=

S Cvress

CYASM Assembler
User’'s Guide
Version 2.02

May 7, 2004

» Cypress Semiconductor « Personal Communication Division ¢
« 3901 North First Street » San Jose, CA 95134 « (408) 943-2600 »
* WWW.Cypress.com e

OCypress Semiconductor Corp, 1998, 1999, 2000, 2001, 2002, 2003,2004.
The information contained herein is subject to change without notice.

CYASM Assembler User’s Guide

NP

»

7.

Table of Contents

INStalling the CY ASM A SSEMDIE ...ttt ss s s e nsnses 1
Running CYASM
THE MiCTOPIOCESSOLvveuiereetresesseeesesessssesessssssssessssssssesssssessesesssssssssssssssssssssnsssssssnsesssssssssssssssesesssssnsessssssnsesssnesns
3.1 ACOIESS SPBCESvueurrieeerereeser st ses et se e s b ees e bbb
3.2 Instruction Format
3.3 AJAreSSING MOUES........cccuireerreerreseireses sttt et
3.4 Destination Of INSIIUCL ON RESUITS.........ccccuririirirerecieieireneisesesesss ettt sss s sessassesens
Assembly Source File SYNtaX ... ssssssessesnens
LiSt FIl@ FOMMEALcoeviiiieieirecieereecie et
Assembler Directives
BLKB - Allocate aBlock Of BYLES.......ccccvveerneccevescsiesesee s
BLKW - Allocate a Block of Words (2 bytes).......c.ccceeeeeverecerereneenenns
CPU - Product SpeCifiCationccccceeuverrenererses s sessssssesessesesnens
CSEG - Enter CODE Segment.......ccovvvvnerrernenenenenenesesesesesesesesesesesenes
DB - DEfINE BYLE.....oececeererreeereees vttt ssesssssssessnsnes
DEFINE - Define Conditional Assembly Symbol...........ccccccveernernenee.
DS - DEfiN@ ASCI StING ..ceveeereeeirereireerseisessiseessees s
DSEG - Enter DATA SEOMENL ...
DSU - Define UNICODE SENQG.....corrirreereeereeereeeneeessseessssessesessessenens
DW - DEfINE WOI....c.ouiiiriecirireee et
DWL - Define Word, Little Endian Orderingc.ccccecveveeennennnnnns
EL SE - Begin EL SE part of a Conditional Assembly Block..............
ENDIF - End a Conditional Assembly BIOCK.........cccooveverrereceriresnnnnnns
EQU - EQUAE LADE! ..ottt
ERROR - Error Message
FILLROM - Define unused program memory valueccccovverrenenes
IF - Begin a Conditional Assembly BIOCKccccoevvenrrererenseerirecenens
IFDEF - Begin a Conditional Assembly BIOCK..........cccovenieniceniiennns
IFNDEF - Begin a Conditional Assembly BlOCK.........coocncnieceniiennns
INCLUDE - Include sourCe file ...
MACRO - Macro Definition Start ...
ENDM - Macro Definition ENd ...
ORG - Program Counter OFigiNcoocevverererereresesesesesssesesesssssesesssesesees
XPAGEOFF - Disable XPAGE INSErtionccoocveeeeneerineeseneerensereeene
XPAGEON - Enable XPAGE INSErtionccveveeeneerineenenseneneeneeens
INSEFUCTION SEL....ceetieices ettt e bbb bbb bbbttt

i-'i': YPRESS

1. Installing the CYASM Assembler

The floppy disk included with distribution contains the cyasm.exe and sample source files. Copy the
executable file to aworking directory, or to adirectory included in your search path.

2. Running CYASM

To run the assembler, from the command line enter the following command:
cyasm sourcefileasm -b -t nn -pP -dD

The assembly language instructions reside in sourcefile, which hasa".asm" file name extension. The .asm
extension does not need to be included in the command line. The full path including disk and directory
names may be included in the source file name.

The following options may be included on the command line:

-b Brief Suppresses warning messages for operands out of range and
Xpage crossings.

-tnn Tab Setsthetab spacing in thelisting fileto nn, wherennisa
positive integer.

-pP Product Id Setsthe Product ID. Thisisthe same as using the CPU

directive. P isthe 6-character product name from CPU
Product Identification Table.

-dD Define Define a symbol from the command line. Thisisthe same
as using the DEFINE directive. D isthe symbol string to
define.

Running the assembler will result in the creation of threefiles: sourcefile.rom, sourcefile.lst and
sour cefile.hex.

