
1SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

Application Report
SPMA057C–August 2013–Revised January 2018

1-Wire Enumeration

ABSTRACT
1-Wire can be used in systems that have low speed and low power communication requirements. This
application report describes the 1-Wire communication protocol, available TivaWare™ for C Series APIs
for the 1-Wire module in Tiva™ C Series microcontrollers and an example enumeration algorithm using
binary tree search.

Project collateral and source code discussed in this application report can be downloaded from the
following URL: http://www.ti.com/lit/zip/spma057.

Contents
1 Introduction to 1-Wire ... 1
2 Functional Description... 3
3 Functions Available in TivaWare for C Series for 1-Wire Module ... 6
4 Enumeration .. 7
5 Conclusion .. 8
6 References ... 9

Trademarks
TivaWare, Tiva are trademarks of Texas Instruments.
All other trademarks are the property of their respective owners.

1 Introduction to 1-Wire
1-Wire is a communication system designed to interface simple sensors and devices with a single wire
interface. This system is used for low-speed and low-power communication devices. There are two modes
of operation available: standard speed and overdrive speed. The achievable data rate with standard speed
is 16.3 kbit/s, while overdrive mode communication is done at 10 times the standard speed.

This protocol uses a single data line for data transmission from one device to another device. The bus is
half duplex so that data can move in both directions, but not at the same time. When required, an extra
wire can also be used to power up the slave devices.

The protocol supports one slave (single drop) or many slaves (multi drop) on the bus. There is also a
single master on the bus that controls the transfer of information on the bus. The master initiates all
transfers on the data line. Transfer of data is only possible between master and slaves, so data cannot be
transferred between slaves.

A clock is not required for this protocol as each slave is clocked by an internal oscillator synchronized to
the falling edge of the bus.

When transferring a byte, the least significant bit is transferred first.

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C
http://www.ti.com/lit/zip/spma057

1-Wire
Master 1-Wire

Slave
1-Wire
Slave

1-Wire
slave

Ground Line

Data Line
VDD

Weak
Pull-Up

S

Introduction to 1-Wire www.ti.com

2 SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

Figure 1. Bus Topology

1.1 Bus Requirements
Every output pin must be open-drain, and a weak pull up must be attached to the signal so that, the bus is
driven low if at least one device drives the bus low. This protocol enables the transfer of data between two
devices on the bus while the other devices are in the idle state. The strength of the pull up can be decided
by the user based on the following factors:
• The device being externally powered may have pull up values in the range of 10K or more if data rate

is not required to be high and trace length on the system is not high.
• The device being externally powered may have pull up values less than 1K if the data rate is high

especially in the overdrive mode or the trace lengths on the system are longer.
• The device being parasitically powered may require active drivers after being selected so that the end

device can have sufficient energy to perform the end operation.

1.2 Powering
Slaves can be powered in two modes:
• Externally Powered: A power pin on the slave device is used to power up the slave on the bus. This

topology is used when a slave has high power needs.
• Parasitically Powered: The slave is powered by the data line. Slave devices have an internal capacitor

that stores this energy when the bus is idle and pulled up by the weak pull-up.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C

480 s: Master Drive 1-Wireµ 240 s: Slave Response Timeµ

Master Samples Here

Master Drives
the Bus Low

Master Releases
the Bus

480 s: Master Drive 1-Wireµ 240 s: Slave Response Time (ATR)µ

Master Samples Here

Master Drives
the Bus Low

Master Releases
the Bus

www.ti.com Functional Description

3SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

2 Functional Description

2.1 Signaling on 1-Wire
The four types of signaling that are possible on the data line are:
• Reset Sequence with Reset Pulse and Answer to Reset (ATR): A reset pulse is used to put all the

devices in a known state. Slaves confirm their presence by sending an ATR signal, which is done by
holding the line low. The master samples the bus, and if the bus reads low, then at least one slave
device is present.

Table 1. Reset Signaling Description and Implementation

Operation Description Implementation
Reset Reset the 1-Wire bus slave devices and prepare

them for a command.
Drive the bus low for 480 µs to reset all the slaves. The
master then samples the bus for the next 240 µs while the
slaves Answer to Reset (ATR).

