Datapath Superprimitives!

Please welcome another four (four!) installments into the super primitive
category, this time with the intent of getting you up and running with a datapath
faster and easier than ever before. These four datapath super primitives
eliminate 95% of the busywork associated with developing for a datapath and
get you trying, testing and creating with PSoC’s powerful UDB datapaths in no
time at all.

These datapath super primitives allow you to start designing with an 8, 16, 24 or
32 bit datapath, preconfigured and bristling with features to help you try out new
ideas and debug when things go wrong. These super primitives provide you with
a readymade component symbol, configurable component parameter (A0, Al,
DO, D1 initializations right in the customizer, FIFO configuration of status
reporting and easy access to the FIFO single buffer mode as well as optional
debugging hardware signals and reset). Premade API files simplify component
development with a header file containing all the necessary datpath registers,
pointers, masks, modes and shifts already defined for you, as well as a C file
that provides a Start() API ready to go with all the features you enable in the
customizer.

Excited? I'm just getting started. These super primitives also include a skeleton
verilog file, with all the necessary code to get started already included such as
standard inputs and outputs, component parameters, a state machine and a
preconfigured datapath of your choosing (8, 16, 24, or 32 bit). The
preconfigured datapaths are already chained for you so they “just work” and
include shifting setups for left shifts and arithmetic right shifts. The datapaths
are also moved into the merge region of the verilog file, so when you add inputs
and outputs to your symbol, simply re-generate your verilog file, and the new
inputs and outputs are added for you automatically, with nothing lost!

| can tell you are ready to start using these super primitives, but | am not done
packing the awesomeness into these components. These super primitives also
come packaged with a component debug capability file, giving you incredibly
easy access to the working registers of the datapath (A0, Al, DO, D1, even the
FIFOs in single buffer mode), simplifying debug and reducing the headaches
associated with learning the datapaths. And to top it all off, you also get a DMA
capability file, giving the DMA wizard easy access to all your important registers,
simplifying the setup of getting data into and out of your datapath component.

With these components, all you need to do to start using a datapath is import the
desired super primitive, point the Datapath configuration tool at the premade
verilog file, configure your datapath and write your verilog to control it and GO!

Attached File Summary:

File # 2 is a zip file containing the 4 super primitive components. To use the file,
download it and replace the .PDF extension with .ZIP. The four .cycomp files
are inside this zip file.

Details:
To get started with these new super primitives, open a project, navigate to the

component tab in the workspace explorer, right click on you project and select
“Import Component”

Workspace Explorer ~ 0 X
E Workspace "Design114 (1 Projects) 5
="z Project "Desig 0
- . fu o
=%y TopDesign |_'T Import Component... 2 <:
.ﬂ TopDesi Add Component Itemn... 4 E
Set As Active Project 0| |~
IR
Update Components... 61 -
m
terina . . = 1
[#+] Build Designll4 iy
— Clean Designlld |;

When the dialog box pops up, select “Import from archive” and navigate to the
locations of the “USER_Datapath8/16/24/32.cycomp” file. Click OK. Itis at this
point you select the width of the datapath you want to use. The
USER_Datapath8.cycomp is an 8 bit wide datapath, the
USER_Datapathl16.cycomp is a 16 bit wide datapath, the
USER_Datapath24.cycomp is a 24 bit wide datapath and the
USER_Datapath32.cycomp is a 32 bit wide datapath.

rImpDrt Component | ? 2 .|W
(7 Import from projectdibrany: Design115
Source component: TopDesign
@ Import from archive: t"CyComp Files®USER_Datapath1€.cycomp B
Target project: [Desigrﬂ 15 *]
| ok || Caneel |

Your workspace explorer will now contain all the files for your component

Workspace Explorer (1 project] -~ I X |
S
B ‘workspace Design115 (1 Projects)
EHEI *Project "Design115" [CYBCIEEEAX]-040]
I_,:_}*I TopDesign
é] TopDesign.cysch
=
B+ APl
@ LUSER_Datapath1&Component_v1_00.c

-|_] USER_Datapath16Component_v1_00.cycdx
-] USER_Datapath16Component_v1_00.cydmacap
-[#] USER_Datspath16Compenent_v1_00.cysym
|V_°| IJSER_Datapath16Component_v1_00.wv

