} - 0.2 \text{ V or}$ $CE_2 \le 0.2 \text{ V or}$	V _{CC} = V _{CC(max)} Temperature = 25 °C	_	1.5	3.0[10]	μА	
		$(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2 \text{ V},$	V _{CC} = 3.0 V, Temperature = 40 °C	_	_	3.5 ^[13]		
		$V_{IN} \ge V_{CC} - 0.2 \text{ V or}$ $V_{IN} \le 0.2 \text{ V, f} = 0$	V _{CC} = V _{CC(max)} Temperature = 85 °C	_	-	12		

Document Number: 002-24706 Rev. *A

Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.
 Under DC conditions the device meets a V_{IL} of 0.8 V. However, in dynamic conditions Input LOW Voltage applied to the device must not be higher than 0.7 V. This is applicable to TSOP I package only.

^{11.} Refer to PIN#183401 for details of changes.

^{12.} Chip enables (CE₁ and CE₂), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the I_{SB1}/I_{SB2} / I_{CCDR} spec. Other inputs can be left floating 13. This parameter is guaranteed by design.

Capacitance

Parameter ^[14]	Description Test Conditions		Max	Unit
C _{IN}	Input capacitance	$T_A = 25$ °C, $f = 1$ MHz, $V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output capacitance		10	pF

Thermal Resistance

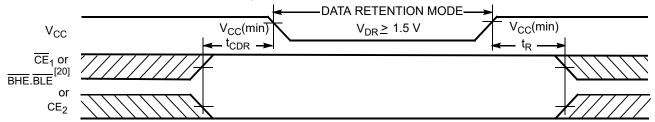
Parameter ^[14, 15]	Description	Test Conditions	48-ball VFBGA	48-pin TSOP I	Unit
Θ_{JA}	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	31.50	57.99	°C/W
$\Theta_{\sf JC}$	Thermal resistance (junction to case)		15.75	13.42	°C/W

AC Test Loads and Waveforms

Figure 3. AC Test Loads and Waveforms

Parameters	2.2 V to 2.7 V	2.7 V to 3.6 V	Unit
R1	16667	1103	Ω
R2	R2 15385 1554		Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

^{14.} Tested initially and after any design or process changes that may affect these parameters.
15. Refer to PIN#183401 for details of changes.


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions	Min	Typ [16]	Max	Unit
V_{DR}	V _{CC} for data retention		1.5	_	_	V
I _{CCDR} ^[17]		V_{CC} = 1.5 V to 3.0 V, $\overline{CE}_1 \ge V_{CC} - 0.2$ V or $CE_2 \le 0.2$ V or $(\overline{BHE} \text{ and } \overline{BLE}) \ge V_{CC} - 0.2$ V, $V_{IN} \ge V_{CC} - 0.2$ V or $V_{IN} \le 0.2$ V	_	_	10	μА
t _{CDR} ^[18]	Chip deselect to data retention time	-	0	_	-	_
t _R ^[19]	Operation recovery time	_	45	_	-	ns

Data Retention Waveform

- 16. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

 17. Chip enables (CE₁ and CE₂), byte enables (BHE and BLE) and BYTE must be tied to CMOS levels to meet the I_{SB1} / I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.
- 18. Tested initially and after any design or process changes that may affect these parameters.
- 19. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 100 μs or stable at V_{CC(min)} ≥ 100 μs.
 20. BHE.BLE is the AND of both BHE and BLE. Deselect the chip by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics

Parameter ^[21, 22]	Description	45 ns (In Autom	45 ns (Industrial / Automotive-A)		
	·	Min	Max		
Read Cycle		<u>'</u>	•	•	
t _{RC}	Read cycle time	45	_	ns	
t _{AA}	Address to data valid	-	45	ns	
t _{OHA}	Data hold from address change	10	_	ns	
t _{ACE}	CE ₁ LOW and CE ₂ HIGH to data valid	-	45	ns	
t _{DOE}	OE LOW to data valid	_	22	ns	
t _{LZOE}	OE LOW to Low Z [22]	5	_	ns	
t _{HZOE}	OE HIGH to High Z [22, 23]	_	18	ns	
t _{LZCE}	CE ₁ LOW and CE ₂ HIGH to Low Z ^[22]	10	_	ns	
t _{HZCE}	CE ₁ HIGH and CE ₂ LOW to High Z ^[22, 23]	_	18	ns	
t _{PU}	CE ₁ LOW and CE ₂ HIGH to power-up	0	_	ns	
t _{PD}	CE ₁ HIGH and CE ₂ LOW to power-down	_	45	ns	
t _{DBE}	BLE / BHE LOW to data valid	_	45	ns	
t _{LZBE}	BLE / BHE LOW to Low Z [22]	10	_	ns	
t _{HZBE}	BLE / BHE HIGH to High Z [22, 23]	_	18	ns	
Write Cycle ^[24, 25]		1	•	•	
t _{WC}	Write cycle time	45	_	ns	
t _{SCE}	CE ₁ LOW and CE ₂ HIGH to write end	35	_	ns	
t _{AW}	Address setup to write end	35	_	ns	
t _{HA}	Address hold from write end	0	_	ns	
t _{SA}	Address setup to write start	0	_	ns	
t _{PWE}	WE pulse width	35	_	ns	
t _{BW}	BLE / BHE LOW to write end	35	_	ns	
t _{SD}	Data setup to write end	25	_	ns	
t _{HD}	Data hold from write end	0	_	ns	
t _{HZWE}	WE LOW to High Z [22, 23]	_	18	ns	
t _{LZWE}	WE HIGH to Low Z [22]	10	_	ns	

^{21.} Test conditions for all parameters other than tristate parameters assume signal transition time of 1 V/ns, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in Figure 3 on page 7.

^{22.} At any temperature and voltage condition, t_{HZCE} is less than t_{LZDE} , t_{HZOE} is less than t_{LZDE} , and t_{HZOE} is less than t_{LZWE} for any device.

 $^{23.\,}t_{HZOE},t_{HZCE},t_{HZBE}, and\,t_{HZWE}\,transitions~are~measured~when~the~outputs~enter~a~high~impedance~state.$

^{24.} The internal write time of the memory is defined by the overlap of $\overline{\text{WE}}$, $\overline{\text{CE}}_1 = \text{V}_{\text{IL}}$, $\overline{\text{BHE}}$ or $\overline{\text{BLE}}$ or both = V_{IL} , and $\text{CE}_2 = \text{V}_{\text{IH}}$. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INAC TIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

^{25.} The minimum pulse width for Write Cycle No. 3 (WE Controlled, OE LOW) should be equal to the sum of tsp and thzwe.

Switching Waveforms

Figure 5. Read Cycle No. 1 (Address Transition Controlled) $^{[26,\ 27]}$

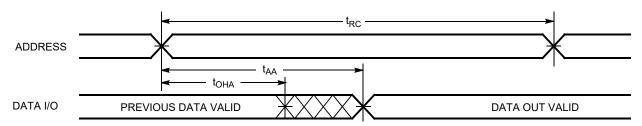
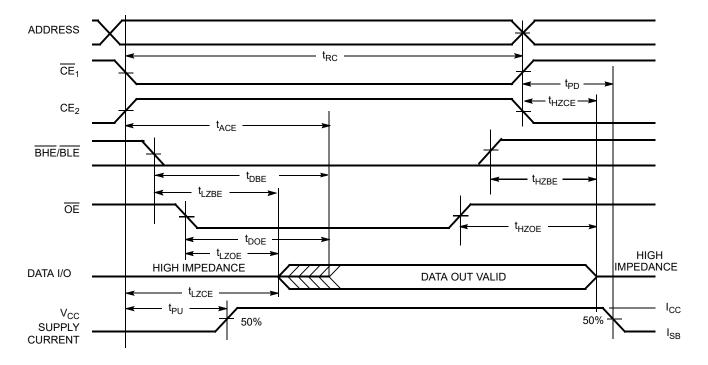
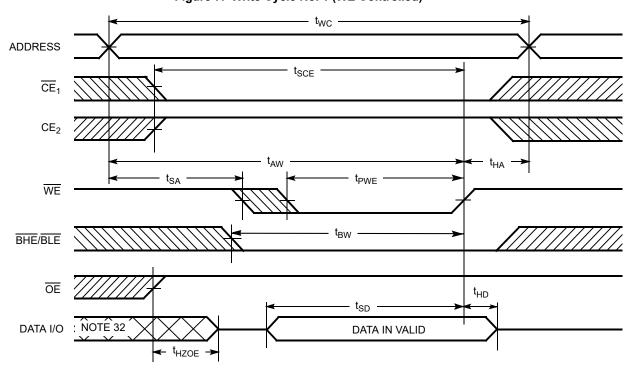