Generated File Description
sourcefile.rom ROM object file
sourcefile.| st Listing file

sourcefile.hex EPROM programming file

The following examplefirst displays the command to assembl e testfile.asm, then displays the message
returned after assembling the file. A list of the output files follows.

>cyasm testfile -t 4

CYASM Version 2.00 Beta 01
For A and B series USB Mcrocontrollers
(O 1998, 1999, 2000, 2001, 2002 Cypress Seni conduct or Cor p.

Conpl et e!

>

Input source: testfile.asm
Output rom file: testfile.rom

Output listing file: testfile.lst, with tab spacing of 4.

The assembler may be halted at any time during arun by pressing <Ctrl C>.

CYASM Version 2.01 1

CYASM Assembler User’s Guide

3. The Microprocessor

The M8 is an 8-bit microprocessor core. It supports 8-hit operations, and it has been optimized to be small
and fast. There are two versions of this microprocessor — A and B version. The A versionisonly usedin a
limited number of older products, and it supports asmaller instruction set. The B version is newer and has
extrainstructions. The directive "CPU" is used to specify the target microprocessor core.

The Internal registers are: the accumulator "acc"; theindex register " X"; the data stack pointer "dsp"; the
program stack pointer "psp"; the program counter "pc". All registers are 8 bits wide except pc; pc is
composed of two 8-bit registers (pcl and pch) that together form a 16-bit register. The lower 6 bits of pch
and all 8 bits of pcl form a 14-bit address to program memory. When the pc is pushed on the stack, Bit 7 of
the pch storesthe carry flag (" cf*) and bit 6 of the pch stores the zero flag ("zf").

pch pcl
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Lcf|#|aJafaJaJala| [aJaJaJaJajalafa]

Upon reset, dsp and psp are reset to 0x00. The dsp grows down, with a pre-decrement, while the psp grows
upward with post-increment. Using a separate program stack simplifies data stack management, and
provides efficient function calls.

All instructions are 1 or 2 bytes wide and are fetched from program memory, in a separate address space
from data memory or |O. The second byte of an instruction is an 8-bit constant, referred to asthe
instruction data byte or operand. Theinstruction data byteis used in four different ways: as an immediate
value, asadirect or offset Data RAM address, or as the lower byte of a 12-bitProgram ROM address.

There are two flag bits: zf the zero flag and cf a carry / borrow flag. The flags are affected by arithmetic
operations, logic and shift operations, the INDEX instruction and the JACC instruction. The manner in
which each flag is changed is dependent upon the instruction being executed. Section 6, Instruction Set
includes information about how each instruction affects the flags.

3.1 Address Spaces

Three separate address spaces are implemented in the CY ASM assembler: 10, data RAM, and program
memory. The 10 space is accessed through the IORD and IOWR instructions. Eight address bits are
availableto access the |0 space. The data RAM contains the data stack, program stack, and space for
variable storage. All the read and write instructions as well asinstructions which operate on the stacks use
dataRAM. DataRAM addresses are eight bits wide, although for RAM sizes 128 bytes or smaller, not all
bits are used.

The program memory is organized into 256-byte pages, such that the pch register contains the memory
page number and the pcl register contains the offset into that memory page. The assembler automatically
inserts an XPAGE instruction on the last location of a page to increment the page number (pch) in the
program counter. This has the effect of moving the user assembly instruction that would have been last on
one page into the first location of the next page. For two-byte instructions starting two bytes from the end
of apage, aNOP is placed before the XPAGE so both bytes of the instruction are forced onto the next
page. Automatic XPAGE insertion may be controlled with the XPAGEON and X PAGEOFF assembler
directives.

The INDEX instruction has one operand that is the lower part of the base address of a ROM table. The
lower nibble of the INDEX opcode forms the upper part of the base address, yielding a 12-bit address
range. The offset into the table istaken as the value of the accumulator when the INDEX instruction is
executed. The maximum readabl e table size when using asingle INDEX instruction is limited by the range
of the accumulator to 256 bytes.

s
=9/ CYPRESS

An example of using an INDEX instruction is shown below.

tabl: DS “hello” ;define a table called tabl

MOV A 04
I NDEX t abl ;fetch the 5th byte (“0”) fromtable tabl.