Figure 2. Reset Sequence Bus Timing When There is at Least 1 Slave on the Bus

Figure 3. Reset Sequence Bus Timing When There are no Slaves on the Bus

• Write 0 bit onto the bus

Table 2. Write 0 Bit Signaling Description and Implementation

Operation Description Implementation
Write 0 bit Send 0 bit to the 1-Wire slaves Drive the bus low for 60 µs

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C

60 sµ

Master Samples Here

Master Drives
the Bus Low

Master Releases
the Bus

15 s or Lessµ

60 sµ

Slave Samples Here

Master Drives
the Bus Low

Master Releases
the Bus

15 s or Lessµ

60 sµ

Slave Samples Here

Master Drives
the Bus Low

Master Releases
the Bus

Functional Description www.ti.com

4 SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

Figure 4. Write 0 Bus Timing

• Write 1 bit onto the bus

Table 3. Write 1 Bit Signaling Description and Implementation

Operation Description Implementation
Write 1 bit Send 1 bit to the 1-Wire slaves Drive the bus low for < 15 µs. Typical times are about 6 µs.

Release the bus until 60 µs after the falling edge.

Figure 5. Write 1 Bus Timing

• Read bit: Reads one bit from the slaves. Read bit signaling is similar to write “1” signaling, except that
the master reads instead of writes.

Table 4. Read Bit Signaling Description and Implementation

Operation Description Implementation
Read bit Read a bit from the 1-Wire slave Drive the bus low from 1 µs to 15 µs. Sample the bus at 15

µs after the falling edge to read the bit from the slave.

Figure 6. Read 1 Bus Timing

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C

Reset the 1-Wire Bus Select a 1-Wire Device Perform a Single Device-Specific Operation

60 sµ

Master Samples HereMaster Drives
the Bus Low

Master Releases the Bus and
the Slave Drives the Bus

www.ti.com Functional Description

5SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

Figure 7. Read 0 Bus Timing

2.2 Address Format of the 1-Wire Device
1-Wire slave devices from manufacturers have a unique 64-bit address stored in it, which is also called the
ROM number. The least significant 8 bits of the address give the family code of the device. The next least
48 bits give the serial number of the device. The most significant 8 bits give the CRC generated from the
least 56 bits.

Table 5. Address Format of the 1-Wire Slave

64-Bit ROM Number
8-Bit CRC 48-Bit Serial Number 8-Bit Family Code
63:56 Bits 55:8 Bits 7:0 Bits

NOTE: The CRC is used to check if the data is received correctly. Tiva C Series devices do not
implement the CRC in hardware, so a software implementation is required.

2.3 Typical Communication Flow on the 1-Wire Bus

Figure 8. Typical Communication Flow on a 1-Wire Bus

• Start with the Reset Sequence
• If the master must determine which slave devices are present on the bus, the master should perform a

search to detect the ROM numbers of the slave devices.
• Before performing an operation on a device, the device must be configured and/or selected using the

ROM commands. Some of the available functional ROM commands are:
– Read ROM [0x33]: Only used when there is a single slave on the bus. This command reads the

ROM number of the only slave present on the bus.
– Match ROM [0x55]: This command followed by a 64-bit ROM number selects the slave with the

matching ROM number. All other devices wait until the next reset pulse.
– Search ROM [0xF0]: This command is required to obtain the ROM numbers of multiple devices,

and it informs slave devices that a search is going to be conducted by the master. The Search is
then conducted by reading a bit and its complement of the ROM numbers from the slaves and
sending an appropriate bit back. For more details, see the Section 4. Slave devices that have the
same bit as the one sent by the master remain active while others wait for the next reset

– Skip ROM [0xCC]: Devices can be addressed without the master knowing the ROM numbers. This
command is helpful when giving a common command to all the devices.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C

Functions Available in TivaWare for C Series for 1-Wire Module www.ti.com

6 SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

– Overdrive Skip ROM [0x3C]: This command is used only in single drop. This command is the same
as the Skip ROM command except that only devices that can run in overdrive mode remain active
and go into overdrive mode. Devices that cannot run in overdrive mode wait for the next reset.

– Overdrive Match ROM [0x69]: This command is the same as the Match ROM command except that
the device is only matched if it can run in overdrive mode. All other devices wait for the next reset.

