

How to use the generic RSA functionality from the PDL crypto driver

To demonstrate encryption and decryption process you can use attached test project with precompiled
openssl tool.

To encrypt or decrypt RSA operations you should have pair of the two keys: private and public keys.

Step by step instructions to demonstrate generic RSA functionality:

1. Go to tools subdirectory and open command line window

2. Generate and save private key file

Cmd>.\bin\openssl genrsa 2048 > priv_key.txt

3. Save keys data to my-keys.txt file

Cmd>.\bin\openssl rsa -in priv_key.txt -text > my-keys.txt

4. Create public key file

Cmd>.\bin\openssl rsa -in priv_key.txt -pubout -out pub_key.txt

5. Open attached project in the PSoC Creator 4.2

6. Open main_cm4.c file

7. Open my-keys.txt file with keys information in the text viewer

8. Copy modulus data without leading byte

https://www.openssl.org/

9. Place copied modulus data into text editor and make hex byte array (by some search/replace
commands)

10. Place this produced array to the main_cm4.c file into the appropriate modulus variable

11. Copy private exponent data from keys text without leading byte

12. Make byte array to place to the C code

13. Place produced array into appropriate privateExponent variable in the main_cm4.c file

14. Place public exponent value (value 0x10001 is a standard de-facto value for the public exponent) into
publicExponent variable in the main_cm4.c file

* Please note:
All information produced by openssl tool are in the octet-string format (Big-Endian)!
You must revert it manually or by special revert function Cy_Crypto_Rsa_InvertEndianness() to
the Big Integer (Little-Endian) format before using!

This project performs revert the key data at lines 200-201 and revert the signatures at lines 204-
205.

Now all keys data and signatures are ready to use!

15. Encrypt plain text file my-text.txt by public key and save encrypted data to my-encrypt.hex file

Cmd>.\bin\openssl rsautl -inkey pub_key.txt -encrypt -raw -in my-text.txt -hexdump
-out my-encrypt.hex

16. Open my-encrypt.hex file and copy encrypted data into text editor to make source code byte array

17. Place produced array into the rsaEncrypted variable

18. Open my-text.txt file in the hex viewer and copy all data

19. Make byte array from that data and place it into rsaDecrypted variable. This data will be used to check
correctness of the decryption operation

20. Set breakpoint to line 237 of the main_cm4.c file

21. Run project in Debug mode

22. Observe successful comparison of the rsaDecrypted and rsaOutput variables

23. Call Cy_Crypto_Rsa_InvertEndianness() function to revert the rsaOutput variable (line 253) and
observe that rsaOutput contains the same data as plain text.

Please note:
To use results of the RSA encrypt/decrypt functions you should revert it to octet-string (Big-
Endian) form.