The program memory holds the user program, as well as the data tables referenced by the INDEX
instruction. INDEX, CALL (opcode 9xh), and all jump instructions have a 12-bit address range and are
thereby limited to arange of 4K (see Section 3.2 Instruction Format), yet the B version supports EPROM
sizes up to 8K. In order to circumvent the 4K limitation, the B version includes a second CALL instruction
(opcode 5xh) that allows access to anywhere in the upper 4K of the 8K EPROM.

The XPAGE instruction is the only method other than the CALL instruction for accessing the upper 4K
range of an 8K EPROM. After an XPAGE instruction has been used to cross the boundary there isthen no
way to return back to the lower 4K region (other than another XPAGE instruction at the top of the upper
4K range). For thisreason, the CALL/RET isthe suggested method for utilizing the upper 4K of code
space.

During a CALL to the upper 4K, the lower 4K is not accessible by either the jump or INDEX instructions,
nor isit possibleto make a CALL from the upper 4K to the lower 4K. After acall into the upper 4K, access
to the lower 4K isrestored by the RET or RETI instructions; at that point the upper 4K is again not
accessible. The following table shows allowable operation. Please note that interrupt service routines do
continue to operate normally regardless of the upper/lower state at the time of the interrupt. ISRs must be
located in the lower 4K range and the RET]I at the end of the I SR properly returns control to either the
upper or lower 4K range.

Control flow for B version microcontroller with 8K EPROM

Instruction Type Low 4K Low 4K High 4K High 4K
to to to to
Low 4K High 4K Low 4K High 4K
JACC, JC, IMP, INC, INZ, JZ Yes No No Yes
CALL Yes Yes No Yes
(9% opcode) (5x opcode) (5x Opcode)
RET, RETI Yes Yes Yes Yes
INDEX Yes No No Yes
XPAGE All but Last page Last Page All but
last page last page

The assembler examines the destination of the CALL and automatically chooses the correct opcode. If an
attempt is made to do ajump, CALL or INDEX instruction that illegally crosses the 4K boundary, the
assembler will flag that operation as an error.

The assembler maintains two location counters, one for data memory (RAM), and the other for program
memory. The assembler switches between the two location-counters with the CSEG and DSEG directives.
The assembler validates that instructions and ROM data are assembled into program memory space
(CSEG) and RAM datais allocated in RAM memory space (DSEG).

CYASM Version 2.00 3

CYASM Assembler User’s Guide

3.2 Instruction Format

Instruction addressing is divided into two groups: (1) Logic, arithmetic and data movement functions, (2)
jump and call instructions. (For the purpose of the following discussion, the INDEX opcodeis grouped asa
jumpinstruction). Inthefollowing descriptionsa“0” or “1” indicates the opcode group, a“c” indicates
other bits used to define opcodes, and an “a” indicates bits used to store an address or data value.

Logic, arithmetic, and data movement functions are one- or two-byte instructions. The first byte of the
instruction contains the opcode, for that instruction. In two-byte instructions, the second byte contains
either adatavalue or an address. The format for logic, arithmetic, and data movement instructionsis:

Single byte instruction:

7 6 5 4 3 2 1 0
[0]ofclcfcfcfc]c]|

Double byeinstruction:

Instruction Byte Instruction Data Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
[0]ofclclcleclc|c] [aJalalalafala]al]

All jumpsinstructions, plusthe CALL and the INDEX instructions are 2-byte instructions. The opcodeis
contained in the upper 4 bits of the first instruction byte, and the destination addressis stored in the
remaining 12 bits. For memory sizes larger than 4 Kbytes, destination address bits above the lower 12 will
be the same as those in the pc at the time the instruction is executed. The format for jump instructioniis:

Instruction Byte Instruction Data Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
[1]lclcf[clalalalal [alalalalalala]a]

3.3 Addressing Modes

Three addressing modes are supported — Immediate, Direct, and Indexed. The address mode is inferred
from the syntax of the assembly code. The square brackets, [] are used to denote one level of indirection.
Thethree modes are illustrated in the following examples:

Immediate:

The immediate addressing mode is identified by a value without square brackets in the operand field.
Immediate addressing causes the operand itself to be used as avalue in the operation.

ADD A, 7 :In this case the value 7 is added to the accumul ator.

Direct:

The direct addressing mode isidentified by avalue within square brackets in the operand field. This
mode causes the Data RAM value which is addressed by the operand to be used in the operation.

ADD A, [7] ;Inthis case the valuein location 7 of the Data RAM is added to the
;accumul ator.

s
=9/ CYPRESS

Indexed:

The indexed addressing mode isidentified by the “[X+ value]” syntax. This mode uses the value of
the X-register as a base address and the operand as the offset to access locationsin the Data RAM.
This addressing mode is useful for indexing into ablock of datawithin the Data RAM.

