
Programming Flash Microcontrollers through
the Controller Area Network (CAN) Interface

Application Note

Fujitsu Microelectronics America, Inc. 1

Programming Flash Microcontrollers
through the Controller Area Network
(CAN) Interface
Abstract
This application note describes how to program the Fujitsu Flash
Microcontrollers through a CAN interface. For reference
purposes, this document includes sample programs and a hardware
configuration.

Introduction
Fujitsu offers microcontroller families with both on-chip Flash
memory and CAN controller. These features allow Fujitsu
microcontrollers to be widely used in industrial automation as well
as in automotive and mobile machines.

This application note provides a solution for programming the
Fujitsu Flash Microcontrollers through the CAN interface.

Numbers in parentheses throughout this application note refer to
references at the end of the document.

Programming Fujitsu Flash Microcontrollers
There are three ways to program Flash Microcontrollers (1):

1. Using the EPROM Programmer
2. Using the Fujitsu embedded Burn-in ROM serial

programming mode:

In this mode, a standard asynchronous RS232 connection to
a PC downloads the software and programs the Flash Micro-
controller directly in the system. The built-in ROM boot-
strap loader is enabled by a special mode pin setting of the
microcontroller.

3. Using the bootloader:
The bootloader, a user application, is located in the Flash
memory and is programmed into the Flash with Method 1 or
2 above. During Flash programming, the bootloader pro-
gram itself must be running in the RAM area. The user Flash
programming software is copied to the internal RAM. After
that, the program is started in the RAM and the Flash pro-
gramming is executed. The application described in this doc-
ument uses this method. By adding the CAN control function
and other control schemes, the user bootloader can program
the Flash via the CAN interface.

Implementation
This example application allows the user to program the Fujitsu
Flash Microcontrollers in the field through the CAN interface.
Figure 1 shows the configuration of this application and assumes
the following: There is a CAN network; all microcontrollers
(nodes) have been mounted; CAN is the only connection among
these nodes. If a need should arise requiring an upgrade or change
of functionality of some of the nodes, the Flash microcontrollers
can be reprogrammed using the CAN interface.

Figure 1. Programming a Flash Microcontroller through the CAN Interface

Programming Flash Microcontrollers through the CAN Interface

2 Fujitsu Microelectronics America, Inc.

Configuration
This application uses a master-slave structure. All nodes in the
system have their corresponding bootloaders (a master bootloader
and a slave bootloader) programmed in advance. By running a
simple terminal emulator (starter-kit Wizard), the user can
communicate with the master node and thus communicate with all
the nodes in the CAN. After power ON, the user has one second to
send a dummy character from the PC terminal to the master node.
If no character is received by the master node, the default
application is called after a timeout; otherwise, the master
bootloader enters a flash program monitor mode and a prompt
(>) will appear on the terminal.

Master Programming Mode
Once the master node enters the monitor mode, a simple menu will
appear on the PC terminal as shown in Figure 2.

The user has the option of selecting the master node or the slave
node for programming. For programming the master node, the
user is able to download code from a PC terminal and then
program the master node’s flash memory. At the same time, all the
slave nodes will call, respectively, their default applications because
there is no request for them to be programmed.

Slave Programming Mode
The Master Flash monitor acquires a slave node ID selected by the
user, and then broadcasts it on the CAN bus. All slave nodes listen
to the initial control information including to the selected slave
node ID, and then compare it with their own node ID. Thus, the
selected slave node will establish the flash programming connection
with the master node and PC. All other slave nodes call their
default application individually. In this case, the master node acts
as a bridge between the PC terminal via UART and slave nodes via
CAN.

Figure 2. Programming Menu

Application Note

Fujitsu Microelectronics America, Inc. 3

Bootloader
The bootloader for the master node has the ability to download the
program code from the PC through UART, identify the program
record type and format, communicate individually with all the
slave nodes via the CAN interface, and also program its own flash
memory. The flowchart of the master bootloader is shown in
Figure 3.

The bootloader for slave nodes can communicate and receive
program code through the CAN interface, identify which node is
being programmed, and program its own flash memory. The
flowchart of the slave bootloader is shown in Figure 4.

CAN Implementation (2)
According to the CAN Specification 2.0, Part A and B (3), an
11-bit standard CAN message identifier is used in this application.
The format of this ID is shown in Figure 5.

Figure 5. 11-bit Standard CAN Message Identifier

Each message identifier contains two parts: Type ID (4-bit) and
Node ID (5-bit). The four types of identifiers used in this
application are listed below in Table 1.

Table 1.

