Getting started with BLE in WICED Studio

1.0 PURPOSE

The purpose of this document is to help users who are already familiar with the PSoC Creator BLE design
flow to quickly get started with their BLE designs in WICED Studio. This post tries to explain the structure
of a WICED BLE application and in the end explains how a user can quickly get started with an
application. This blog will be using the hello_sensor application 20706-A2 Bluetooth SDK as an example.
However, the same holds good for other WICED Bluetooth chips as well.

Note that this blog post does not aim to explain Bluetooth functionalities, rather assumes that the
reader is already aware of BLE basics.

2.0 CONTENT

e The application files

e Common sections in a BLE application
e WICED Bluetooth Designer

° Illustrating the design flow

2.1 THE APPLICATION FILES

All example applications are located in the Apps folder in the SDK. The hello_sensor example app can be
found here as well. All Bluetooth applications generally contain the following files,

e Source and header files (hello_sensor.c and hello_sensor.h)
e The Bluetooth configuration file (wiced_bt_cfg.c)
e The make file. (makefile.mk)

4 [;‘f hello_sensor
+ |=> peerapps
[hello_sensor.c
!._ﬁ hello_senzor.h
L@ makefile.mk

[wiced_ht cfg.c

2.1.1 HELLO_SENSOR.C

This file contains the main user application code. More details about this file in section 2.2.

2.1.2 MAKEFILE.MK

All applications in WICED will have an associated makefile that can be modified by the user. This file is
generally used to enable/disable certain features of the code during the build process. For example, you
can enable or disable BT HCI or Debug trace capabilities by adding or removing the following flags,

C_FLAGS += -DWICED_BT_TRACE_ENABLE
#C_FLAGS += -DEMABLE_HCI_TRACE

2.1.3 WICED_BT_CFG.C

This file is used for configuring all of the Bluetooth parameters. This file is analogous to the BLE
component configuration window in PSoC Creator. The configuration parameters are initialized inside
the structure wiced bt cfg settings t which is later passed as a parameter during Bluetooth stack
initialization (Section 2.2.1). A brief description of all parameters are available as comments in the SDK.

typedef struct

uintd t *device_name;

wiced bt dev class_t device_class;

uintd t security requirement mask;
uintd t max_simultaneous_links;

/* Scan and advertisement configuration */

wiced bt cfg br_edr scan settings t br edr scan_cfg;
wiced bt cfg ble scan settings t ble_scan_cfg;
wiced bt cfg ble advert settings t ble advert_cfg;

/* GATT configuration ¥/
wiced_bt cfg gatt_settings_t gatt_cfg;

/* RFCOMM configuration */
wiced bt cfg rfcomm t rfcomm_cfg;

/* Application managed l2cap protocol configuration =/
wiced bt cfg l12cap_application t 12cap application;

/* Audio/Video Distribution configuration */

wiced bt cfg avdt_t avdt_cfg;

/* Audio/Video Remote Control configuration */

wiced bt cfg avrc t avrc_cfg;

/* LE Address Resolution DB size */

uintd_t addr_resolution_db_size;
uintle_t max_mtu_size;

} wiced bt cfg settings_t;

2.2 COMMON SECTIONS IN A BLE APPLICATION

All BLE applications comprise of some mandatory common sections. These sections are explained below
with the help of the hello_sensor app.

e APPLICATION_START()

e Bluetooth Management Callback
e GATT callback

e GATT database

2.2.1 APPLICATION_START()

This function marks the beginning of the code execution for all BLE applications. The section is most
commonly used to initialize the BT stack and to set up the WICED transport.

wiced_bt_stack init is used to initialize the BT stack and also register the Bluetooth management
callback (Section 2.2.2). To this function we also pass the Bluetooth configuration parameters (Section
2.1.3) and buffer pool configuration.

For more information on buffer pools, refer AN216403 — WICED- Application Buffer Pools in the DOC
folder of WICED Studio.