Figure 6. Read Cycle No. 2 ($\overline{\text{OE}}$ Controlled)[27, 28]

Notes 26. The device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, \overline{BHE} , \overline{BLE} or both = V_{IL} , and $CE_2 = V_{IH}$.


^{27.} WE is HIGH for read cycle.

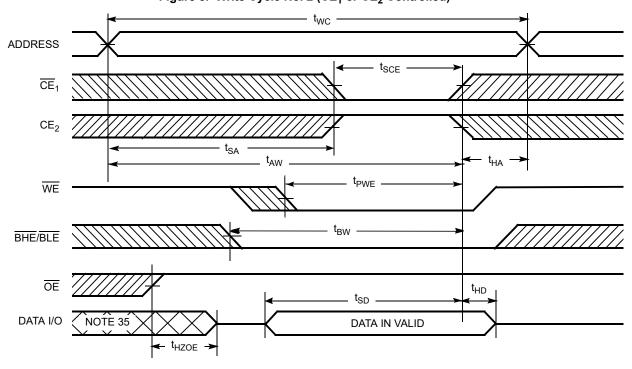
^{28.} Address valid before or similar to $\overline{\text{CE}}_1$, $\overline{\text{BHE}}$, $\overline{\text{BLE}}$ transition LOW and $\overline{\text{CE}}_2$ transition HIGH.

Switching Waveforms (continued)

Figure 7. Write Cycle No. 1 (WE Controlled)^[29, 30, 31]

^{29.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

30. Data I/O is high impedance if OE = V_{IH}.


^{31.} If $\overline{\text{CE}}_1$ goes HIGH and CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ = V_{IH} , the output remains in a high impedance state.

^{32.} During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

Figure 8. Write Cycle No. 2 ($\overline{\text{CE}}_1$ or CE_2 Controlled)^[33, 34]

^{33.} The internal write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE or BLE or both = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and hold timing must refer to the edge of the signal that terminates the write.

^{34.} If $\overline{\text{CE}}_1$ goes HIGH and CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ = V_{IH} , the output remains in a high impedance state.

^{35.} During this period the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

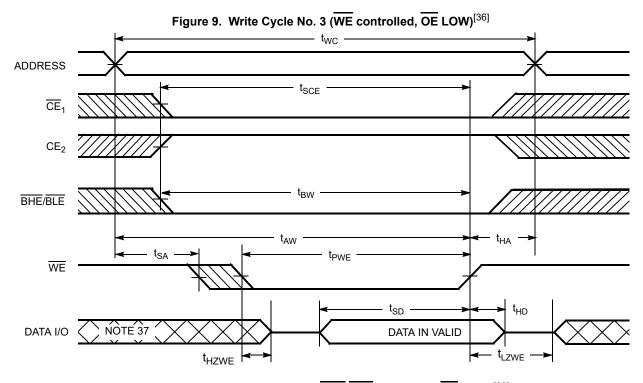
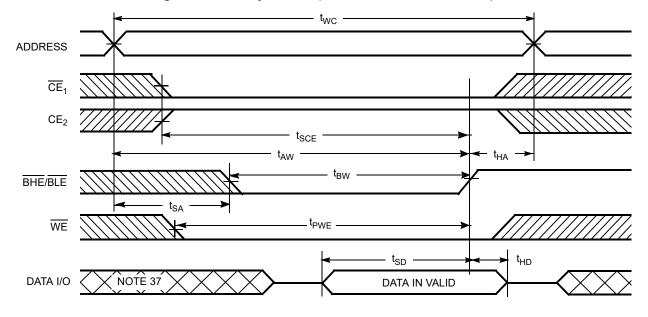



