

Nebula IoT Reference Design Board

The possibilities are endless!

- Use the different interfaces to add on development boards from our growing list of Future IoT ready boards
- Application Examples:
 - Sensors
 - Proximity
 - Ambient light
 - Motion
 - Temperature
 - Humidity
 - Pressure
 - Gesture Recognition
 - UVA/UVB
 - Motor Control

Cypress Murata Certified Wi-Fi + Bluetooth Combo Module

- Murata 1DX certified module Part Number LBEE5KL1DX-883
- Inside is a Cypress CYW4343W Wi-Fi and Bluetooth chipset radio
- Single Band 2.4GHz 802.11 b/g/n
 - Over SDIO Interface
- Dual Mode (Classic BT + BLE) Bluetooth v4.2 + EDR Radio
 - Over UART Interface
- Single ended RF port using single antenna
- Radio Regulatory Certifications
 - USA/Canada FCC ID: VPYLB1DX IC: 772C-LB1DX
 - Europe EN300328 v1.9.1
 - 4.2. Bluetooth® Qualification QDID: 7306
- Size: 6.95 x 5.15 x 1.1 mm

Sensor Companion Shields from ON Semiconductor

Passive Infrared Shield PIR-GEVB

Motor Driver Shield BLDC-GEVK

Smart Passive Sensor Reader Board SPS-Reader-GEVK

Nebula IoT Reference design board: NEB1DX-01 or NEB1DX-02

BLDC-GEVK Board: ON Semiconductor Evaluation board

- Brushless DC Motor driver shield
- Based on ON Semiconductor's sensor-less three phase brushless DC Motor Controller LV8907UW
- Integrated gate drivers for driving external N-MOSFETs
- Built-in linear regulator, watchdog timer and LIN transceiver for powering an external circuit
- Integrated watchdog timer and a Local Interconnect Network (LIN) transceiver
- Evaluation board connects to the Nebula board through Arduino style connectors
- Dimensions: 7x7 mm

Applications for LV8907

- Smart lighting
- Door Automation
- IoT capability to Motor

Control Systems

Motion triggered events

How to use the BLDC-GEVK with the Nebula IoT Board

Objective: Use the BLDC-GEVK with the Nebula board to

demonstrate reading of BLDC Motor

Hardware Prerequisites

- 1 x Nebula IoT development kit (NEB1DX-01 or NEB1DX-02)
- 1 x BLDC motor driver shield Board (SPS-Reader-GEVK)
- 1x USB cable

1 PC

muRata " 1911

Nebula IoT Development kit

• 1 x 12V <u>power supply</u> (not included in kit)

12V Power Supply

Hardware Prerequisites Cont'd

Step 1. Using the Arduino connectors, connect the BLDC-GEVK board to the Nebula board.

Step 2. connect the BLDC motor to the BLDC Shield.

Step 3. Power the BLDC-GEVK board using the 12 V power supply

Step 4. Power on the nebula board using USB debug port

Software Prerequisites

- Example code "bluemix_iot_sensors" make target built in WICED
- WICED Studio 5.2 (and later)

- TeraTerm Pro is available (for free) at:
 - http://download.cnet.com/Tera-Term/3000-20432 4-75766675.html
 - Download "teraterm-4.89.exe" (or later)
 - Run it

WICED Walkthrough

WICED Studio SDK: Download

Download WICED Studio 5.2 or later:

Windows:

https://community.cypress.com/docs/DOC-13651

Linux or OS X:

https://community.cypress.com/community/wiced-wifi/wiced-wifi-documentation

11

WICED Studio: IDE Overview

Device Selector

Debug Icon Editor

Choose your device Launch debugger Edit the firmware

Workspace Perspective

Switch between editor and debug views

Make Target

Build your application

Project Explorer

Explore the SDK

Console Window

View the build output

Help

Learn how to build/run an application

WICED Studio SDK: Device Selection

Use the pull-down menu to change the device

Pull-down menu options:

20706-A2_Bluetooth — Bluetooth (BR/EDR/BLE) SoC with ARM® Cortex®-M3
43xxx_Wi-Fi — Wi-Fi + Bluetooth Combo SoCs, Wi-Fi SoCs with integrated MCU, and Wi-Fi-only SOCs
WICED Filters off — Show all available devices

WICED Studio SDK: Example Applications

Choose the relevant sub-folder from the 43xxx_Wi-Fi -> Apps folder in the Project Explorer

- Demo Advanced applications that combine multiple WICED features
- Snip Application snippets that use various WICED APIs
- Test Manufacturing/certification-related test applications and utilities
- WAF Applications that are part of the WICED Application Framework (WAF) like bootloaders
- WWD Applications that use low-level APIs provided by the WICED Wi-Fi Driver (WWD) and do not use the WICED APIs provided by the WICED Application Framework

Read the README.txt files to learn about the contents of the respective folder

WICED Studio SDK: Platform Selection

Browse the **43xxx_Wi-Fi** device folder to the **Platforms** folder in your **Project Explorer** to view the hardware platforms available for your device.

