
Getting started with BLE in WICED Studio

1.0 PURPOSE

The purpose of this document is to help users who are already familiar with the PSoC Creator BLE design

flow to quickly get started with their BLE designs in WICED Studio. This post tries to explain the structure

of a WICED BLE application and in the end explains how a user can quickly get started with an

application. This blog will be using the hello_sensor application 20706-A2 Bluetooth SDK as an example.

However, the same holds good for other WICED Bluetooth chips as well.

Note that this blog post does not aim to explain Bluetooth functionalities, rather assumes that the

reader is already aware of BLE basics.

2.0 CONTENT

 The application files

 Common sections in a BLE application

 WICED Bluetooth Designer

 Illustrating the design flow

2.1 THE APPLICATION FILES

All example applications are located in the Apps folder in the SDK. The hello_sensor example app can be

found here as well. All Bluetooth applications generally contain the following files,

 Source and header files (hello_sensor.c and hello_sensor.h)

 The Bluetooth configuration file (wiced_bt_cfg.c)

 The make file. (makefile.mk)

2.1.1 HELLO_SENSOR.C

This file contains the main user application code. More details about this file in section 2.2.

2.1.2 MAKEFILE.MK

All applications in WICED will have an associated makefile that can be modified by the user. This file is

generally used to enable/disable certain features of the code during the build process. For example, you

can enable or disable BT HCI or Debug trace capabilities by adding or removing the following flags,

 2.1.3 WICED_BT_CFG.C

 This file is used for configuring all of the Bluetooth parameters. This file is analogous to the BLE

component configuration window in PSoC Creator. The configuration parameters are initialized inside

the structure wiced_bt_cfg_settings_t which is later passed as a parameter during Bluetooth stack

initialization (Section 2.2.1). A brief description of all parameters are available as comments in the SDK.

2.2 COMMON SECTIONS IN A BLE APPLICATION

All BLE applications comprise of some mandatory common sections. These sections are explained below

with the help of the hello_sensor app.

 APPLICATION_START()

 Bluetooth Management Callback

 GATT callback

 GATT database

2.2.1 APPLICATION_START()

This function marks the beginning of the code execution for all BLE applications. The section is most

commonly used to initialize the BT stack and to set up the WICED transport.

wiced_bt_stack_init is used to initialize the BT stack and also register the Bluetooth management

callback (Section 2.2.2). To this function we also pass the Bluetooth configuration parameters (Section

2.1.3) and buffer pool configuration.

For more information on buffer pools, refer AN216403 – WICED- Application Buffer Pools in the DOC

folder of WICED Studio.

wiced_transport_init is used to configure the WICED transport, which is HCI_UART interface. In the
hello_sensor application, the WICED transport is used to send out HCI traces when C_FLAGS += -
DENABLE_HCI_TRACE is enabled in the makefile. The WICED transport can be configured as UART or
SPI. Once configured, the WICED transport can be used to receive WICED HCI commands.

2.2.2 BLUETOOTH MANAGEMENT CALLBACK

This is the main callback function that return all major events for managing the Bluetooth link from the

application. This callback function is registered in the wiced_bt_stack_init function. In the hello_sensor

application we have registered hello_sensor_management_cback for management callbacks.

Similar to the BLE callback function in PSoC Creator, this callback return events and event parameters

associated with Bluetooth events such as Security, Advertisement, Scanning etc. All BT events except the

GATT events are handled here. GATT events have a separate callback (Section 2.2.3). All the available

management events can be found in wiced_bt_management_evt_t.

It is worth mentioning that BTM_ENABLED_EVT is the first management event that is triggered after

stack initialization. In hello_sensor, the rest of the application is initialized after this event.

BTM_ENABLED_EVT is equivalent to CYBLE_EVT_STACK_ON event in PSoC Creator.

2.2.3 GATT CALLBACK

This callback returns all GATT related events and event parameters that need to be handled by the

application after connection has been established. The GATT callback is registered using

wiced_bt_gatt_register() function. In the hello_sensor app, the GATT callback is registered after the BT

stack initialization.