155y ,|5qaal.|5|;qE(] /{ sjuauodwnn _/(a:uncns

First thing you should do is rename the component by right clicking on the
component and selecting “Rename.”

|Wur|:space Explorer (1 project ~ 01X
[workspace Design115 (1 Projects)
=Pa| *Project 'Design115' [CYBC3866AX1-040]

un
B]
=@y TopDesign =
. L.|B] TopDesign.cysch \ﬂ%
-y a
B A Set As Top Component §
. =]
|G Add Component Itemn... 0.c §
Export Component [@
-] U e .
-~ U % Cut Ctrl+X pdmacap |2
Iﬂ 1 i
Al Paste Tz
- N
" Delete Del 7
Rename F2 %

Rename it to something with your initials, or your name instead of USER and
either leave the rest alone, or give a name that reflects your final purpose. Make
sure to leave the vl 00 appended to the end so that you can make new
versions later if you choose.

|Wml:space Explorer ~ x|

i
B ‘workspace 'Design115 (1 Projects)
=Pa| *Project 'Design115' [CYBC3866AX1-040]
- My KEES_Rocks16_v1_00
EHED AP
--|c] USER_Datapath16Component_v1_00.c
.| n] USER_Datapath16Component_v1_00.h
-] KEES_Rocks16 w1_00.cycdx
-] KEES_Rocks16_v1_00.cydmacap
~[#| KEES_Focks16_ w1 _00.cysym
~|[V] KEES_Rocks16_v1_00.v

-y TopDesign

a1k

T T

ls:”nsa'd_/lsqaaqseqeq/l squaundm;/amnns
o

Notice how the API files did not change. You need to manually change them to
match the new component name by right clicking on them and selecting
“‘Rename”

L e = N e A =3 T @
|Wurlcspace Explorer ~ 1 K|
2 |

Workspace Design115 (1 Projects)
=P *Project 'Design115' [CYBC3866AX1-040]
-y KEES Rocks18 w100
EHE AP
-[€] KEES_Rocks16_v1_00.c
" 1] KEES_Rocks16_v1_00h
] KEES_Rocks16_v1_00.cycdx
|j KEES_Rocks16_v1_00.cydmacap
~[#| KEES_Focks16_ w1 _00.cysym
"] KEES_Rocks16_v1_00~

-y TopDesign

ls:”nsa'd_/lsqaaqseqeg/l squaundun:/(a:unns

Now this step is important. Open the .cysym file, right click in the symbol area
(not on the symbol itself) and select “Properties”

| Workspace Explorer (1 project) - X

o

\erkspace ‘Design115 (1 Projects)

2] “Project ‘Design115" [CYBC3866AX-040]
-9 KEES_Rocks16_v1_00

EHED AP

¢ i-|c] KEES_Rocks16_v1_00c

[n] KEES_Rocks16_v1_00h

StartPage ~ TopDesign.cysch ° KEES_Rodks...1_00.cysym

Step 1. Rename the component

Step 2: Rename the AP files

Step 3. Modify Doc.APIPrefix to match the AP/ r
(right click on symbol area -> properties)

Step 4. Delete this text

Step 5: Create

KEES_Rocks16_v1_Dl.cycdx
i-[] KEES_Rocks16_v1_00.cydmacap
el
*-[v] KEES_Rocks16_v1_00v

@y TopDesign
B @ TopDesign.cysch

R‘.".“H’.“EH)/ODH

s)nsay {s@ayseieg | sjuauoduwoy

KEES Rocks16 vi1_

2k Paste Ctrl+V l__ Reset
Select All Ctrl+A
Zoom »
@2 Generate Verilog
| Properties
| Clock

(The component symbols also include text to remind you of these steps. This
text can be deleted at any time)

Doc ComparyAddrl

Doc. ComparyfAddrZ

Doc Companyfddr3

Doc. CompanyMame

Doc CreatedBy kees

Doc CreatedOn 02/02/2013 21:45:22

Doc Cumrert User
Doc Filename
Doc. LastModified By

kees
CMlszerskees \Documents’est_projectstsandbox’.Des
kees

Doc. L astModifiedOn 02/02/2013 21:45:22

B Symbol

Doc AP Prefic IUSER_Datapath16Compaonent_v1_00
Doc CatalogPlacement {Collection)

Doc.Default InstanceMame

Doc. BtemalComponent False

Doc. Symbol Summary

Doc. SymbolVisibleInCatalog True

Doc.URL

Dec_ APIPrefix

Specifies a prefic on all AP files in the component that will be stripped before generating the final user visible file
name during the build process. E.g.. an AP file named UART _INT .c with an AP prefic of UART will become _IM...