• After selecting the required devices, a device-specific command can be issued to perform the required
operation.

• Typically after each operation, a reset pulse is issued.

3 Functions Available in TivaWare for C Series for 1-Wire Module

NOTE: ui32Base should contain the base address of the 1-Wire module.

OneWireBusReset(uint32_t ui32Base); This function issues a reset on the 1-Wire bus; it does not wait for
the completion of the reset.

OneWireBusStatus(uint32_t ui32Base); This function retrieves the bus condition status, which is used to
determine if the bus is ready to perform an operation. This status is busy if the master is performing any
operation or idle if the master is not performing an operation.

OneWireDataGet(uint32_t u3i2Base, uint32_t *pui32Data);This function waits for the transaction, if any, to
complete and retrieves data from the 1-Wire interface. The data is stored in the address given by
pui32Data.

OneWireDataGetNonBlocking(uint32_t ui32Base, uint32_t *pui32Data); This function retrieves data from
the 1-Wire interface. If there is an active transaction, then 0xffffffff is returned. The data is stored in the
address given by pui32Data.

OneWireInit(uint32_t ui32Base, uint32_t ui32InitFlags); This function initializes the 1-Wire module. The
ui32InitFlags parameter contains the initialization flags.

OneWireIntClear(uint32_t ui32Base, uint32_t ui32IntFlags); This function clears the required interrupt
sources in the 1-Wire module.

OneWireIntDisable(uint32_t ui32Base, uint32_t ui32IntFlags); This function disables the required interrupt
sources in the 1-Wire module.

OneWireIntEnable(uint32_t ui32Base, uint32_t ui32IntFlags); This function enables the required interrupt
sources in the 1-Wire module.

OneWireIntRegister(uint32_t ui32Base, void(*pfnHandler)(void)); This function registers an interrupt
handler for the 1-Wire module.

OneWireIntUnregister(uint32_t ui32Base); This function unregisters an interrupt handler for the 1-Wire
module.

OneWireIntStatus(uint32_t ui32Base, bool bMasked); This function gets the current interrupt status. If
bMasked is true, then the masked interrupt status is obtained. If bMasked is false then the raw interrupt
status is obtained.

OneWireTransaction(uint32_t ui32Base, uint32_t ui32OpFlags,uint32_t ui32Data, uint32_t ui32BitCnt);
This function is used to perform a 1-Wire protocol transfer on the bus. ui32BitCnt is used to configure the
number of bits to be sent or received. Written data is specified by ui32Data. The ui32OpFlags parameter
is used to define which operation (reset, read, write) is to be performed.

NOTE: More information about the APIs can be found in the TivaWare™ Peripheral Driver Library
User’s Guide (SPMU298).

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C
http://www.ti.com/lit/pdf/SPMU298

www.ti.com Enumeration

7SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

4 Enumeration
When multiple slave devices are present on the bus, the master must know the ROM numbers to match
the required devices. Enumeration is performed to obtain the ROM numbers of the slave devices on the
bus and therefore what classes of devices are available.

The search operation is performed by executing two steps, iteratively:
1. Read two bits from the slaves (the actual bit value and its complement)
2. Write the appropriate bit that defines the search path in the enumeration algorithm. Devices with the

corresponding bit equal to the written bit remain active, while the rest go to the idle state and wait for
the next reset command.

This cycle is done for all 64 bits and the 64-bit ROM number is assembled at the end of the iteration.

4.1 Algorithm
The Search algorithm uses a binary search tree. At every node, the algorithm can take the path dictated
by either a “0” or “1.” The relationship between the two bits obtained in step 1 and the path to be taken in
step 2 are given in Table 6.