Read the README.txt file located within the folder for every platform for details about each hardware platform.

Wi-Fi/Wi-Fi + BT Platforms

@ .gdbinit_attach

1 Create a new Folder in the *apps* folder called *nebula*.

Creating a new folder in the *apps* directory

Creating a new folder in the apps directory

Copy the example "bluemix_iot_sensors" code into the nebula folder.

Ensure the appropriate files are in the directory

4 Copy the sensor drivers into the WICED directory

Driver code is located under sensor code>libraries>drivers>sensors>

Paste it in WICED under libraries > drivers > sensors

Enter your Wi-Fi router credentials in wifi_config_dct.h

Modify lines 49 and 52 in wifi_config_dct.h

```
/* This is the soft AP used for device configuration*/

#define CONFIG_AP_SSID "Your Wi-Fi network"

#define CONFIG_AP_CHANNEL 1

#define CONFIG_AP_SECURITY WICED_SECURITY_WPA2_AES_PSK

#define CONFIG_AP_PASSPHRASE "your password"
```


6 Copy the platform folder into the WICED directory

Platform code is located under Nebula-OnSemi board projects>platforms>

Paste it in WICED under platforms

In the *Make Target* window rightclick and copy an example build target that ends with *download* run.

Select snip.scan-BCM943362WCD4 download run

Paste the example build target in the Make Target window. The Create Make Target window opens automatically to enable you to edit build options.

Modify the *Target name* to match the following format: <application.folder.path>-<target platform> download download_apps run and press OK.

The target name is modified to nebula.bluemix_iot_sensors-NEB1DX_01_fix download_download_apps run

You only need to include the download_apps option if you expect that the external flash needs to be updated. Since this is our first build and the Wi-Fi module firmware is a resource stored in the external flash, we need to include this to make sure it is properly programmed.

Double-click the newly created make target *nebula.bluemix_iot_sensors-NEB1DX_01_fix* download download_apps run to build, download, and run your application.

Console window showing build output

```
■ Console X Problems Search Debug
CDT Build Console [43xxx Wi-Fi]
Building apps lookup table
Download complete
Downloading DCT ...
No changes detected
Downloading resources filesystem ... build/nebula.bluemix iot_sensors-NEB1DX 01 fix/filesystem.bin at sector 1 size 96...
Downloading apps lookup table in wiced apps.mk ... build/nebula.bluemix iot sensors-NEB1DX 01 fix/APPS.bin @ 0x0000 size
Downloading Application ...
Download complete
Resetting target
Target running
Build complete
Making .gdbinit
13:51:46 Build Finished (took 1m:2s.546ms)
```


11

Open a terminal program, observe output.

Expected result

```
COM94 - Tera Term VT
 File Edit Setup Control Window Help
Starting WICED vWiced_006.002.001.0002
Platform NEB1DX_01_fix initialised
Started ThreadX v5.8
Initialising NetX_Duo v5.10_sp3
Creating Packet pools
WLAN MAC Address : DC:EF:CA:00:28:77
                          : wl0: Apr 30 2018 04:14:19 version 7.45.98.50 (r688715 CY) FWI
WLAN Firmware
D 01-283fcdb9
WLAN CLM
                          : API: 12.2 Data: 9.10.39 Compiler: 1.29.4 ClmImport: 1.36.3 Cr
eation: 2018-04-11 22:31:21
Joining : FE-IOT
Successfully joined : FE-IOT
Obtaining IPv4 address via DHCP
DHCP CLIENT hostname WICED IP
IPv4 network ready IP: 192.168.16.103
Setting IPv6 link-local address
IPv6 network ready IP: FE80:0000:0000:0000:DEEF:CAFF:FE00:2877
Initializing sensors...
Found BLDC board, initializing...
PIR sensor not found.
SPS reader not found.

> Resolving IP address of MQTT broker...
Resolved Broker IP: 169.45.2.20
[MQTT] Opening connection...Client ID...d:cdy464:NebulaOnsemi:nebula-iot
 --- Success
LMQIIJ Publishing...
BLDC motor turning at 8000 RPM
Message :('d'":('rpm":8000)>
Success publish
Success publish
[MQTI] Publishing...
BLDC motor turning at 9000 RPM
Message :{"d":{"rpm":9000}>
Success publish
[MQTI] Publishing...
 BLDC motor turning at 10000 RPM
 Message :{"d":{"rpm":10000}}
 Success publish
```


Baud rate: 115200

Data: 8 bit Parity: none Stop: 1 bit

Flow control: none

End results display motor rpm and temp.

THANK YOU!