Change the Doc.APIPrefix to match the name of the renamed API files.

4
+
&5

|Wol|cspace Explorer (1 project) Start Page

N

TopDesign.cysch ~~ KEES_Rodks...1_00.cysym

‘workspace 'Design115 (1 Projects) l
P “Project 'Design115' [CYBC3866AXI-040] o
=+ KEES_Focks15_v1_00 =
==Y N E A
€] KEES_Rocks16_v1_00.c ™ Doc CompanyAddr
|n] KEES_Rocks16_v1_00h T goc gmpam’x:ri
[KEES_Rocks16_v1_00.cycdx = D:z t:og:gmamre
] KEES_Rocks16_v1_00.cydmacap . Doc CreztedEy _—

6| KEES_Rocks16_v1_00.cysym

Doc CreatedOn 02/02/2013 21:45:22

ﬂ KEES_Rocks16_v1_00.v - Doc.Cument User kees
TopDesign D_ Doc Filename ChUsers‘kees‘\Documents'test_projects’sandbox\Des|
@ TopDesign.cysch A Doc LastModifiedBy kees

Doc LastModifiedOn 02/02/2013 21:45:22

E Symbol
KEES_Rocks16_v1_00
Doc CatalogPlacement (Collection)
Doc.DefaultInstance Name
Doc. BExdemalComponent Falze
Doc. Symbol Summary
Doc SymbolVisibleInCatalog True
Doc.URL

lsq|nsaa/ls:|aaqqupq/l s:uauodl.un:/(a:u.lnos
=1

Doc_APIPrefix
Specifies a prefic on all AP files in the component that will be stripped before generating the final user visible file
name during the build process. E.g., an APl file named UART_INT .c with an AP prefix of UART will become _IN...

And that concludes all the component customization that you MUST do. Any
further customization is optional. At this point, your component will be located in
the “Community/Digital/Datapath/...” library tab.

AW Wy S C WS R VLA S R =N WP 5 o B
|Cﬂmpunent Catalog (271 components) - = x|

| ELITT

EEE

Community]/Clﬂ:[Search Jff-Chip] 4
Community Component Catalog
EI@ Cigital

=-es Datapath

[(sjuaucdwaon 147) bojeien Juauodwo]

Getting started with you super primitive

Now that you have your component in your workspace, you can start to
experiment with the datapath. Depending on your work flow with datapaths, you
may dive right into the verilog file, or you may fire up the datapath configuration
tool and set up your datapath instructions. For the purpose of this memo, I'm
going to fire up the datapath configuration tool, and walk you through finalizing
the setup of your new datapath component.

Go to Tools->Datapath configuration tool

Asandbox\Design115\Design115.cydsn\TopDesign\TopDes
Debug HI Window Help
w53 FE Install drivers for pVision
Datapath Config Tool...
DA Wizard...
|'£| Bootloader Host..,
Options...

SE B

When the tool opens, select File->Open

TopDesign.c

Help

File | Edit View Took
| Open.. CtlsO |

Close

Recent Files »

NC SRCA SRCE

Save Ctrl+5

Save As..,

Exit

Navigate to your project directory. In you project design folder, there will be
another folder with your newly imported component name. Go into that folder,
and select the verilog file.

| Open Verilog File
? ‘ l « test projects » sandbox » Designll5 » Designlls. n » KEES Rocksl6 vl 00 » - |+ Seal
< B proj ig ig el |