ADD A, [X+7] ;Inthis case, 7 isadded to the current value of X-register to form the
;address. Thisaddressisthen used to access the DataRAM value
:which isto be added to the accumul ator.

3.4 Destination of Instruction Results

Theresult of agiven instruction is stored in the entity that is placed next to the opcode in the assembly
code. This allows a given result to be stored in alocation other than the accumulator. Direct and Indexed
addressed Data RAM locations, aswell asthe X-register, are additional destinations for some instructions.
The AND instruction isagood illustration of thisfeature:

Syntax Operation

AND A, expr acc- acc & k

AND A, [expr] acc— acc & [K]
AND A, [X + expr] acc- acc & [X +Kk]
AND [expr], A [K] = acc & [K]
AND [X+ expr], A [X+K] = acc& [X+K]

The ordering of the entities within the instruction determines where the result of the instruction is stored.
In this example, the last two cases perform the same operation as the previous two. The differenceisthe
destination of theinstruction.

4. Assembly Source File Syntax

Assembly language instructions reside in files with ".asm" extensions. Each instruction has one operation
on asingle line, each with the format described below. The maximum line-length is 255 characters. Each
keyword is separated by white spaces.

Syntax: label : MNEMONIC operands ;comment

Label is a case-sensitive set of alphanumeric charactersand"_" followed by acolon":". A
label may be up to 127 characters long. If used as shown in the Syntax line above, alabel
will be assigned avalue, but labels may also be used as operands. A label is assigned the
value of the current location counter (DSEG or CSEG) unlessit is defined on aline with
an EQU directive. Labels can be included on any line, including blank lines, but are
required within an EQU directive. A label may only be defined once in an assembly

program, but may be used as an operand multiple times.

If the label beginswith the"." character, that |abel haslocal scope only and is recognized
only between the two global labels that surround it. If the label does not begins with the
"." character, that |abel isaglobal label. A label that begins with the"." character must
exists between two global |abels. These local |abels can re-use the same names within
differing global scopes.

CYASM Version 2.00 5

CYASM Assembler User’s Guide

MNEMONIC

Operands

Expressions

For example:

Vai t: nov a, 10 ; First gl obal | abel

I pl: dec A
jnz .Ipl ;Refers to local ".l|pl" above
ret

Next : nmov A 20 ; Second gl obal | abel

. pl: dec A
jnz .Ipl ;Refers to local ".lpl" after "Next"
ret

Last :

In the above example the label ".Ip1" isreused and is unique in both cases. This feature
allowsfilesto be included such that label-use conflicts are reduced.

Local labels are restricted and may be used only between global labels. For example, a
programmer may not use alocal label before a global label has been defined, and there

must be at least one global label after the last local label.

isan assembly instruction, an assembler directive, or a user defined macro name. All are
defined in more detail in Section 7, Instruction Set and Section 6, Assembler Directives.
There can be 0 or 1 MNEMONIC on aline of assembly code. MNEMONICs, with the
exception of macro names, are case insensitive.

either specify the addressing mode for an instruction as described in Sections 3.3 and 3.4,
or are expressions that specify avalue used by an instruction. The number and type of
operands accepted on aline depends on the MNEMONIC on that line. Refer to Section 6,
Assembler Directives and Section 7, Instruction Set for information on which operands
are accepted by specific MNEMONICs. A line with no MNEMONIC must have no
operands.

may be constructed using a number of algebraic and logical operators with any of the
operand types listed in the next section. The order of precedence of the expression
operatorsis:

1. Bitwise Complement ~

Unary LSB >
Unary MSB <
2. Multiplication *
Division /
3. Addition +
Subtraction -
4. Bitwise Shift Left <<
Bitwise Shift Right >>
Bitwise AND
Bitwise XOR n
Bitwise OR |

Parenthesis may be used to force lower precedence operations to be executed first.

s
=9/ CYPRESS

Operand Types Labds used as operands are replaced with their defined value. Definitions may be made

Comment

anywhere within the source file as described in the section on |abels above. The colon
that follows alabel does not need to be included when used as an operand.

Constants are specified as binary, decimal, hexadecimal, or character. Theradix for a
number is specified by aletter following thet number: b for binary, d for decimal, h for
hexadecimal. If no radix is specified it is assumed to be decimal. For example 1010b,
10d, 10, and Ah are al equivalent.

