
 PSoC Creator Component datasheet

Rev. *A Revised Feb 25, 2020

Features

 Implements sliding window median algorithm
 Range: int8, int16, int32, uint8, uint16, uint32
 Doesn’t use hardware resources

 Has fixed execution time
 Grows linear with size

 Non-decimating

General description

The MedianFilter(*) component implements Phil Extrom’s sliding window median algorithm(†)

for scalar data [1]. Sampled signals with few amounts of erroneous data can be effectively de-

noised using this filter. Component doesn’t consume hardware resources, performing all

operations by CPU, which is useful for systems with little resources, such as PoC4. The filter is

non-decimating, producing the output on every sample added. Multiple instances of the

component can be added to the project for processing independent signal streams.

When to use MedianFilter component

Component was developed for a weight scale project, where ADC signals from several load cells

must be filtered from erroneous spikes occurring during weight load/unload operation. It can

be useful whenever a digitized signal needs to be cleaned out from erroneous artefacts such as

digital noise leaking into the analog path or mechanical noise from potentiometer slider.

Component is useful for a system with limited hardware resources, such as PSoC4. Component

was tested using CY8KIT-059 PSoC5LP Prototyping Kit and CY8KIT-042 PSoC4 Pioneer Kit. Demo

projects are provided.

*
 Hereafter referred to as “Filter”

†
 Also known as moving median, running median and rolling median filter

MedianFilter: sliding window median filter
0.0

MedianFilter: sliding window median filter PSoC Component datasheet

Page 2 of 14 Rev. *A

Input-output connections

Component does not have any input/output connections. It is, in essence, a software library,

performing all operations by API. Unlike library, multiple instances of the component can run

simultaneously in the project.

Parameters and Settings

Basic dialog provides following parameters(*):

FilterRange (int8 / int16 / int32 / uint8 / uint16 / uint32)

Selects filter range. Valid options are int8, int16, int32, uint8, uint16, uint32. The input data

type must be a subset of the filter range type. See Application Programming Interface section

for details. Default setting is int32, which fits most input data types. The value can’t be changed

during the run-time.

FilterSize (int16)

Sets filter window length. Filter allocates FIFO buffer of this length to keep last incoming data

samples. The value must be odd in the range [3, 5, … , 255]. Default value is 15. Thought the

algorithm works both for odd and even sizes, the Dialog input is restricted to only odd values

(N=2k+1) to avoid ambiguity. The value can’t be changed during the run-time.

*
 Component was intentionally compiled using Creator 4.0 for compatibility with older versions.

PSoC Creator Component datasheet MedianFilter: sliding window median filter

Rev. *A Page 3 of 14

Application Programming Interface

Function Description
Filter_AddValue() Add next data sample

range_t ADC_AddValue(range_t value)

Description: Calculates median value for last N data samples added, where N is filter size.

Note that the MedianFilter needs priming, and first N-1 outputs after the start

should be discarded. The range_t represents selected Filter range: int8, int16,

int32, uint8, uint16, uint32.

Parameters: input data. The data type should be a subset of the Filter range (the input data

must fit into the Filter range), see Table 1. To avoid possible collision of the input

data with the STOPPER parameter value, select larger Filter range. See

Implementation section for details.

 Table 1. Useful Filter ranges for various input data types().

Input data
range

Filter range

int8 int16 int32 uint8 uint16 uint32

int8 ± + +

int16 ± +

int32 ±

uint8 + + ±

uint16 + ± ±

uint32 ±
 () Shaded cells indicate potential collision of input data with STOPPER value.

Return Value: filtered output.

MedianFilter: sliding window median filter PSoC Component datasheet

Page 4 of 14 Rev. *A

Functional Description

The median filter is a non-linear filtering technique in digital signal processing, often used for

removing impulsive signal noise while maintaining signal trends. Unlike a linear FIR filter, it

requires sorting of the array to extract a median. The median filter always selects an actual data

point from the input signal, whereas the FIR filter returns calculated value.

Performance comparison of the median vs linear filter depends on the signal noise shape. For

Gaussian noise shape (“normal” noise), the median filtering offers no advantages over linear

(FIR) filtering techniques [1]. In many practical applications, however, the noise shape is often

far from normal, being polluted with “outliers” - random spikes, caused by noise from a

different source. Typical example is digital noise of a microcontroller, leaking into the ADC

analog interface. Another example is a mechanical potentiometer with a slider moving over

resistive element; any imperfections on its way cause voltage spikes on top of the smooth

analog signal. Conventional linear filters can’t filter out such noise.