Figure 10. Write Cycle No. 4 (BHE/BLE controlled, OE LOW)[36]

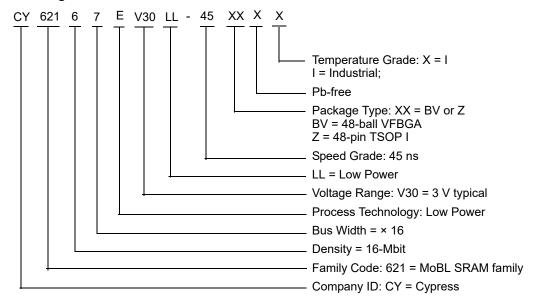
^{36.} If $\overline{\text{CE}}_1$ goes HIGH and CE_2 goes LOW simultaneously with $\overline{\text{WE}} = \text{V}_{\text{IH}}$, the output remains in a high impedance state. 37. During this period the I/Os are in output state. Do not apply input signals.

Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	X ^[38]	Х	Х	X ^[38]	X ^[38]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[38]	L	Х	Х	X ^[38]	X ^[38]	High Z	Deselect/Power-down	Standby (I _{SB})
X ^[38]	X ^[38]	Χ	Х	Н	Н	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Η	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	Г	Х	L	L	Data In (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	ligh Z (I/O ₀ –I/O ₇); Write	

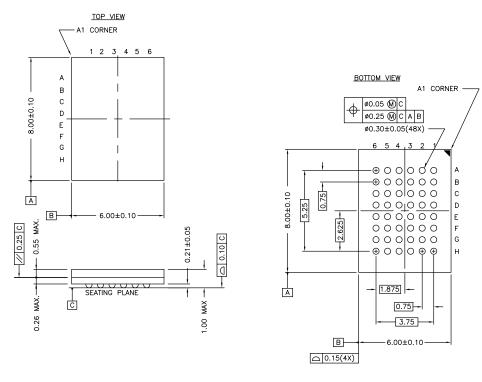
Document Number: 002-24706 Rev. *A Page 14 of 20

Note


38. The 'X' (Don't care) state for the chip enables and Byte enables in the truth table refer to the logic state (either HIGH or LOW). Intermediate voltage levels on these pins is not permitted.

Ordering Information

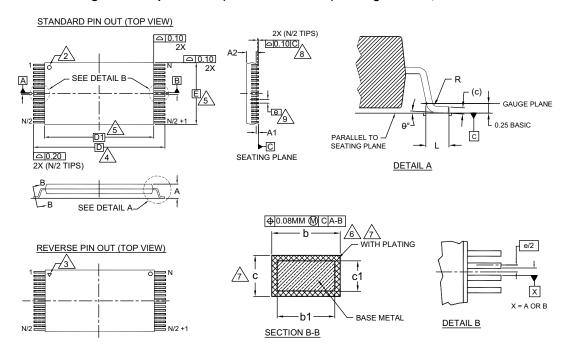
Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
	CY62167EV30LL-45BVI	51-85150	48-ball VFBGA (6 × 8 × 1 mm), Package Code: BV48	
45	CY62167EV30LL-45BVXI	51-85150	48-ball VFBGA (6 × 8 × 1 mm) (Pb-free), Package Code: BZ48	Industrial
	CY62167EV30LL-45ZXI	51-85183	48-pin TSOP I (Pb-free)	


Ordering Code Definitions

Package Diagrams

Figure 11. 48-ball VFBGA (6 × 8 × 1.0 mm) Package Outline, 51-85150

NOTE:


PACKAGE WEIGHT: See Cypress Package Material Declaration Datasheet (PMDD) posted on the Cypress web.