Character constants are enclosed by single quotes and have the ASCII val ue of the
character. One or two characters may be included in quotes to form an 8-bit or 16-bit
value. The backslash\ is used as an escape character. To enter asingle quote‘ asa
character, type\’. To enter a\ type \\. Some character constant examples: "A" hasthe
value of 41h, "AB" hasthe value 4142h, and " \’ " hasthe ASCII value of * (single quote).

Thedollar sign $, isreplaced by the value of the current location counter (CSEG or
DSEG). For example, the instructionJMP $ isaJump instruction that jumps to itself.

isanything following asemicolon “;” or adouble slash “//” to theend of aline. A
comment istypically used to explain the assembly code and it may be placed anywherein
the source file. Comments are ignored by the assembler; however, they are written to the
listing file.

5. List File Format

When cyasm isrun on an assembly file, alisting file with a.Ist extension is created. The listing shows how
the assembly program was mapped into actual memory values. It also provides alisting of errors, warnings,
and areference table of labels.

Thefollowing isasmall assembly program (example.asm) and below that isitslisting (example.lst).

Samplefileto assemble: example.asm:

START:

JMP START
DB 3FAh

;only a comment on this |ine

ORG 20h ; set program counter to 20h
MOV a, 16d

CYASM Version 2.00 7

CYASM Assembler User’s Guide

Listing of assembled file: example.lst

CYASM Version 2.00 Beta 01
(O 1998, 1999, 2000, 2001, 2002 Cypress Sem conduct or Corp.

0000 80 20 [05] JMP START
**** \Warning : '3FAh' is larger than a byte.
0002 FA [00] DB 3FAh

;only a cooment on this line
0020 ORG 20h ; set program counter to 20h
0020 19 10 [04] START: M a, 1l6d

CheckSum = 01C3
Warnings = 1
Errors =0

Product: 63000, CPU Fam |y=A, RAMF128 bytes, ROM-2048 bytes
Kok kkkkkkkkkkkkk RAN USAGE MAP * % * %% %k kk k% %k k x

| 01234567| 89ABCDEF| 01234567| 89ABCDEF|

C0- DF| XOOXKXK] XXHKXKXKX] XHKXKXKKK| XOHXKXKXK]
EO0- FF] XOO0KXXX] XXOXXKXK| XHKKXKXKK] XXKKXKXX]

RAM Used = 0(+) RAM Available = 128
kkkkkkkkhkkkkkkk Rovl LJSAE ’\/AP kXX kKA khkhkkkkkkk

| 01234567| 89ABCDEF| 01234567| 89 ABCDEF|
0000-01FF| p p | | | |
0200- 03FF]| | | | |
0400- O5FF] | | | |
0600- O7FF]| | | |
0800- 09FF| XXX XXX XIHKXXK] XHOXXXXKX|
0A00- OBFF| XXXXXXXKX] XXXIKXXXK] XIIKXXXK] XIKXXXXKX|
0C00- ODFF| XXX XXX XIHKKXK] XHOXXXXKX|
0EO00- OFFF| XXX XXX XIIKXXXK] XIXKXXXXKX|
1000- 11FF| XXXKK] XXX XOXXX] XOOXXXXX
1200- 13FF| XXXXXK] XHXXKXK] XIXKXXX] XOOXXKXK
1400- 15FF] XXOOKK] XXX XXX XOOXXXXX
1600- 17FF| XXXKXK] XHXXXKXK] XXOXXXX] XOOXXXXX
1800- 19FF] XXX XIOXK] XXX XIOXXXXX
1A00- 1BFF| XXXXXXXXK] XHXXKXK] XXOKXXX] XOOXXXXX
1C00- 1DFF| XXXXK] XXX XXX XOOXXXXX
1E00- 1FFF| XXXXXXK] XHXXKXK] XXOXXXX] XOOXKXXXX

ROM Used = 5 ROM Avail abl e = 2043

F = Full Block

p Partially Full Bl ock

X = Unpopul at ed Bl ock

kkkkkkkkkkk*k SY’\BO_I C REFERE’\K:E TABLE kkkkkkkkkkk*k

Val ue Label # Uses

20H START 1

s
=9/ CYPRESS

With one exception, the first column of thelisting file displays either the address where the instruction is
stored, or the RAM block that isallocated toit. If aplussign "+" follows the address, the locationisa
RAM block addresse. The exception occurs when an EQU directive is assembled. In that case, thevaluein
thefirst column is the value that was assigned to the label; thisis further highlighted with an equal sign "="
immediately to the right of the assigned value.