All GATT events are available in wiced_bt_gatt_evt_t. These events inform the state of the connection

and GATT database operation.

2.2.4 GATT DATABASE

All BLE server applications must include a GATT database that is registered with the stack. The GATT

database is custom made for each application and need to follow the correct format as defined by the

spec. In the hello_sensor application, a custom service and a SIG defined device information service is

defined in the GATT database. After defining the required GATT database, it is registered with the stack

using the wiced_bt_gatt_db_init() API.

Manually writing a GATT database from scratch can be a tedious and error prone process. WICED Studio
provides ‘WICED Bluetooth Designer’ to simplify this process.

The actual values of the GATT database are stored in a separate attribute array along with their
associated characteristic handles as shown in the figure below.

2.3 WICED BLUETOOTH DESIGNER

The BT Designer feature of the WICED BT SDK IDE helps software developers generate the Bluetooth

Generic Attribute Profile (GATT) databases and initial code for Bluetooth WICED applications.

The BT Designer is initiated by clicking File > New > WICED Bluetooth Designer in the WICED Studio IDE.

Complete information about this tool can be found in the file ‘Developing Custom Applications with BT

Designer’ under the doc folder of WICED Studio.

2.4 CREATING YOUR OWN PERIPHERAL IN WICED

The following section uses the above discussed information to create a heart rate sensor peripheral

application from the existing hello_sensor code. The following section also draws parallels between how

the heart rate sensor is implemented in Creator and how the same is done in WICED. The final example

code hr_sensor is attached along with this blog post so that users can go through it and see the

differences between hello_sensor and hr_sensor.

Note:

 This section just illustrates the simplest way to quickly get started with WICED Studio. Advanced

users can simply opt to write the application code from scratch.

 Basic understanding of the hello_sensor application is required. The following section assumes

that the user has gone through and understood the hello_sensor code using the information

above.

The heart rate peripheral code can be classified into 3 major categories,

 GATT Database

 BLE Configuration

o Connection and Advertisement Parameters

o Security Parameters

 Application Activity

2.4.1 GATT DATABASE

A GATT database for the heart rate profile needs to be generated first. In PSoC Creator, this was done

using the BLE Component window under the Profiles tab. In WICED Studio, we will use WICED Bluetooth

Designer to generate our required GATT database. In the hr_sensor example project, we use two SIG

defined services, heart rate and device information.

Once the required code is generated, copy the GATT database and its associated header definitions from

the generated code into the hello_sensor application, replacing the existing hello_sensor GATT

database.

Modify the GATT attribute array in the application to match the heart rate sensor’s GATT database as

shown in the figure below,

2.4.2 BLE CONFIGURATION

Advertisement Parameters:

As discussed in section 2.1.3, you can set the advertisement parameters in the wiced_bt_cfg.c file. The

advertisement interval and duration can be set in ble_advert_cfg. Advertisement can then be started in

the application by calling the wiced_bt_start_advertisements API.

Note: The list of APIs available can found inside the doc folder in the Project Explorer or WICED Studio.

Security Parameters:

In PSoC Creator, security parameters are located in the BLE configuration dialog box, under the Security

tab. In WICED, the security parameters are set from the application at runtime during the pairing

procedure. Whenever a pairing process in initiated, the application receives the

BTM_PAIRING_IO_CAPABILITIES_BLE_REQUEST_EVT management callback event along with the event

parameter wiced_bt_dev_ble_io_caps_req_t. Here the application is expected the fill the

wiced_bt_dev_ble_io_caps_req_t to set the security parameters such as Authentication mode, IO

Capabilities, Max key size etc.

2.4.3 APPLICATION ACTIVITY

The application activity is nothing but sending of notifications once the client connects and enables

notifications. PSoC Creator does not support an RTOS by default. So the entire application code runs in

an infinite while loop where the send notifications API is called periodically. However, WICED supports

an RTOS and the main application runs in a thread. Here we send out notifications based on a timer

expiry. In hr_sensor, the function hr_sensor_send_message() takes care of starting the timer and

sending notifications on notifications are enabled by the client.

Following is the image of the timer callback where the notifications are actually sent. Refer the HRS

manual for more