" Register call back and configuration with stack
wiced bt stack_init(hello_sensor_management_cback ,
Swiced bt cfg_settings, wiced_bt cfg_buf _pools);

wiced_transport_init is used to configure the WICED transport, which is HCI_UART interface. In the
hello_sensor application, the WICED transport is used to send out HCl traces when C_FLAGS += -
DENABLE_HCI_TRACE is enabled in the makefile. The WICED transport can be configured as UART or
SPI. Once configured, the WICED transport can be used to receive WICED HCI commands.

wiced transport_init(&transport_cfg);

2.2.2 BLUETOOTH MANAGEMENT CALLBACK

This is the main callback function that return all major events for managing the Bluetooth link from the
application. This callback function is registered in the wiced_bt_stack_init function. In the hello_sensor
application we have registered hello_sensor_management_cback for management callbacks.

wiced result t hello sensor management cback(wiced bt management evt t event, wiced bt mana

wiced_result t result = WICED BT SUCCESS;
wiced_bt_dev_encryption status_t *p_status;
wiced_bt_dev_ble pairing_info_t *p_info;

wiced bt ble advert mode_t *p_mode;

uintd t *p_keys;

WICED BT_TRACE("hello sensor management_chack: ¥x\n", event);

switch(event)

i

/* Blustoogth stack enabled =/
case BIMLENABLED EVT

hello sensor application_init();

break;
case BIM_DISABLED_EVT:
break;

case BTM_WSER. CONEIRMATION REQUEST EVT:
WICED BT TRACE("numeric value: ¥d \n", p_event data->user_confirmation_request.numer
wiced bt dev confirm req reply(WICED BT SUCCESS , p event data->user confirmation m
break;

case BIMLPASSKEY.NOTIEICATION EVT:
WICED_BT_TRACE("PassKey Notification. BDA B, Key %d ‘\n", p_event_data-:user_passkey.

wiced_bt_dev_confirm_req_reply(WICED BT SUCCESS, p_event_data-ruser passkey notifica
break;

Similar to the BLE callback function in PSoC Creator, this callback return events and event parameters
associated with Bluetooth events such as Security, Advertisement, Scanning etc. All BT events except the

GATT events are handled here. GATT events have a separate callback (Section 2.2.3). All the available
management events can be found in wiced_bt_management_evt_t.

It is worth mentioning that BTM_ENABLED EVT is the first management event that is triggered after
stack initialization. In hello_sensor, the rest of the application is initialized after this event.
BTM_ENABLED EVT is equivalent to CYBLE_EVT _STACK_ON event in PSoC Creator.

2.2.3 GATT CALLBACK

This callback returns all GATT related events and event parameters that need to be handled by the
application after connection has been established. The GATT callback is registered using
wiced_bt_gatt_register() function. In the hello_sensor app, the GATT callback is registered after the BT
stack initialization.

/* Register with stack to receive GATT callback */
gatt _status = wiced bt gatt register(hello_sensor_gatts_callback);

All GATT events are available in wiced bt _gatt _evt_t. These events inform the state of the connection
and GATT database operation.

2.2.4 GATT DATABASE

All BLE server applications must include a GATT database that is registered with the stack. The GATT
database is custom made for each application and need to follow the correct format as defined by the
spec. In the hello_sensor application, a custom service and a SIG defined device information service is
defined in the GATT database. After defining the required GATT database, it is registered with the stack
using the wiced_bt_gatt_db_init() API.

const uintd_t hello_sensor_gatt_database[]=

/ Declare mandatory GATT service

PRIMARY_SERVICE UUTD16({ HANDLE HSENS GATT. SERVICE, UUID SERVICE GATT),

f/ Declare mandatory GAP service. Device Name and Appearance are mandatory
[/ characteristics of GAP service

PRIMARY SERVICE_UUID16{ HANDLE HSENS.GAP,SERVICE, UUID SERVICE GAP),

{/ Declare mandatory GAP service characteristic: Dgy Name
CHARACTERISTIC_UUID16(HANDLE HSENS GAP SERVICE CHAR DEV NAME, HANDLE HSENS GAP SERVICE CHAR DEV NAME VAL
UUID CHARACTERISTIC_DEVICE NAME, LEGATTDB_CHAR_PROP_READ, LEGATTDB_PERM_READABLE),

// Declare mandatory GAP service characteristic: Appearance
CHARACTERISTIC_UUID1&(HANDLE HSENS. GAP. SERVICE.CHAR. DEV APPEARANCE, HAMDLE HSENS GAP, SERVICE..CHAR.DEV, APPEARANCE VAL
UUTD_CHARACTERTSTIC_APPEARANCE, LEGATTDB_CHAR_PROP_READ, LEGATTDB_PERM READABLE),

/{ Declare proprietary Hello Service with 128 byte UUID
PRIMARY_SERVICE_UUID128(HAMNDLE_HSENS,SERVICE, UUID _HELLO_SERVICE),

// Declare characteristic used to notify/indicate change
CHARACTERISTIC_UUTID128(HANDLE HSEMS. SERVICE.CHAR NOTIEY, HAMDLE HSENS SERVICE.CHAR MOTIEY, VAL
UUID_HELLO_CHARACTERISTIC_NOTIFY, LEGATTDE_CHAR_PROP_READ | LEGATTDB_CHAR_PROP_NOTIFY | LEGATTDE_CHAR_PROP_INDICATE, LEGATTDS_PERM_READABLE),

// Declare client characteristic configuration descriptor

// value of the descriptor can be modified by the client

/{ Value modified shall be retained during connection and across connection

/f for bonded dewvices. Setting walue to 1 tells this application to send notification

// when value of the characteristic changes. Value 2 is to allow indicatiens.