The node ID is presented by 5 least significant bits of the 11-bit
message identifier shown in Figure 5. This allows up to 32 nodes in
the CAN loop. Each slave node has its own unique ID. The node ID
list can be found in the application program (4). The software flow
charts for the master and slave node CAN controller are shown in
Figure 6 and Figure 7.

10 9 8 7 6 5 4 3 2 1 0

Type ID X Node ID

Type ID Value Memo

Control ID 0x0040
Contains the information about flash program mode
and record length

Program ID 0x0020 Contains the program code record in CAN message

Acknowledge ID 0x0030
Usually sent by slave nodes; contains information
about program errors

Initialization ID 0x0010
Initial message sent by master node; contains
selected node ID

Programming Flash Microcontrollers through the CAN Interface

4 Fujitsu Microelectronics America, Inc.

Figure 3. Software Flowchart for the Master Bootloader

Start

End

Blank check for master node;
Send a global ID through CAN

(No slave node will be programmed)

Receive line-by-line record
(program code) from UART

Process record
(programming the flash memory) Send record through CAN I/F

Initialize CAN controller;
determine which node to be
programmed; send node_ID

Call default application
Any response
from UART

within 1
second?

Last record of
the program?

Flash_Program_Monitor:
1. Master Program
2. Slave Program

No

No

RAM
Code

Yes

Yes

Master

Master

Slave

Slave

Application Note

Fujitsu Microelectronics America, Inc. 5

Figure 4. Software Flowchart for the Slave Bootloader

Start

End

Receive programming
record from CAN I/F

Receive Node_ID from CAN

Process record
(programming flash memory)

Call default application
of this node

Node_ID =
ThisNode_ID

Last record of
the program?

Initialize CAN controller

No

No

RAM
Code

Yes

Yes

Programming Flash Microcontrollers through the CAN Interface

6 Fujitsu Microelectronics America, Inc.

Figure 6. Software Flowchart for Master Node CAN Controller

Send Initialization
frame to slave nodes

Return to flash monitor

Send control frame
(containing flash

program mode and the
length of the record)

Send program record
frame (maximum
8 bytes per frame)

Receive ACK frame from
selected node

End of
record?

Any transmit
or ptogram

error?

End of
program

code?

No

No

No

Yes

Yes

Yes

Application Note

Fujitsu Microelectronics America, Inc. 7

Figure 7. Software Flowchart for Slave Node CAN Controller

Receive initialization
frame

Call application

Send error ACK frame

Send no error
ACK frame

Receive control frame
(flash program mode
and the record length)

Receive program record
(maximum 8 bytes

per frame)

Programming record into
flash memory

End of
record?

Programmed
Node ID =

Thins Node ID

Any errors
occur?

End of
program

code?

No

No

No

No

Yes

Yes

Yes

Yes

Flash Programming Implementation
The actual programming of the Flash Memory is performed by
starting the flash memory automatic algorithm. During this phase
the flash memory is accessed by the CPU via the internal bus. Once
initiated, the automatic algorithm takes care of the setup required
by the flow, such as timer settings, modes and registers, and decision
programming needed for erasing and/or writing the Flash memory.
The various sequences of write accesses are executed in one to six
cycles and are called Flash commands. For detailed information
about automatic algorithms, refer to Chapter 4.6, entitled
Automatic Write/Erase Algorithm, of the MB90595 Hardware
Manual (5).

The flash programming method depends on the global variable
“w_e_mode”(write/erase mode) sent by the master node, and the
automatic algorithm processes the data word as follows:

• w_e_mode = 1: Checks if the sector to which address
“adr”belongs to has already been erased once. If it hasn't, the
function erases the sector. In any case, it writes the data to the
flash ROM.

• w_e_mode = 2: Compares “data”to the corresponding
flash ROM word. If any “data”bit is 1 while the flash
ROM bit is 0, the sector which “adr”belongs to is
erased. No writing is done.

• w_e_mode = 3: Writes “data”to the flash ROM without
any preceding checks or erases. Flash ROM bits will
only be programmed from 1 to 0.
Note: The address must be even.

By polling the bits of the specific register (Address 0xFFFFFE for
MB90595 series), the user can detect the execution state of the
automatic algorithm.

Running the Sample Code and Demo:
The demo is presented on Fujitsu Flash-CAN-100P evaluation
board with MB90F598 microcontroller. The following items are
required for this demo.
• FLASH-CAN-100P boards with MB90F598 microcontroller.

