

Datapath Superprimitives!

Please welcome another four (four!) installments into the super primitive
category, this time with the intent of getting you up and running with a datapath
faster and easier than ever before. These four datapath super primitives
eliminate 95% of the busywork associated with developing for a datapath and
get you trying, testing and creating with PSoC‟s powerful UDB datapaths in no
time at all.

These datapath super primitives allow you to start designing with an 8, 16, 24 or
32 bit datapath, preconfigured and bristling with features to help you try out new
ideas and debug when things go wrong. These super primitives provide you with
a readymade component symbol, configurable component parameter (A0, A1,
D0, D1 initializations right in the customizer, FIFO configuration of status
reporting and easy access to the FIFO single buffer mode as well as optional
debugging hardware signals and reset). Premade API files simplify component
development with a header file containing all the necessary datpath registers,
pointers, masks, modes and shifts already defined for you, as well as a C file
that provides a Start() API ready to go with all the features you enable in the
customizer.

Excited? I‟m just getting started. These super primitives also include a skeleton
verilog file, with all the necessary code to get started already included such as
standard inputs and outputs, component parameters, a state machine and a
preconfigured datapath of your choosing (8, 16, 24, or 32 bit). The
preconfigured datapaths are already chained for you so they “just work” and
include shifting setups for left shifts and arithmetic right shifts. The datapaths
are also moved into the merge region of the verilog file, so when you add inputs
and outputs to your symbol, simply re-generate your verilog file, and the new
inputs and outputs are added for you automatically, with nothing lost!

I can tell you are ready to start using these super primitives, but I am not done
packing the awesomeness into these components. These super primitives also
come packaged with a component debug capability file, giving you incredibly
easy access to the working registers of the datapath (A0, A1, D0, D1, even the
FIFOs in single buffer mode), simplifying debug and reducing the headaches
associated with learning the datapaths. And to top it all off, you also get a DMA
capability file, giving the DMA wizard easy access to all your important registers,
simplifying the setup of getting data into and out of your datapath component.

With these components, all you need to do to start using a datapath is import the
desired super primitive, point the Datapath configuration tool at the premade
verilog file, configure your datapath and write your verilog to control it and GO!

Attached File Summary:

File # 2 is a zip file containing the 4 super primitive components. To use the file,
download it and replace the .PDF extension with .ZIP. The four .cycomp files
are inside this zip file.

Details:

To get started with these new super primitives, open a project, navigate to the
component tab in the workspace explorer, right click on you project and select
“Import Component”

When the dialog box pops up, select “Import from archive” and navigate to the
locations of the “USER_Datapath8/16/24/32.cycomp” file. Click OK. It is at this
point you select the width of the datapath you want to use. The
USER_Datapath8.cycomp is an 8 bit wide datapath, the
USER_Datapath16.cycomp is a 16 bit wide datapath, the
USER_Datapath24.cycomp is a 24 bit wide datapath and the
USER_Datapath32.cycomp is a 32 bit wide datapath.

Your workspace explorer will now contain all the files for your component

First thing you should do is rename the component by right clicking on the
component and selecting “Rename.”

Rename it to something with your initials, or your name instead of USER and
either leave the rest alone, or give a name that reflects your final purpose. Make
sure to leave the _v1_00 appended to the end so that you can make new
versions later if you choose.

Notice how the API files did not change. You need to manually change them to
match the new component name by right clicking on them and selecting
“Rename”

Now this step is important. Open the .cysym file, right click in the symbol area
(not on the symbol itself) and select “Properties”

(The component symbols also include text to remind you of these steps. This
text can be deleted at any time)

Change the Doc.APIPrefix to match the name of the renamed API files.

And that concludes all the component customization that you MUST do. Any
further customization is optional. At this point, your component will be located in
the “Community/Digital/Datapath/…” library tab.