A comparison of median vs FIR filter for randomly distributed noise(*) is shown on Figure 1. For

100% random noise, FIR filter outperforms the median; FIR output also looks “smoother” than

the median, because it returns a calculated value. When random noise becomes 50% sparse

(the rest 50% of the time the signal has no noise), the median filter rejects noise entirely,

dramatically outperforming FIR filter.

Figure 1. Effect of noise shape on median and FIR filter outputs: Left – signal with added 100% density random
flat noise; Right – noise density is 50%. Filter size is 31. A – source signal w/o noise; B – signal with noise added;
C – FIR output; D – median filter output. Vertical offsets added for clarity. Notice that at 100% noise density FIR

filter outperforms median filter. At 25% noise density, however, median filter dramatically outperforms FIR,
removing noise entirely.

*
 Noise was generated using rand() function, with flat distribution in range -32768 to 32767.

PSoC Creator Component datasheet MedianFilter: sliding window median filter

Rev. *A Page 5 of 14

Figure 2. Effect of noise amplitude on median and FIR filter outputs. Left - random noise of amplitude 256,
density 25%; Right - noise amplitude 512. Filter size is 31. A – source signal w/o noise; B – signal with noise
added; C – FIR output; D – median filter output. Vertical offsets added for clarity. Notice that median filter

recovers original signal amplitude and wavefronts, and output is not affected by the noise amplitude. Contrary
to it, FIR’s slew rate is bandwidth-limited, and its performance gets worse with noise.

All median filters exhibit a delay of (FilterSize / 2 + 1) samples before responding to a step

change. When they do respond, the output is also a step change [2]. By contrast a classic linear

filter will slew to the stepped value at a rate governed by the band of the filter (Figures 2, 3).

Median filter excels in rejecting pulsed noise due to its unique property of being insensitive to

the noise amplitude while preserving the shape of the recovered signal, unlike the FIR filter,

which output deviation scales up with noise (Figure 3, 4).

Figure 3. Effect of pulsed noise on median and FIR filter outputs. Left – exponentially fading coherent pulsed
noise of amplitude 512; Right – amplitude is 1024. Filter size is 31. A – source signal w/o noise; B – signal with

noise added; C – FIR output; D – median filter output. Vertical offsets added for clarity. Notice that median filter
rejects pulsed noise and recovers signal amplitude and wavefronts. Performance of the FIR filter gets worse with

noise amplitude, and its slew rate is bandwidth-limited.

MedianFilter: sliding window median filter PSoC Component datasheet

Page 6 of 14 Rev. *A

Figure 4. Effect of median and FIR filters on noisy sinusoidal input signal. Left – with random noise of amplitude
256, density 25%; Right – with coherent PWM pulsed noise of random amplitude. Filter size is 31. A – signal w/o

noise; B – signal with noise added; C – FIR output; D – median filter output. Vertical offsets added for clarity.
Notice that median filter outperforms FIR, effectively rejecting all spikes, irrespective of the amplitude.

Performance of the FIR filter gets worse with rise of spike amplitude.

Despite its advantages, the median filtering comes at a price. It is usually slower than a FIR filter

of the same size, as it based on some sorting algorithm, which execution time typically grows

with size as N*log(N). For that reason, the median filtering is rarely used for large window sizes.

The Extrom algorithm, however, scales up linearly with size because previous buffer is already

sorted. See Performance section for details.

PSoC Creator Component datasheet MedianFilter: sliding window median filter

Rev. *A Page 7 of 14

Implementation

The median filter algorithm

The Filter algorithm was published by Phil Extrom [1]. The algorithm uses a double linked list to

keep sorted order of the incoming values. The code is provided in Appendix 1. Compared to

several other algorithms [3], it shows best average performance on large data sets. The unique

feature of the algorithm is that it has same execution time independent of the data sequence.

Compared to others, the Extrom algorithm is quite mindboggling, heavily using pointers to the

double linked list. It is also spoiled by the STOPPER parameter, which is discussed below.

The STOPPER parameter

The Extrom algorithm uses internal STOPPER parameter, which value must be lower than any

possible input sample. Selected STOPPER values are listed in Table 2. If incoming sample

accidentally equals STOPPER, it is incremented by +1 to avoid the collision (see Appendix 1 for

details). In practice, this is rarely an issue unless the input data gets continuously saturated at

the bottom of the selected range. For example if both ADC and the Filter were configured for

uint8 data range (STOPPER = 0u) and ADC output saturated at 0u, the output of the Filter will

be 1u instead of expected 0u! One simple way to avoid this issue is to set Filter range to int16

or int32 data, which guarantees that the STOPPER value is outside of the input data range. For

example, selecting int32 Filter range guarantees correct performance for any of the 8, 16 or 24-

bit input signal, signed or unsigned (see Table 1).