(at least two boards)
• Serial cable
• CAN connection cable
• Power Supply Connectors (7-14 V external DC Power Supply) for

FLASH-CAN-100P boards.
• PC or laptop running SOFTUNE V3.0

• Master and Slave Bootloader sample codes, Application sample
code. Master and slave bootloader are available for download
from http://www.fma.fujitsu.com/mcu/emb.asp under application
notes.

• FLASH download utility. (FLASH510.EXE)
• Fujitsu SKWIZARD. (PC terminal emulator)

For configuration and connection, please refer to the hardware
manual of Flash-CAN100P Board and Figure 1 respectively. The
procedure for running the sample code are listed below:

1. Set the jumper JP1 to provide VCC to each board of
Flash-CAN-100P

2. Switch ON the Power supply to the boards.
3. Set all the switches of S3 on each board as follows:

1 - ON, 2 - OFF, 3 - OFF, 4 - OFF, 5 - ON, 6 - OFF, 7 - ON,
8 - ON
Note: ON stands for 0, OFF stands for 1

4. Select UART1, Pin 21 and Pin 24 by setting the jumpers JP10
and JP9 to connect pin 1 and 2 on each Board.

5. Run Flash510.exe (flash program utility) to download the boot
loader program into each node. (Master Bootloader and Slave
bootloader)
Note: Please set the slave node ID in the sample code
individually.

6. Connect the master node with PC using serial cable. Set the
UART jumpers JP9 and JP10 to connect Pin 2 and pin 3 on the
master node board as UART0, Pin18 and Pin20.

7. Connect the master node to the slave nodes through CAN cable.
Set the CAN jumpers JP3 and JP4 to connect pin 2 and pin 3 on
the boards to set CAN0 for all the nodes, Pin74 and Pin75.

8. Set JP12 jumper(HST) to connect pin 1 and pin 2 on the master
board for the monitor reset.

9. Set all the switches of S3 on the board to OFF position, excep
switch 3, which should be ON to run the bootloader software
on the boards.

10. Run SKWIZARD on the PC as PC terminal emulator.
11. Make the COM PORT Parameter Settings on the SKWIZARD

as follows:
Baud Rate: 38400, COM PORT1 or COM PORT2
No Parity, 1 stop Bit, 8 data bits

12. Click on the 'CONNECT' of SKWIZARD.
13. Run the already loaded asynchronous boot loader software for

all the nodes. The MASTER Node communicates with PC
monitor and the screen appears as shown in Figure 2. Menu

Programming Flash Microcontrollers through the CAN Interface

8 Fujitsu Microelectronics America, Inc.

http://www.fma.fujitsu.com/mcu/emb.asp

appears on the screen to choose MASTER or SLAVE nodes.
14. If the user chooses MASTER by typing MASTER on the screen,

then user will be able to download any application software
(hex file) from PC terminal to Master node's FLASH memory.

15. If the user chooses the SLAVE by typing SLAVE on the screen,
further the slave node ID should be entered , and thus the
selected SLAVE node will establish Flash programming
connection with master node and PC. Down load any
application program(hex file) to the SLAVE node's Flash
memory.
Note: The node application program that the user wants to
download should be linked to the proper address of
microcontroller, therefore there is no conflict between node
application program and node bootloader.

Conclusion
This application demonstrates the ability to program the Fujitsu
Flash Microcontroller via the CAN interface. As the name user boot-
loader (master and slave) implies, users can modify it according to
their application requirement.

References
The following documents can be found on the Fujitsu MICROS
CDROM, Version 3.1 or later:

1. Application Note on Fujitsu Flash Microcontroller 16LX family
2. Application Note on a CAN Bus Protocol Controller Macro
3. CAN Specification 2.0, Parts A and B
4. Sample CAN Management Code for MB90595
5. MB90F598 Hardware Manual
6. FLASH-CAN2 Board Manual
7. Sample Bootloader Code for MB90595

9Fujitsu Microelectronics America, Inc.

Application Note

FUJITSU MICROELECTRONICS AMERICA, INC.
Corporate Headquarters
1250 East Arques Avenue, Sunnyvale, California 94088-3470
Tel: (800) 866-8608 Fax: (408) 737-5999 E-Mail: inquiry@fma.fujitsu.com Internet: http://www.fma.fujitsu.com
E-mail: fmicrc@fmi.fujitsu.com Internet: http://www.fujitsumicro.com

© 2002 Fujitsu Microelectronics America, Inc.
All rights reserved. All company and product
names are trademarks or registered
trademarks of their respective owners.

EC-AN-20866-2/2002

http://www.fma.fujitsu.com
http://www.fujitsumicro.com