The next two columns show the opcode and operand for that instruction. The exceptionsto thisare the
define directives (see Section 6), which place defined datain each of these columns, and instructions with
no operands for which column three will be left blank. The number of clock cycles required to execute the
instruction is next shown in sgquare brackets. Then the source code line corresponding to the previous
information is displayed. Any warnings and errors are shown above the line that caused them.

Following the body of thelisting is a checksum, a count of warnings and errors and is the symbolic
reference table. Every label defined in the assembly program isincluded in the symbol table. The value
assigned to alabel is shown alongside a count of the number of times the label isused. If alabel isdefined
by an EQU directive (see Section 6) an "=" isincluded between the value and label name.

Asan example, look at thefirst line of the listing file example.lst. On the right isthe "JMP START" from
the source code. The opcode for the jump instruction (80) is placed at memory location 0000. A “20” is
placed as the operand for the jJump instruction at memory location 0001. The value of the operand
"START" can be checked in the Symbolic Reference Table at the end of the listing. The next line of the
listing is an example of awarning. In this case, the operand-value of the following define-byte (DB)
assembler directiveislarger than an 8-bit value. Column two of the listing line for the DB shows that the
assembler used the rightmost eight bits (FA) of the operand.

CYASM Version 2.00 9

CYASM Assembler User’s Guide

6. Assembler Directives

The CY ASM assembler allows the following assembler directives:

10

BLKB
BLKW
CPU
CSEG

DB
DEFINE
DS

DSEG
DSU

DW

DWL
ELSE
ENDIF
EQU
ERROR
FILLROM
IF

IFDEF
IFNDEF
INCLUDE
MACRO
ORG
XPAGEON
XPAGEOFF

Allocate a Block of Bytes

Allocate aBlock of Words (2 bytes)

Product specification

Enter Code Segment

Define Byte

Define Conditional Assembly Symbol

Define ASCII String

Enter Data Segment

Define UNICODE String

Define Word (2 bytes)

Define Word with little endian ordering

Begin else part of conditional assembly block

End a conditional assembly block

Equate label to variable value

Error ‘message’

Define unused program memory value

Begin a conditional assembly block (based on expression result)
Begin aconditional assembly block (when a symbol is defined)
Begin aconditional assembly block (when a symbol is not defined)
Include source file

Macro definition

Origin

Xpage enable

Xpage disable

-

==# CVYPRESS
BLKB - Allocate a Block of Bytes
The BLKB directive allocates a block of bytesin DATA space.
Syntax:
label : BLKB expr ;comment

Thefollowing is an example of allocating ablock of bytesin DATA space:
Samplefileto assemble: BLKB.asm

DSEG

ORG 10h ;set program counter to 10h
WORD_BUF: BLKW 5
COUNT: BLKB 1
Listing:
CYASM Ver sion 2.00 Beta 01
(O 1998, 1999, 2000, 2001, 2002 Cypress Sem conductor Corp.
0000+ DSEG
0010+ ORG 10h ;set program counter to 10h
0010+ WORD_BUF: BLKW 5
001A+ COUNT: BLKB 1
BLKW - Allocate a Block of Words (2 bytes)
The BLKW directive allocates a block of wordsin DATA space.
Syntax:

label : BLKW expr ;comment

Thefollowing is an example of allocating a block of bytesin DATA space:
Samplefileto assemble: BLKW.asm

DSEG

ORG 10h ;set programcounter to 10h
WORD_BUF: BLKW 5
COUNT: BLKB 1
Listing:
CYASM Version 2.00 Beta 01
(O 1998, 1999, 2000, 2001, 2002 Cypress Sem conductor Corp.
0000+ DSEG
0010+ ORG 10h ; set program counter to 10h
0010+ WORD_BUF: BLKW 5
001A+ COUNT: BLKB 1

CYASM Version 2.00 11

CYASM Assembler User’s Guide

CPU - Product specification

The CPU directive specifiesto the assembler the resources available within the Microcontroller. The CPU

directive al so defines two implied symbols that can be used with the conditional assembly directives. The

first symbol isthe same as the Product 1D listed in the CPU Product I dentification Table found on page 43.
The second symbol is either "ACPU" or "BCPU", based on the CPU type from the same table.