Getting started with you super primitive

Now that you have your component in your workspace, you can start to
experiment with the datapath. Depending on your work flow with datapaths, you
may dive right into the verilog file, or you may fire up the datapath configuration
tool and set up your datapath instructions. For the purpose of this memo, I‟m
going to fire up the datapath configuration tool, and walk you through finalizing
the setup of your new datapath component.

Go to Tools->Datapath configuration tool

When the tool opens, select File->Open

Navigate to your project directory. In you project design folder, there will be
another folder with your newly imported component name. Go into that folder,
and select the verilog file.

The Datapath configuration tool will update with the preconfigured datapath
already in the file.

If you select a 16, 24, or 32 bit datapath, there will be a “datapath_a/b/c/d”
representing the 8-15, 16-23, and 24-31

st
 bit datapaths. In this example, I

imported a 16 bit datapath, so I have a datapath_a (LSB) and a datapth_B
(MSB)

For reference, datapath_a is always the lowest byte, and the increasing letters
correspond to the increasing bit order of the datapath.

datapath_a: bits 0-7
datapath_b: bits 8-15
datapath_c: bits 16-23
datapath_d: bits 24-31

The datapaths have already been chained for you so that they “just work” for
arithmetic, comparisons, and shifting. For a cheat sheet on how to chain
datapaths, refer to KEES # 190.

A note on shifting: The preconfigured datapaths have been set up to
perform Left Shifts (zero shifted in) when shift configuration A is selected,
and ARITHmetic Right Shifts when shift configuration B is selected. I felt
that these modes would be the most useful by default.

To change the behavior of the right shift from arithmetic to a normal right

shift, shifting in zeros into the MSB, make the following change on the
most significant byte datapath

Right click on the “MSB SI” bit field, and select “Disable Bit”

The datapath is now configured to do an non-arithmetic right shift in shift
configuration B.

Now configure your datapath! Set up the instructions to do as you please (make
sure to configure all bytes of the datapaths the same way! You can use Edit-
>Copy Datapath, then move to another byte of the datapath and Edit->Paste
Dynamic)

Be wary of “Paste Datapath” since this will paste the entire datapath, messing up
the chaining.

Save your datapath configuration and close the tool. Closing the tool is a hassle
when you want to make quick edits to your datapath, but leaving the tool open
can become problematic when you forget to save the verilog file or the datapath
configuration and have 2 versions of the verilog file out of sync with each other.
Take my advice, only edit one at a time, and close the datapath configuration
tool when you are done using it. It will save you from many headaches.

When you are done editing your datapath, you may want to add some input or
outputs to your component. You can open the schematic symbol and add your
inputs and outputs there. I am going to assume you know how to add inputs and
outputs to the symbol so I will leave those instructions out. I will however point
out the set of debugging pins included with the symbol.

These pins are set to be invisible when the „$Debug‟ parameter is set to „false‟. I
recommend adding useful signals to this set of debugging pins and setting them
to hide when debugging is disabled for your component. When you don‟t need
them, they are out of the way and not bothering anything. But when you do
need them, they can provide critical insight into how your datapath is behaving.
The easiest way to add debugging specific pins is to just copy one of the State_x
pins. The shape formatting that hides the pin when debugging is disabled will be
copied along with it. Just change the name to suit your needs.

A tip for adding digital inputs to your design that may be hidden based on a
component parameter, make sure you set the default value along with the
visibility expression.

To access the visibility expression, right click on the pin and select “Format
Shape”

The default expression is the logic value that this input pin will be driven to when
it‟s hidden.

After you have added whatever signals you desire, you can right click on the
symbols empty space and select “Generate Verilog.”

Click “Generate” on the dialog box that shows up, and then click “OK” when it
warns that you are going to overwrite an existing file. All of the preconfigured
verilog and datapath information is placed inside a merge region, meaning it will
be untouched when the verilog is updated.