Organize * MNew folder
| Designll5 - :
o =2 Documents library
i Designl15.cydsn KEES_Rocks16 v1_00
1. KEES_Rocksl6_v1_ 00 =
|| TopDesign MNarme Date modified Type
TightLink i API Saturday 2/2/2013 9:55 P... File folder
y fun stuff.zip 1 Rocks16 vl 00w aturda 54 P... Verilog File
Bis My fun stuff [l KEES_Rocks16 vl 00 Saturday 2/2/2013 3:54 P... Verilog Fil
Y Trainings

Wiriial Choadi~ 2040

The Datapath configuration tool will update with the preconfigured datapath
already in the file.

| 4 C:\Users\kees\Documents\test_projects\sandbox\Desigs s w1 OO\KEES_Rocks16.v1 00
Edit View Tools Help

Corffiguration [daiapalh_a (16}

CFGRAM

Reset Binary Value SACA SRCB SHIFT SR CPBEN CISEL SISEL CMPSEL Comment

00000000 | DODODODO AD Do PASS MNOME DSBL CFGA CFGA CFGA
00000000 | DODODODO Ad Do PASS MONE DSBL CFGA CFGA CFGA

00000000 | DODODODO AO Do PASS NOME DSBL CFGA CFGA CFGA

00000000 | DODODODO Ad Do PASS NOME DSBL CFGA CFGA CFGA

00000000 | DODOCOOO AD Do PASS MNONE DSBL CFGA CFGA CFGA
(00000000 | 00000000 AD nli} PASS NONE DSBL CFGA CFGA CFGA
00000000 | 0OD0000O AD Do FASS NONE DSBL CFGA CFGA CFGA
(00000000 | 00000000 AD nli} PASS NONE DSBL CFGA CFGA CFGA

A A A A A A A

A
M6 B [E B Uesd | Commert

.1|1|1|1|1|1|1|1|0mmmn|

CFG11-10

Reset CMASKI o £1.C1 €1 €1 C1 [C1) Co CO CO CO CO CO CO CO
Value [6 15 [B R0 [161 B [BN m

| FF .1|1|1|1|1|1|1|1.1|1|1|1|1|1|1|1|

CFG13-12

Comment

Reset Binary Value MR SN cisEB csela GASKT CHASKD AMSK pprg siSELE SISELA Commen:

|oooooooo 1 cooonto0 a1 o1 [aipt [aRmH [ammH [pseL pseL [pseL [oEF0 [cHAN [DEFS [St A-LS.ShitB - Anh RS

CFG15-14

Reset Binary Value PISEL PIDYN M5B 51 F1INSEL FOINSEL MSBEN MSBSEL gu’;‘g CHAINFBE CHAIN1 CHAIND Comment

] ooooooon 1 ooooto00 | acc \ | [Bus BUs [pseL [Bmo [cHmED [nocHN [nocHn [nocHn |

CFG17-16

Unused Unused FICK FICK FIFO FIFD FIFO EXT WRK16
Reset Binary Value [15:13] piqg FTOYN FODYN y INV FAST FIFOCAP epGe ASYNC CRCPRS CONCaT Cemment

] onaooo0n 1 ooooono |aon | | | E: | ax [eveL [smc [pseL pseL |

If you select a 16, 24, or 32 bit datapath, there will be a “datapath_a/b/c/d”
representing the 8-15, 16-23, and 24-31% bit datapaths. In this example, |

imported a 16 bit datapath, so | have a datapath_a (LSB) and a datapth_B
(MSB)

LG sem&ﬁes\Dmmm
T &l File Edit View Tools Help
Corfiguration: |datapath._a {16) - |
disaflf] CFGRAM ata I.
| Reset Reg Binary Value FUNC SRCA SRCB 5
Dﬂegl} 00000000 | DODODDD0 | PASS AD Do ps
[lmant |nnnnnnnn 1 annnnnan | pace an nn =]

For reference, datapath_a is always the lowest byte, and the increasing letters
correspond to the increasing bit order of the datapath.

datapath_a: bits 0-7
datapath_b: bits 8-15
datapath_c: bits 16-23
datapath_d: bits 24-31

The datapaths have already been chained for you so that they “just work” for
arithmetic, comparisons, and shifting. For a cheat sheet on how to chain
datapaths, refer to KEES # 190.