Syntax:

CPU productName ;comment

Thefollowing is an example of conditional assembly code using the implied processor symbol:

0000 CPU 63413 ; Sel ect the 63413
| FDEF 63413 ; Load 14 for the 63413
0000 19 OE [04] MOV A 14 :
ELSE ;. O herw se
ENDI F

CSEG - Enter CODE Segment

The enter-code segment directive changes the current memory space to the CODE segment. Any labels
that follow the CSEG directive are assigned values based on the program memory |ocation-counter.

Syntax:
label : CSEG ;comment

The following isan example of allocating ablock of bytesin DATA space:

Samplefileto assemble: cseg.asm

CPU 63722

DSEG
P_STK: BLKB 10
APP_RAM

CSEG

JMP RESET

ORG 40h ;set program counter to 40h
RESET: MOV a, P_STK

MOV PSP, A

Listing:

CYASM Version 2.00 Beta 01
(C 1998, 1999, 2000, 2001, 2002 Cypress Semn conductor Cor p.

0000 CPU 63722

0000+ DSEG

0000+ P_STK: BLKB 10

000A+ APP_RAM

0000 CSEG

0000 80 40 [05] JMP RESET

0040 ORG 40h ; set program counter to 40h
0040 19 00 [04] RESET: MV a, P_STK

0042 60 [04] MOV PSP, A

s
=9/ CYPRESS

DB - Define Byte

The define-byte directive reserves a byte of ROM and assigns the specified value to the reserved byte. This
directiveisuseful for creating tablesin ROM.

Syntax:

label : DB operandl, operand?2, ... operand(n) ;comment

The operands may be a constant or alabel. The number of operandsin a DB statement can be zero to as
many aswill fit on the source line. Below is a samplelisting of an assembled set of DB directives

00DL 00 [00] tabl: DB 0,3,4
00D2 03 [00]
00D3 04 [00]
00D4 06 [00] DB 0110b

DEFINE - Define Conditional Assembly Symbol

The define-conditional assembly symbol directive defines a symbol that can be tested for conditional
assembly.

Syntax:
DEFINE symbol ;comment

DS - Define ASCII String

The define-string directive stores a string of characters as ASCII values. The string must start and end with

quotation marks"".

Syntax:

label : DS 'String of characters ;comment

The string is stored character by character in ASCII hex format. Thelisting file shows the first two ASCI|I
characters on the line with the source code. The backslash character \ is used in the string as an escape
character. The\ is not assembled as part of the string, but the character following itis, evenifitisal. A
guotation mark “ can be entered into the middle of astring as\”.

The remaining characters are shown on the following line. The string is not null-terminated. To create a
null terminated string, follow the DS with a DB. Below is asample listing for a define-ASCI| string
directive with a DB for a null terminated string.

00D8 41 42 ... DS " ABCDEFGHI JK"
43 44 45 46 47 48 49 4A 4B
00E3 00 [00] DB 0

CYASM Version 2.00 13

CYASM Assembler User’s Guide

DSEG - Enter DATA Segment

The enter-data segment directive changes the current memory space to the DATA segment. Any labels that
follow the DSEG directive are assigned values based on the data memory location-counter. The enter-data
segment directive accepts two optional arguments: SAVE and RESTORE.

The current location-counter normally points to Program memory, but will point to Data memory after a
DSEG command is used. When the DSEG SAVE command is used, the location counter pointsto some
Data memory location and saves that address to atemporary counter then increments by one. The DSEG
location counter can be saved to a depth of 256 times.

The program continues executing, then when the DSEG RESTORE command is used, the program looks at
the temporary counter and pops the previous location into the current location counter. This setsthe
location counter to the last location saved by the DSEG SAVE command.

Syntax:

label : DSEG ;comment
Syntax:

label : DSEG SAVE ;comment
Syntax:

label : DSEG RESTORE ;comment

Thefollowing is an example of allocating ablock of bytesin DATA space:

Fileto assemble: dseg.asm

CPU 63722

DSEG
P_STK: BLKB 10
APP_RAM

CSEG

JMP RESET

ORG 40h ;set program counter to 40h
RESET: MOV a, P_STK

MOV PSP, A

Listing:

CYASM Version 2.00 Beta 01
(C 1998, 1999, 2000, 2001, 2002 Cypress Semn conductor Cor p.