CHAR_DESCRIPTOR_UUID16_WRITABLE(HAMDLE_HSENS SERVICE CHAR.CEG.DESC, UUID DESCRIPTOR_CLIENT_CHARACTERISTIC CONFIGURATION,
LEGATTDE_PERM_READABLE | LEGATTDE_PERM_WRITE_REQ | LEGATTDE_PERM_AUTH_READABLE | LEGATTDE_PERM_AUTH_WRITASLE),

Manually writing a GATT database from scratch can be a tedious and error prone process. WICED Studio
provides ‘WICED Bluetooth Designer’ to simplify this process.

The actual values of the GATT database are stored in a separate attribute array along with their
associated characteristic handles as shown in the figure below.

/* Attribute list of the helle sensor */
attribute t gauAttributes[] =

{
1 HANDLE HSENS_GAP_SERVICE.CHAR DEV NAME WAL, sizeof(hello_sensor_device_name), hello sensor_device_name },
{ HANDLE HSENS. GAP, SERWICE.CHAR DEV, APPEARANCE VAL, sizeof(hello_sensor_appearance_name), hello sensor_appearance_name },
{ HANDLE _HSENS_SERVICE CHAR_NOTIFY VAL, sizeof(hello_sensor_char_notify_value), hello_sensor_char_notify_value },
{ HANDLE HSENS. SERVICE.CHAR.CEG.DESC, 2, (void*)&helle_sensor_hostinfo.characteristic
{ HAMDLE HSEMS. SERVICE.CHAR BLINK VAL, 1, &helle_sensor_hostinfo.number_of_blinks },
{ HAMDLE_HSENS. DEV_INFO.SERVICE_ CHAR_MFR_MNAME WAL, sizeof(helle_sensor_char_mfr_name_value), hello_sensor_char_mfr_name_value },
{ HANDLE HSENS DEV_INFQ_SERVICE CHAR _MODEL NUM VAL, sizeof(helle_sensor_char model num value), hello_senser_char model num value },
1 HANDLE HSENS DEV_INFQ_SERVICE CHAR_SYSTEM IR VAL, sizeof(helle_sensor_char_system_id_value), hello_sensor_char_system id_value },
1 HANDLE HSENS. BATTERY. SERVICE .CHAR. LEVEL VAL, 1, &hello sensor_state.battery level },

ki

2.3 WICED BLUETOOTH DESIGNER

The BT Designer feature of the WICED BT SDK IDE helps software developers generate the Bluetooth
Generic Attribute Profile (GATT) databases and initial code for Bluetooth WICED applications.

The BT Designer is initiated by clicking File > New > WICED Bluetooth Designer in the WICED Studio IDE.

Complete information about this tool can be found in the file ‘Developing Custom Applications with BT
Designer’ under the doc folder of WICED Studio.

2.4 CREATING YOUR OWN PERIPHERAL IN WICED

The following section uses the above discussed information to create a heart rate sensor peripheral
application from the existing hello_sensor code. The following section also draws parallels between how
the heart rate sensor is implemented in Creator and how the same is done in WICED. The final example
code hr_sensor is attached along with this blog post so that users can go through it and see the
differences between hello_sensor and hr_sensor.

Note:

e This section just illustrates the simplest way to quickly get started with WICED Studio. Advanced
users can simply opt to write the application code from scratch.

e Basic understanding of the hello_sensor application is required. The following section assumes
that the user has gone through and understood the hello_sensor code using the information
above.

The heart rate peripheral code can be classified into 3 major categories,

e GATT Database

e BLE Configuration
o Connection and Advertisement Parameters
o Security Parameters

e Application Activity

A GATT database for the heart rate profile needs to be generated first. In PSoC Creator, this was done
using the BLE Component window under the Profiles tab. In WICED Studio, we will use WICED Bluetooth
Designer to generate our required GATT database. In the hr_sensor example project, we use two SIG
defined services, heart rate and device information.