A note on shifting: The preconfigured datapaths have been set up to
perform Left Shifts (zero shifted in) when shift configuration A is selected,
and ARITHmetic Right Shifts when shift configuration B is selected. | felt
that these modes would be the most useful by default.

SISELB SISELA Commert

DEFSI CHAIN Shift & = LS, Shift B = Aith RS

To change the behavior of the right shift from arithmetic to a normal right
shift, shifting in zeros into the MSB, make the following change on the
most significant byte datapath

CMASKY! CMASKD A MSK

ISELE CISELA gy EN EN DEF 5l SISELB SISELA Comment

1AIN CHAIN DSBL DSEL DSBL DEF_0 DEFSI CHAIMN Shift A= L5, Shift B = Aith RS

IDYN MSBSI F1INSEL FOINSEL MSBEN MSBSEL Ciiap CHAINFE CHAINT CHAINO Comment

MSE BUS BUS DSBL BITO NOCHM |CHNED |CHNED |CHMED

Right click on the “MSB SI” bit field, and select “Disable Bit”

CMASK1 CMASKD A MSK
CISELA Ey EN EN DEF 5l SISELBE 5SISELA Comment

CHAIN DSBL DSBL DSBL DEF_O DEFSI CHAIN Shift A = LS, Shift B = Arth RS

MSBSI F1INSEL FOINSEL MSBEN MSBSEL Ghoh CHANFB CHAIN1 CHANO Comment
REG —Lloue A SEL | BITO NOCHN |CHNED |CHNED |CHNED
Add Parameter
Use Existing]
— IFI}CI{ FIFO FIFO FIFO EXT WRK16
et Ml Copy Register INV rasT FIFOCAP EpgE ASYNC CRCPRS CONCAT
Paste Register : DP AX LEVEL |SYNC |DSBL |DSBL

The datapath is now configured to do an non-arithmetic right shift in shift
configuration B.

CMASK1 CMASKD A MSK
B CISELA gy EN EN DEF 5l SISELE SISELA Comment

CHAIN DSBL DSBL DSBL DEF_D DEFSI CHAIN Shift A = L5, Shift B = RS

MSBS FIINSEL FOINSEL MSBEN MSBSEL irap CHAINFB CHANT CHANO Comment

BUS BUS DSBL BITD NOCHM |CHNED CHNED CHMED

Now configure your datapath! Set up the instructions to do as you please (make
sure to configure all bytes of the datapaths the same way! You can use Edit-
>Copy Datapath, then move to another byte of the datapath and Edit->Paste
Dynamic)

——
E Ch\Users\kees\Documents\test_projects\sandbox\Designl

File | Edit | View Tools Help
Config Copy Datapath Ctrl+C :

Paste Datapath Ctrl+V
CFGR

Paste Dynarnic

Rese Reset Datapath SRCA

C Mew Datapath... | AD
| AD
Delete Datapath |

| | Regd [DOOTOUTD T D000 | FASS Al
[] Req2| 10100000 | 01000000 | XOR AD

[] Reg# |o0DDDODY | 01000000 |PASS AD
I ™ r AR o AR Il W el ol AN

Be wary of “Paste Datapath” since this will paste the entire datapath, messing up
the chaining.

Save your datapath configuration and close the tool. Closing the tool is a hassle
when you want to make quick edits to your datapath, but leaving the tool open
can become problematic when you forget to save the verilog file or the datapath
configuration and have 2 versions of the verilog file out of sync with each other.
Take my advice, only edit one at a time, and close the datapath configuration
tool when you are done using it. It will save you from many headaches.

When you are done editing your datapath, you may want to add some input or
outputs to your component. You can open the schematic symbol and add your
inputs and outputs there. | am going to assume you know how to add inputs and
outputs to the symbol so | will leave those instructions out. | will however point
out the set of debugging pins included with the symbol.