Before:

`include "cypress.v"

//`#end` -- edit above this line, do not edit this line

// Generated on 02/02/2013 at 22:49

// Component: KEES_Rocks16_v1_00

module KEES_Rocks16_v1_00 (

 output State_0,

 output State_1,

 output State_2,

 input Clock,

 input Reset

);

 parameter A0_init_a = 0;

 parameter A0_init_b = 0;

…

After:

`include "cypress.v"

//`#end` -- edit above this line, do not edit this line

// Generated on 02/02/2013 at 22:51

// Component: KEES_Rocks16_v1_00

module KEES_Rocks16_v1_00 (

 output Bar,

 output Debug1,

 output Debug2,

 output State_0,

 output State_1,

 output State_2,

 input Clock,

 input Foo,

 input Reset

);

 parameter A0_init_a = 0;

 parameter A0_init_b = 0;

…

You can use the same technique to add new parameters, or remove parameters
you don‟t want.

From here, take a quick look at the skeleton code provided in the verilog file. It
has parameters passed in from the customizer to initialize the A0, A1, D0 and
D1 registers, a 3 bit register called “State” that controls the state machine as well
as provides the address for the datapath instruction. The skeleton state
machine is set up with a synchronous reset (if used) as well as 8 empty states
for you to write your verilog. Once your verilog is written, it‟s off to the debugger!

Component Debug features

Add one of your components to your design schematic, and add a Start() API
call in main. Hook up your necessary signals, configure the parameters offered
in the customizer and start a debugging session.

When the debugger starts, go to Debug->Windows->Components

This will bring up the component debug selection window. Check the box next to
your component and click OK. I also have a control register and a status register
attached to my component, allowing me to stimulate the inputs and check the
outputs right in the debugger.

A new window in the debugger will appear filled with all of the registers
associated with your datapath.

Note! There a few bugs in Creator 2.2 related to the component debugger.

1.) When the window is displayed, all the values will be zero. You have
to refresh the debugger to see the current contents of the memory.
Select Debug->Refresh to update the window. Sadly, it seems that
you need to refresh the window any time you wish to see a change.

Hitting a breakpoint, stepping code or anything else that should
cause it to update automatically does not seem to work.

2.) The debugger will forget that you have a component debug window
open if you stop and restart the debugger. For now, you have to re-
enable the window every time you start a new debugging session.

3.) A radix change will not show up (left click on register, then right
click and select “Radix”) unless you refresh the debugger. You
must also have a register selected when you right click, or you will
get an unhandled exception. If this happens, click “continue” as it
does not seem to cause the debugger to crash.

4.) When changing the radix for one register, all registers will change to
the new radix.

5.) CDT 144250 was filed on all of these problems.

Double clicking on the FIFO configuration registers will bring up detailed
information on each bit field in that register, as well as the current configuration
information.

Hovering your cursor over a value will show all the options. You can modify the
registers directly within these detailed views. Simply enter your new desired
value and click Commit.

The contents of the A0, A1, D0 and D1 registers can be easily read and
modified. Step through your datapath‟s operation! Debug your design and learn
about the capabilities of the part!

DMA Wizard features

The component also comes with a DMA cpabability file, which allows the
component to take advantage of the DMA wizard tool. To use the DMA
capabilities, place a DMA component in the schematic.

Open the DMA Wizard by selecting Tools->DMA Wizard

The DMA wizard will have register access to all the registers that the component
has. There are multiple categories including input and output registers (A0, A1,
D0, D1, F0, F1) as well as the FIFO configuration registers for each datapath.

The registers can be either sources or destinations. Under each category, there
are pointers to all the associated registers in the selected category.

If you are curious about the DMA capability file, look at the .cydmacap file. For
more information on how to modify this file to fit the final needs of your
component, take a look at KEES # 189.

.c and .h API files

The included .c and .h API files provide all the register, masks, modes and shift
definitions for configuring the component in any way you see fit. The .h file has
all the REG and PTR definitions at the top, followed by sets of masks, modes
and shifts for each register grouped by register and functionality.

The .c file includes a stub start function that configures the registers not
configured by the datapath configuration tool. Using this component as a
starting point, you can create ANY component you desire from the datapaths.
Simply modify the component to suit your needs.

Happy Creating!