Table 2. Value of the STOPPER for different Filter ranges.

Filter range int8 int16 int32 uint8 / uint16 / uint32

STOPPER -27 -215 -231 0

Features not implemented

 Filter reset

 Output valid flag

MedianFilter: sliding window median filter PSoC Component datasheet

Page 8 of 14 Rev. *A

Performance

Component was tested using CY8KIT-059 PSoC5LP Prototyping Kit and CY8KIT-042 PSoC4

Pioneer Kit. The component doesn’t use UDB, performing all operation entirely by CPU. Such

approach saves valuable hardware resources, but may be limited to low sampling rates. Results

for PSoC5LP are presented below. Results for PSoC4 are typically ~20% slower.

Filter execution time(*) for random dataset is shown on Figure 5. At small sizes it grows linearly

as 51 + 18 × 𝑁 (inset), while over the entire range it better fits 61 + 17 × 𝑁. Such linear

performance is due to the fact that insertion of the new value into previously sorted buffer

needs maximum of N steps.

Figure 5. Execution time (CPU clocks) vs. filter size, measured over random input data using

PSoC5. Input data were generated using rand() function in the int16 range (-32768  32767).
Filter range was set to int32.

*
 Compiled in release mode, with compiler optimization set to speed

PSoC Creator Component datasheet MedianFilter: sliding window median filter

Rev. *A Page 9 of 14

Figure 6. Median algorithms performance results, tested over large dataset. Filter size 31.

Squares – average performance (processor clocks); error bars show dispersion (minimum to
maximum execution time).

The algorithms performance comparison is shown on the Figure 6 [3]. For medium-sized filters

the Extrom algorithm outperformed several other tested over large data set. It also shows

minimal dispersion, which guarantees stable execution time, independent of the data

sequence. The Extrom algorithm was reported to have better performance for any filter size

larger than 3 [4].

MedianFilter: sliding window median filter PSoC Component datasheet

Page 10 of 14 Rev. *A

Resources

Component does not consume hardware resources. It doesn’t use interrupts, clocks or UDB.

Component does not have built-in DMA capabilities.

Sample Firmware Source Code

Demo project is provided, see Appendix 2 for details.

Component Changes

Version Description of changes Reason for changes/impact
0.0 Version 0.0 is the first beta release

of the component

References

1. Phil Extrom, Better than Average, Embedded Systems Programming, Nov 2000, pp.100-110,
https://www.embedded.com/better-than-average/
https://m.eet.com/media/1173225/f-eckstro.pdf

2. Wesley Bylsma, Algorithm Alley,
https://www.drdobbs.com/parallel/algorithm-alley/184411079

3. Forum Electronix.ru, Median algorithm comparison test, 2013,
https://electronix.ru/forum/index.php?app=forums&module=forums&controller=topic&id=114436&
page=4&tab=comments#comment-1182441

4. Nigel Jones, Median Filter Performance Results, 2010
https://embeddedgurus.com/stack-overflow/2010/11/median-filter-performance-results/

5. Nigel Jones, Median Filtering, 2010
https://embeddedgurus.com/stack-overflow/2010/10/median-filtering/

https://www.embedded.com/better-than-average/
https://m.eet.com/media/1173225/f-eckstro.pdf
https://www.drdobbs.com/parallel/algorithm-alley/184411079
https://electronix.ru/forum/index.php?app=forums&module=forums&controller=topic&id=114436&page=4&tab=comments#comment-1182441
https://electronix.ru/forum/index.php?app=forums&module=forums&controller=topic&id=114436&page=4&tab=comments#comment-1182441
https://embeddedgurus.com/stack-overflow/2010/11/median-filter-performance-results/
https://embeddedgurus.com/stack-overflow/2010/10/median-filtering/

PSoC Creator Component datasheet MedianFilter: sliding window median filter

Rev. *A Page 11 of 14

Appendix 1

The median filter algorithm

Component implemented entirely in code. The actual code was taken from the Ref. [5]:

int16 Filter_1_AddValue(int16 datum)

{

 struct pair

 {

 struct pair *point;

 int16 value;