KEES Rocks16 vi 00 N

State 0 -+
'+ Reset State 1 +
State 2 +

> Clock

These pins are set to be invisible when the ‘$Debug’ parameter is set to ‘false’. |
recommend adding useful signals to this set of debugging pins and setting them
to hide when debugging is disabled for your component. When you don’t need
them, they are out of the way and not bothering anything. But when you do
need them, they can provide critical insight into how your datapath is behaving.
The easiest way to add debugging specific pins is to just copy one of the State x
pins. The shape formatting that hides the pin when debugging is disabled will be
copied along with it. Just change the name to suit your needs.

A tip for adding digital inputs to your design that may be hidden based on a
component parameter, make sure you set the default value along with the
visibility expression.

To access the visibility expression, right click on the pin and select “Format
Shape”

KEES Rocks16 v1 C

& Cut Ctrl+X
23| Copy Ctrl+C ar —
k| Paste Ctrl+V
| Delete Del
Zoom »
Shape k
Edit Terminal Mame...

% Format Shape || '

Properties

Default Expression 100

Iz Buried Pin False

Must Connect i Visible True

Visibiltty Expression 2EnableReset ==true
E Label

Justification Left

MName Feset
E Terminal

Direction INFUT
Show Label True
Show Wire Guide True
Tvne DIGITAL

Mame

The default expression is the logic value that this input pin will be driven to when
it's hidden.

After you have added whatever signals you desire, you can right click on the
symbols empty space and select “Generate Verilog.”

KEES Rocks16 vi 00 N

State 0 +
4 Reset State 1 -+
— Foo Bar State 2]

Debugl +!
Debug2]

> Clock -

Select All Ctrl+ &

Zoom K

[E'E] Symbol Parameters...

| #. Generate Verilog

Properties

Click “Generate” on the dialog box that shows up, and then click “OK” when it
warns that you are going to overwrite an existing file. All of the preconfigured
verilog and datapath information is placed inside a merge region, meaning it will
be untouched when the verilog is updated.

Before:

“include "cypress.v"
// #end® -- edit above this line, do not edit this line
// Generated on 02/02/2013 at 22:49
// Component: KEES Rocksl6 vl 00
module KEES Rocksl6t vl 00 (
output State 0,
output State 1,
output State 2,
input Clock,
input Reset

parameter A0 init a = O
parameter A0 init b = 0

~e e

After:

“include "cypress.v"

// #end® -- edit above this line, do not edit this line

// Generated on 02/02/2013 at 22:51

// Component: KEES Rocksl6 vl 00

module KEES Rocksl6 vl 00 (
output Bar,
output Debugl,
output Debug2,
output State 0,
output State 1,
output State 2,
input Clock,
input Foo,
input Reset

parameter A0 init a = 0
parameter A0 init b = 0

~e N

You can use the same technique to add new parameters, or remove parameters
you don’t want.

From here, take a quick look at the skeleton code provided in the verilog file. It
has parameters passed in from the customizer to initialize the AO, A1, DO and
D1 registers, a 3 bit register called “State” that controls the state machine as well
as provides the address for the datapath instruction. The skeleton state
machine is set up with a synchronous reset (if used) as well as 8 empty states
for you to write your verilog. Once your verilog is written, it's off to the debugger!

Component Debug features

Add one of your components to your design schematic, and add a Start() API
call in main. Hook up your necessary signals, configure the parameters offered
in the customizer and start a debugging session.

Status

Status Reg |
e Con tatus.0
|_Control Reg | status_1
cantral 0 status 2
control 1 status 3
contral_2 (=1 status_4
control_3 & status 5
control_4 | status 6
control_5 =] status_7
control 6 [+
contral_7 =1 | Configure 'KEES_Rocks16'

Mame: KEES_Rocks16_1

Basic | Built-n

Parameter

A init
Al_imit
D0_init
D1_imit 0
Debug true
EnableReset false
FIFO_0_AlternatelevelReport | falss

FIFO_0_SingleBufferMode brie |

FIFO_1_Alternatel evelRepe ff'
FIFO_1_SingleBufferMode z’“ e

Parameter Information
FIFD_0_SingleBufferMode: “Must call the Start() AP for this to work propery”™ »

When set to "falze” the FIFO acts as a four byte deep FIFD.