& WICED 20706-A2 Device 3

Services
Generic Attribute |
4 Generic Access
(5 Device Name
_ Appearance
Heart Rate
(5} Heart Rate Measurement
Body Sensor Location
Heart Rate Control Point
a Device Information
Manufacturer Name String
Model Number String
System ID

Once the required code is generated, copy the GATT database and its associated header definitions from

the generated code into the hello_sensor application, replacing the existing hello_sensor GATT
database.

const uints_t gatt_database[] = // Define GATT database

Primary Service 'Generic Attribute' */
PRIMARY_SERVICE_UUID1G (HDLS_GENERIC_ATTRIBUTE, UUID_SERVICE_GATT),

Primary Service 'Generic Access’ */
PRIMARY_SERVICE UUID1G (HDLS GENERIC_ACCESS, LUID SERVICE GAP),

* Characteristic 'Device Name'

CHARACTERISTIC_UUID16 (HDLC_GENERIC_ACCESS_DEVICE NAME, HDLC_GENERIC_ACCESS_DEVICE_NAME_VALUE,

UUID_CHARACTERISTIC DEVICE NAME, LEGATTDB_CHAR PROP_READ,
LEGATTDB_PERM_READABLE),

* Characte < 'Appearance’

CHARACTERISTIC_UUID16 (HDLC_GENERIC_ACCESS_APPEARANCE, HDLC_GENERIC_ACCESS_APPEARANCE_VALUE,

UUID_CHARACTERISTIC APPEARANCE, LEGATTDE_CHAR PROP_READ,
LEGATTDB_PERM_READABLE),

Primary Service 'Heart Rate’ */

PRIMARY_SERVICE UUID1G (HDLS HEART RATE, UUID SERVICE HEART RATE),

* Characte c 'Heart Rate Measurement' */

CHARACTERISTIC_UUID16 (HDLC_HEART_RATE_HEART RATE_MEASUREMENT, HDLC_HEART RATE_HEART RATE_MEASUREMENT VALUE,
UUID_CHARACTERISTIC_HEART_RATE_MEASUREMENT, LEGATTDB_CHAR_PROP_NOTIFY,

LEGATTDB_PERM_AUTH_READABLE),

* Descriptor 'Client Characteristic Configuration® *

CHAR_DESCRIPTCR UUID16 WRITABLE (HDLD HEART RATE HEART RATE_MEASUREMENT CLIENT CONFIGURATION,
UUID_DESCRIPTOR_CLIENT_CHARACTERISTIC_CONFIGURATION, LEGATTDB_PERM_READABLE | LEGATTDB_PERM WRITE_REQ | LEGATTDB_PERM_AUTH_WRITABLE),

Characteristic 'Body Sensor Location’

CHARACTERISTIC_UUID16 (HDLC_HEART_RATE_BODY SENSOR_LOCATION, HDLC_HEART RATE_BODY_SENSOR_LOCATION VALUE,
UUID_CHARACTERISTIC_HEART_RATE_SENSOR_LOCATION, LEGATTDB_CHAR_PROP_READ,

LEGATTDE_PERM_READABLE),

Characteristic 'Heart Rate Control Point'

CHARACTERISTIC_UUID16_WRITABLE (HDLC_HEART_RATE_HEART_RATE_CONTROL_POINT, HDLC_HEART_RATE_HEART_RATE_CONTROL_POINT_VALUE,
UUID_CHARACTERISTIC_HEART_RATE_CONTROL_POINT, LEGATTDB_CHAR_PROP_WRITE,

LEGATTDB_PERM_WRITE_REQ),

Primary Service 'Device Information® */

PRIMARY_SERWICE_UUID16 (HDLS_DEVICE_INFORMATION, UUID_SERVICE DEVICE_INFORMATION),

Modify the GATT attribute array in the application to match the heart rate sensor’s GATT database as

shown in the figure below,

attribute_t gauAttributes[] =

{

HDLC_GENERIC_ACCESS_DEVICE_NAME_VALUE,
HOLC_GENERTC_ACCESS_APPEARANCE_VALUE,
HDLC_HEART_RATE_HEART_RATE_MEASUREMENT_VALUE,

HDLD HEART_RATE_HEART_RATE_MEASUREMENT _CLIENT_CONFIGURATION,
HDLC_HEART_RATE_BODY_SENSOR_LOCATION_VALUE,
HDLC_HEART_RATE_HEART_RATE_CONTROL_POINT_WALUE,
HOLC_DEVICE_INFORMATION_MANUFACTURER_MNAME_STRING_VALUE,
HOLC_DEVICE_TNFORMATION_MODEL_NUMBER_STRING_VALUE,
HDLC_DEVICE_INFORMATION_SYSTEM_ID_WALUE,

o o o i iy i i i iy

i3]