51-85150 *H

Package Diagrams (continued)

Figure 12. 48-pin TSOP I (18.4 × 12 × 1.2 mm) Package Outline, 51-85183

SYMBOL	DIMENSIONS		
STIVIBOL	MIN.	NOM.	MAX.
А	_	_	1.20
A1	0.05	_	0.15
A2	0.95	1.00	1.05
b1	0.17	0.20	0.23
b	0.17	0.22	0.27
c1	0.10	_	0.16
С	0.10	_	0.21
D	20.00 BASIC		SIC
D1	18.40 BASIC		
E	12.00 BASIC		IC
е	0.50 BASIC		
L	0.50	0.60	0.70
θ	0°	_	8
R	0.08	_	0.20
N	48		

NOTES

DIMENSIONS ARE IN MILLIMETERS (mm).

PIN 1 IDENTIFIER FOR STANDARD PIN OUT (DIE UP).

PIN 1 IDENTIFIER FOR REVERSE PIN OUT (DIE DOWN): INK OR LASER MARK.

TO BE DETERMINED AT THE SEATING PLANE GO.T. THE SEATING PLANE IS

TO BE DETERMINED AT THE SEATING PLANE [-C-]. THE SEATING PLANE IS DEFINED AS THE PLANE OF CONTACT THAT IS MADE WHEN THE PACKAGE LEADS ARE ALLOWED TO REST FREELY ON A FLAT HORIZONTAL SURFACE.

DIMENSIONS D1 AND E DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE
MOLD PROTRUSION ON E IS 0.15mm PER SIDE AND ON D1 IS 0.25mm PER SIDE.

DIMENSION 6 DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF 6 DIMENSION AT MAX. MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND AN ADJACENT LEAD TO BE 0.07mm.

THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

LEAD COPLANARITY SHALL BE WITHIN 0.10mm AS MEASURED FROM THE SEATING PLANE.

DIMENSION "e" IS MEASURED AT THE CENTERLINE OF THE LEADS.

10. JEDEC SPECIFICATION NO. REF: MO-142(D)DD.

51-85183 *F

Acronyms

Table 1. Acronyms Used in this Document

Acronym	Description		
BHE	byte high enable		
BLE	byte low enable		
CE	chip enable		
CMOS	complementary metal oxide semiconductor		
I/O	input/output		
ŌE	output enable		
SRAM	static random access memory		
TSOP	thin small outline package		
VFBGA	very fine-pitch ball grid array		
WE	write enable		

Document Conventions

Units of Measure

Table 2. Units of Measure

Symbol	Unit of Measure		
°C	degree Celsius		
MHz	megahertz		
μΑ	microampere		
μS	microsecond		
mA	milliampere		
mm	millimeter		
ns	nanosecond		
Ω	ohm		
%	percent		
pF	picofarad		
V	volt		
W	watt		

Document History Page

Document Title: CY62167EV30 Industrial MoBL [®] , 16-Mbit (1M × 16/2M × 8) Static RAM Document Number: 002-24706					
Rev. ECN No. Orig. of Change Description of Change		Description of Change			
**	6267677	NILE	07/31/2018	New datasheet.	
*A	6294735	NILE	08/29/2018	Added Footnotes 5, 11, and 15 referring to PIN# 183401 associated with the changes.	

Document Number: 002-24706 Rev. *A Page 19 of 20

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot cypress.com/memory Memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc

Power Management ICs cypress.com/pmic
Touch Sensing cypress.com/touch
USB Controllers cypress.com/usb
Wireless Connectivity cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2018. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any inability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, uclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, other medical devices of cypress from any claim, damage, or

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.