When set to "true" the FIFD acts as a single register. This mode is useful when
you need to use a FIFD as an extra datapath register. In this mode with the FIFO
et to output, the ALU can be written into the FIFD with the Fx_Load signal and
on the next clock edge, the data can be read out of the FIFD into the A reqgister or
into the O register with a Dx_Load signal. This is the onby FIFD mode where this
is possible.

L W N [

Datashest] I Cancel

When the debugger starts, go to Debug->Windows->Components

d | Debug | Tools Window Help
X Windows » |J Breakpoints Ctrl+D, B Pl @ | 5= (=
o ~ Show Current Line = Cutput Ctrl+D, O
- P Resume Execution F5 Watch Y
:I JJ - = P sl +r +2 Pr= =
Halt Executio Ltri+Alt+brea | Locals Ctrl+D, L
- | | &l L
M Stop Debugging Shift+F5 Z] Components.. Ctrl+D, P
Lﬂ HEbglld and RLIFI Ctr|+5h|ﬂ+F5 &E EEH Stack Ctrl+D‘, c
M4 BReset Ctrl+Alt+F5 Memory 5 3;1?;1;1%
°E Steplnto FI | &] Disassembly Ctrl+Al+D |
Z Step Over FIO & Registers Ctrl+D,R [
3 S B device.h>
ﬂ Teggle Breakpoint Fa
Mew Breakpoint » POCE O0x02
$Co O=x01
ﬂ Delete All Breakpoints Ctrl+Shift+F9
a5] <3 Disable All Breakpoints)
Refresh lock=16 1 _Start();
;f Enable Global Interrupt

et The Foo input high
Control Write(Control Read() | FOO):

Lh B

b

for(::)

{
ff clock the datapath
Control Write (Control Read() | CLOCK);
Control Write(Control Read() & ~CLOCE):

-1

B3 B3 B BB BRI OBRIY O
n
Il
=

Ladi
| oS T S I - T v B &

- H
-}

[¥1]

/% [] END COF FILE */

L

|«

This will bring up the component debug selection window. Check the box next to
your component and click OK. | also have a control register and a status register
attached to my component, allowing me to stimulate the inputs and check the
outputs right in the debugger.

Select Compenent Instance Debug Windo

PEED

KEES_Rocks16_1
Cantrol

A new window in the debugger will appear filled with all of the registers
associated with your datapath.

Copyright YOUR COMBANY, THE YEAR

* All Rights Reserved

* UNPUSBLISHED, LICENSED SOFIWARE.

=

* CONFIDENTIAL AND PROPRIETARY INFORMATION
* WHICH IS THE PROPERTY OF your company.

- KEES_Rocks16_1 Debug Window =] [_‘ =
= = Status Debug Window £3
»| Control Debug Window (2] =1 =
/1 KEES Rockslé_1_a0 = 0x000C cratus STLTUS REG = tmas
g1)|| Comtrol_cONTROL_REG=oxol — -
KEES Docks1é 1 21 = 0x0020 Status MASE BEG R
td FEES_Rocks1E_1 B0 =m0z Status_STATUS AUX_CTL_BEG= 0x01
kd KEES Dockslé 1 DI = 0x0000
v FEES_Rocks1E_1_FO_reg = 0x426B
t KEES Rockslé 1 Datapath FIFQ config byte a= 0x0l
KEES_Rocks1é_1_Datapath FIFQ config byte b= 0x01

Control_Write (Control Read() | FOO):

for(::)

{
// clock the datapath
Control Write (Control Read() | CLOCK}T
Control Write(Control Read() & ~CLOCE):

}

Note! There a few bugs in Creator 2.2 related to the component debugger.
1.) When the window is displayed, all the values will be zero. You have
to refresh the debugger to see the current contents of the memory.
Select Debug->Refresh to update the window. Sadly, it seems that
you need to refresh the window any time you wish to see a change.

Hitting a breakpoint, stepping code or anything else that should
cause it to update automatically does not seem to work.

2.) The debugger will forget that you have a component debug window
open if you stop and restart the debugger. For now, you have to re-
enable the window every time you start a new debugging session.

3.) A radix change will not show up (left click on register, then right
click and select “Radix”) unless you refresh the debugger. You
must also have a register selected when you right click, or you will
get an unhandled exception. If this happens, click “continue” as it
does not seem to cause the debugger to crash.