2.4.2 BLE CONFIGURATION

Advertisement Parameters:

sizeof(hr_sensor_device_name)}, hr_sensor_device_name },
sizeof(hr_sensor_appearance_name), hr_sensor_appearance_name },
sizeof(heart_rate_char_value), heart_rate_char_value },

2, (void*)&hr_sensor_hostinfo.characteristi
sizeof(heart_rate_sensor_location), heart_rate_sensor_location },
sizeof(heart_rate_control_point), heart_rate_control_point },

sizeof(hr_sensor_char_mfr_name_value), hr_sensor_char_mfr_name_value },
sizeof(hr_sensor_char_model_num_value), hr_sensor_char_model_num_value },
sizeof(hr_sensor_char_system_id_walue), hr_sensor_char_system_id_value },

As discussed in section 2.1.3, you can set the advertisement parameters in the wiced bt _cfg.c file. The
advertisement interval and duration can be set in ble_advert_cfg. Advertisement can then be started in
the application by calling the wiced_bt_start_advertisements API.

Note: The list of APIs available can found inside the doc folder in the Project Explorer or WICED Studio.

Security Parameters:

In PSoC Creator, security parameters are located in the BLE configuration dialog box, under the Security
tab. In WICED, the security parameters are set from the application at runtime during the pairing
procedure. Whenever a pairing process in initiated, the application receives the
BTM_PAIRING |0 _CAPABILITIES BLE REQUEST EVT management callback event along with the event

parameter wiced_bt_dev_ble_io_caps_req_t. Here the application is expected the fill the
wiced_bt_dev_ble_io_caps_req_t to set the security parameters such as Authentication mode, 10
Capabilities, Max key size etc.

case BIM.PATRING. IO CAPABILITIES. BLE. .REQUEST..EVT:

p_event_data->pairing_ioc capabilities_ble_ request.leocal io_cap
p_event_data-rpairing_ic capabilities_ble_ request.ocb_data
p_event_data-rpairing_ic capabilities_ble_ request.auth_req
p_event_data-rpairing_ioc capabilities_ble_request.max_key size
p_event_data-rpairing_ioc capabilities_ble_request.init_keys
p_ewvent_data->pairing ic_capabilities_ble_request.resp_keys
break;

= BTM IO CAPABILITIES NONE;
BIIL.008. NONE;

BTM_LE _AUTH_REQ BOND;

exle;

2.4.3 APPLICATION ACTIVITY

The application activity is nothing but sending of notifications once the client connects and enables

BTM_LE_KEY_PENC|BTM_LE_KEY_PID|BTM_LE_KEY PCSRK|
BTM_LE KEY PENC|BTM_LE KEY PID|BTHM LE KEY PCSRK|

notifications. PSoC Creator does not support an RTOS by default. So the entire application code runs in
an infinite while loop where the send notifications APl is called periodically. However, WICED supports

an RTOS and the main application runs in a thread. Here we send out notifications based on a timer
expiry. In hr_sensor, the function hr_sensor_send_message() takes care of starting the timer and
sending notifications on notifications are enabled by the client.

wiced result t result;
WICED BT TRACE("hr_sensor_send message: CCC:¥d\n", hr_sensor_hostinfo.characteri

/* If client has not registered Tor indication or notification, no action */
if { hr_sensor_hostinfo.characteristic_client configuration == 8)

1

WICED BT TRACE{ "Central has not enabled notifications “n" };

wiced stop timer(¬if timer);
return;

else if { hr_sensor_hostinfo.characteristic client configuration & GATT CLIENT CO

{

result = wiced_start timer({ ¬if timer, NOTIF_PERIOD}:
WICED BT TRACE({ "Starting timer %@x \n",result };

Following is the image of the timer callback where the notifications are actually sent. Refer the HRS
manual for more

/¥ notif timer callback */

Svoid [T s F00 T uint32 t count)
]

WICED BT TRACE("Sending Motification \n");

uintd_t *p_attr = (uint8_t*)&heart_rate_char wvalue;

hr_sensor_generate_hr(};

wiced bt gatt send notification(hr_sensor state.conn_id, HDLC_HEART RATE_HEART_ RATE MEASUREMENT VALUE, sizeof(heart rate char value)

—