Table 6. Search Algorithm

Actual Bit Read
Value

Complement Bit
Read Value Conclusions Path to be taken

0 0 Multiple devices have a corresponding 0 bit
and a corresponding 1 bit

This is a conflict situation and requires a
decision on which path to take

1 0 Only one device has a 1 in the corresponding
bit location

The 1 path is taken

0 1 Only one device has a 0 in the corresponding
bit location

The 0 path is taken

1 1 No devices are on the bus End the search

The only time that a decision must be made is when there is a conflict. In the other three cases, the path
to be taken is already defined. Figure 9 shows the algorithm flow for a 4-bit search. The following
variables in software are key to the search.
• The variable i32LastConflictZeroBitNumber stores the iteration number of the last conflict node where

the path taken is “0” while finding the current ROM number.
• The variable li32ConflictBitNumber stores the value of last_conflict_zero for the last ROM number.
• The variable ui32BitNumber gives the position of the bit under consideration in the ROM number.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C

0

1

2

3 3 3

2

Slave Address
0b000

Slave Address
0b100

Slave Address
0b110

bit_position of the Node
is Given in Each Node

Value of
last_conflict_zero = 1,

After Finding the Second
ROM Number

Value of
last_conflict_zero = 2,
After Finding the First

ROM Number

Enumeration www.ti.com

8 SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

Figure 9. The i32LastConflictZeroBitNumber and ui32BitNumber Variables

4.2 Steps of the 4-Bit Search Algorithm
1. Reset the bus and look for ATR responses. End the process if there are no devices on the bus.
2. Send the Search ROM command if an ATR response is received.
3. Read a bit from the slaves.
4. Read the complement of the bit in step 3 from the slaves.
5. Check if both the bits are 1. If ‘yes,’ end the process. If ‘no’, continue.
6. Check if the first read bit is a 0 and the second read bit is a ‘1.’ If ‘yes,’ write 0 onto the bus and go to

step 14. If ‘no’, continue.
7. Check if the first read bit is a 1 and the second read bit is a zero. If ‘yes’, go to step 9. If ‘no’, continue.
8. Check whether or not ui32BitNumber is equal to i32ConflictBitNumber. If ‘yes’, continue. If ‘no’, go to

step 10
9. Write 1 onto the bus. Go to step 14.
10. Check whether or not ui32BitNumber is less than i32ConflictBitNumber. If ‘yes’, continue. If ‘no’, go to

step 12.
11. Check whether or not the bit in the ui32BitNumber of the last ROM number is equal to 1. If ‘yes’, go to

step 9. If ‘no’, continue.
12. Write 0 onto the bus.
13. Update the value of i32LastConflictZeroBitNumber with the ui32BitNumber.
14. Check whether or not ui32BitNumber is equal to 63. If ‘yes’, go to step 1. If ‘no’, go to step 3.

5 Conclusion
This application report provides an overview of the 1-Wire protocol and presents an example of how the
master identifies the slave devices on the bus using binary tree search.

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C

www.ti.com References

9SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

1-Wire Enumeration

6 References
• TivaWare™ Peripheral Driver Library User’s Guide (SPMU298)
• TivaWare™ Peripheral Driver Library for C Series

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C
http://www.ti.com/lit/pdf/SPMU298
http://www.ti.com/tool/sw-tm4c-drl

Revision History www.ti.com

10 SPMA057C–August 2013–Revised January 2018
Submit Documentation Feedback

Copyright © 2013–2018, Texas Instruments Incorporated

Revision History

Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from B Revision (April 2016) to C Revision .. Page

• Update was made in Section 4.1. ... 7

http://www.ti.com
http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPMA057C

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to,
reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are
developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you
(individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of
this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources.
You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your
applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications
(and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You
represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1)
anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that
might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you
will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any
testing other than that specifically described in the published documentation for a particular TI Resource.
You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include
the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO
ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS.
TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT
LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF
DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL,
COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR
ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your non-
compliance with the terms and provisions of this Notice.
This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services.
These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation
modules, and samples (http://www.ti.com/sc/docs/sampterms.htm).

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2018, Texas Instruments Incorporated

http://www.ti.com/sc/docs/stdterms.htm
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/lit/pdf/SSZZ027
http://www.ti.com/sc/docs/sampterms.htm

	1-Wire Enumeration
	1 Introduction to 1-Wire
	1.1 Bus Requirements
	1.2 Powering

	2 Functional Description
	2.1 Signaling on 1-Wire
	2.2 Address Format of the 1-Wire Device
	2.3 Typical Communication Flow on the 1-Wire Bus

	3 Functions Available in TivaWare for C Series for 1-Wire Module
	4 Enumeration
	4.1 Algorithm
	4.2 Steps of the 4-Bit Search Algorithm

	5 Conclusion
	6 References

	Revision History
	Important Notice