 };

 static struct pair buffer[FilterSize]={};

 static struct pair *datpoint = buffer;

 static struct pair small = {NULL,STOPPER};

 static struct pair big = {&small, 0};

 struct pair *successor;

 struct pair *scan;

 struct pair *scanold;

 struct pair *median;

 if (datum == STOPPER) {datum=STOPPER+1;}

 if ((++datpoint-buffer) >= FilterSize) {

 datpoint = buffer;

 }

 datpoint->value = datum;

 successor = datpoint->point;

 median = &big;

 scanold = NULL;

 scan = &big;

 if (scan->point == datpoint) {

 scan->point = successor;

 }

 scanold = scan;

 scan = scan->point ;

 uint16 i;

 for (i = 0; i < FilterSize; ++i)

 {

 if (scan->point == datpoint) {

 scan->point = successor;

 }

 if (scan->value < datum)

 {

 datpoint->point = scanold->point;

 scanold->point = datpoint;

 datum = STOPPER;

 };

// Pointers list linked in sorted order

// Values to sort

// Buffer of nwidth pairs

// Pointer into circular buffer of data

// Chain stopper

// Pointer to head of linked list.

// Ptr to successor of replaced item

// Ptr used to scan down the sorted list

// Previous value of scan

// Pointer to median

// No stoppers allowed

// Increment and wrap data in pointer

// Copy in new datum

// Save ptr to old value's successor

// Median initially to first in chain

// Scanold initially null

// Points to ptr to first (largest)

// datum in chain

// Handle chain-out of first item in

// chain as special case

// Save this pointer and

// step down chain

// Loop through the chain, normal loop

// exit is via break

// Handle odd-numbered item in chain

// Chain out the old datum

// If data is larger than scanned value

// Chain it in here

// Mark it chained in

MedianFilter: sliding window median filter PSoC Component datasheet

Page 12 of 14 Rev. *A

 // Step median pointer down chain

 // after doing odd-numbered element

 median = median->point;

 if (scan == &small) break;

 scanold = scan;

 scan = scan->point;

 if (scan->point == datpoint) {

 scan->point = successor;

 }

 if (scan->value < datum)

 {

 datpoint->point = scanold->point;

 scanold->point = datpoint;

 datum = STOPPER;

 }

 if (scan == &small) break;

 scanold = scan;

 scan = scan->point;

 }

 return median->value;

}

// Step median pointer

// Break at end of chain

// Save this pointer and

// step down chain

// Handle even-numbered item in chain

Using the Filter API in the main loop, where the sample comes from ADC or signal generator

routine:

for(;;)

{

 if (isrTimer_flag != 0)

 {

 median = Filter_1_AddValue(sample);

 . . .

 }

}

// main loop

// Timer interrupt

// add next data sample

PSoC Creator Component datasheet MedianFilter: sliding window median filter

Rev. *A Page 13 of 14

Appendix 2

Component demo project

The PSoC5 project example using MedianFilter component is shown on Figure 7. Test data

samples are generated on clock timer and added to the Filter. The Filter output is streamed

along with original data samples to the plotting software(*) using USB-UART bridge, built into

the KitProg.

Figure 7. MedianFilter project schematic.

The Filter input data is a square wave with large transition spikes. The Filter effectively rejects

the spikes and recovers the square wave. The FIR filter output is obtained using PSoC5 built-in

Digital Filter and provided for comparison (this option is absent in PSoC4 basic demo).

Figure 8. Filter response to the square wave with transition artifacts. Filter length is 31. Black line – signal w/o

noise; Green – signal with noise; Red – FIR output; Blue – median filter output (recovered data). Vertical offsets

are added for clarity. Data Format panel displays configuration settings.

*
 SerialPlot – Real time Plotting Software for UART/Serial Port, https://hasanyavuz.ozderya.net/?p=244

https://hasanyavuz.ozderya.net/?p=244

MedianFilter: sliding window median filter PSoC Component datasheet

Page 14 of 14 Rev. *A

Figure 9. Project annotation for PSoC5 CY8CKIT-059 using PSoC Annotation library
(*)

.

Figure 10. Project annotation for PSoC4 Pioneer Kit (CY8CKIT-042) using KIT-042
(†)

 stub.

*
 PSoC Annotation Library v1.0, https://community.cypress.com/thread/48049

†
 KIT-042: annotation component for CY8CKIT-042 Pioneer Kit, https://community.cypress.com/thread/48741

https://community.cypress.com/thread/48049
https://community.cypress.com/thread/48741