4.) When changing the radix for one register, all registers will change to
the new radix.

5.) CDT 144250 was filed on all of these problems.

Double clicking on the FIFO configuration registers will bring up detailed
information on each bit field in that register, as well as the current configuration
information.

JERIETARY INFCEMATICH
[Y OF vour company.

@ KEES_Rocks16_1 Debug Window @ Status Deb
EEES Rocksle 1 AD = 0x000C Status &
o EEES Rocksle 1 M = 0x0020 Statu 5_t-
EEES Rocksle 1 DO = 00072 Statn s_E
EEES Rocksle 1 D1 = 0x0000 -
EEES Rockslé 1 FU _reg = 0x42€B
FEEES Rockslé 1 Datapath FIFQO config byte a= 0x01
FEES Rockslé 1 Datapath FIFDO config byte b= 0x01

-----————
. Access RW R/ RW R/
~ Name
. Value

FIFO_1_LVL| FIFO_0_LVL| FIFO_1_Cl_| FIFO_0_CI1..
el e

Hovering your cursor over a value will show all the options. You can modify the
registers directly within these detailed views. Simply enter your new desired
value and click Commit.

The contents of the A0, Al, DO and D1 registers can be easily read and
modified. Step through your datapath’s operation! Debug your design and learn
about the capabilities of the part!

DMA Wizard features

The component also comes with a DMA cpabability file, which allows the
component to take advantage of the DMA wizard tool. To use the DMA
capabilities, place a DMA component in the schematic.

Status
Status Re
KEES Rocks16 1 BUS CLKERSelock
Control)
[m State 0 — —status_0
State 1 —————— status_1
: control_0 Foo Bar State 2 status_ 2
control 1 [~ Debugl — — status_3
control_2 =1 Debug?2 — —{ status_4
control 3 (=] —1status 5
control_4 1 —— " Clock [Hstatus &
contral 5 (= [Hstatus_7
control 6 |+
contral_7 [
DMA 1
OMA |

nrgl<

Open the DMA Wizard by selecting Tools->DMA Wizard

t Build Debug | Tools | Window Help

§ _\l £ G3 @& Install drivers for pVision Fﬂ =

t) Datapath Config Tool... cysch | KEE
DMA Wizard...

*rojects) |%] Bootloader Host...

[CYBCIBeaR-040) Options...

N

The DMA wizard will have register access to all the registers that the component
has. There are multiple categories including input and output registers (A0, Al,
DO, D1, FO, F1) as well as the FIFO configuration registers for each datapath.

DMA Wizard | S

Global Settings
Corfigure the global transaction descriptor settings.

Source

Destination

| KEES_Rocks16_1

v | |KEES_Rocks16_1

ath 16 bit

Datapath config & bit

~| | Datapath input 16 bit

| Base Addr: |CYDEV_PERIPH_BASE

[] Set Manualty

Bytes per Burst:

0.2

[/] Each Burst Requires a Request

Mumber of TDs: |1 El
i@ Single Chain
() Loop

The registers can be either sources or destinations. Under each category, there

are pointers to all the associated registers in the selected category.

Transaction Descriptors
Corfigure the transaction descriptor settings.

TO# Endian Enz_lzlle b EFBF.EJIB * Length

KEES_Roecks16_1_A0_FTR

KEES_Rocks16_1_A1_PTR
KEES_Rocks16_1_DO_PTR
KEES_Rocks16_1_D1_PTR
KEES_Rocks16_1_F0_PTR
KEES_Rocks16_1_F1_PTR

If you are curious about the DMA capability file, look at the .cydmacap file. For
more information on how to modify this file to fit the final needs of your
component, take a look at KEES # 189.

.c and .h API files

The included .c and .h API files provide all the register, masks, modes and shift
definitions for configuring the component in any way you see fit. The .h file has
all the REG and PTR definitions at the top, followed by sets of masks, modes
and shifts for each register grouped by register and functionality.

The .c file includes a stub start function that configures the registers not
configured by the datapath configuration tool. Using this component as a
starting point, you can create ANY component you desire from the datapaths.
Simply modify the component to suit your needs.

Happy Creating!