0000 CPU 63722

0000+ DSEG

0000+ P_STK: BLKB 10

000A+ APP_RAM

0000 CSEG

0000 80 40 [05] JMP RESET

0040 ORG 40h ; set program counter to 40h
0040 19 00 [04] RESET: MV a, P_STK

0042 60 [04] MOV PSP, A

14

s
=9/ CYPRESS

DSU - Define UNICODE String

The define-UNICODE-string directive stores a string of characters as UNICODE values with little endian

byte order. The string must start and end with quotation marks"".

Syntax:

label : DSU 'String of characters ;comment

The string is stored character by character in UNICODE format. Each character in the string is stored with
the low byte followed by the high byte. The backslash character \ is used in the string as an escape
character. The\ is not assembled as part of the string, but the character following itis, evenifitisa\. To
enter aquotation mark “ into the middle of astring, enter \".

Thelisting file shows the first character on the line with the source code. The remaining characters are
shown on the following line. The string is not null-terminated. Below is a sample listing of an assembled
define-UNICODE string directive.

O8FE 41 00 ... DSU "ABCDE"
42 00 43 00 44 00 45 00

DW - Define Word

The define-word directive reserves two bytes of ROM and assigns the specified words to the reserved two
bytes. Thisdirective is useful for creating tablesin ROM.

Syntax:

label : DW operandl, operand2, ... operand(n) ;comment

The operands may be either a constant or alabel. The number of operandsin a DW statement is only
limited by the length of the source line. Below is asample listing of an assembled set of DW directives.

00Dl FF FE [00] tab2: DW -2
00D3 01 DF [00] DW 01DFh
00D5 00 11 [00] DW X
0011= X: EQU 11h

DWL - Define Word, Little Endian Ordering

The define word, little endian ordering, directive reserves two bytes of ROM and assigns the specified
words to the reserved two bytes, swapping the upper and lower bytes.

Syntax:

label : DW operandl, operand2, ... operand(n) ;comment

The operands may be either a constant or alabel. The number of operandsin a DW statement is only
limited by the length of the source line. Below is a sample listing of an assembled set of DW directives.

00D1 FE FF [00] tab2: DWL -2
00D3 DF 01 [00] DWL 01DFh
00D5 11 00 [00] DWL X
0011= X: EQU 11h

CYASM Version 2.00 15

CYASM Assembler User’s Guide

ELSE - Begin ELSE part of a Conditional Assembly Block

The EL SE directive begins the el se part of a conditional assembly block. The code between the ELSE
directive and the closing ENDIF directive is assembled only if the opening IF, IFDEF, or IFNDEF directive
evaluatesto false. The EL SE directive does not accept parameters.

Syntax:

ELSE ;comment

The sample below shows the EL SE part of a conditional assembly block assembled:

0002 ; DEBUG synbol is not defined
| FDEF DEBUG ; Load 25 for debugging
ELSE ; Ot herwi se

0002 19 14 [04] MOV A 20 ; Use 20
ENDI F

ENDIF - End a Conditional Assembly Block
The ENDIF directive ends a conditional assembly block. The ENDIF directive does not accept parameters.

Syntax:
ENDIF ;comment

The sample below shows the ENDIF directive used in as part of a conditional assembly block assembled:

0002 ; DEBUG synbol is not defined
| FDEF DEBUG ; Load 25 for debuggi ng
ELSE ;. Otherw se

0002 19 14 [04] MOV A, 20 ; Use 20
ENDI F

EQU - Equate Label
The EQUATE (EQU) directive is used to assign an integer value to alabel.
Syntax:

label : EQU operand ;comment

The label and operand are required for an EQU directive. The operand must be avalid expression. If the
expression uses the $ (current location counter), the current memory segment location counter is used.
Each EQU directive may have only one operand and if alabel is defined more than once, an assembly error
will occur. Below is asamplelisting of an assembled set of EQU directives.

0000 10 [00] DB zz
0001 00 11 [00] Dw yy ; Exanpl e of how | abel is used
0010= XX: EQU 10h
0011= yy: EQU 11h
0010= z2z: EQU XX

16

s
=9/ CYPRESS

ERROR - Error Message

The ERROR Message directive causes the assembl er to generate an assembly error that emits the message.
This can be used in conjunction with conditional assembly to assure proper assembly.

For example, when a series of commands are programmed, the assembler may find the sequence of
commands unacceptable and will therefore output the message declaring an error.

Syntax:

label : ERROR ' message' ;comment

FILLROM - Define unused program memory value
The FILLROM directive is used to force all unused bytes of program memory to a specified value.

Syntax:
label: FILLROM value ;comment

Every byte of program memory, which is not otherwise used, will be assigned the value following the
FILLROM directive. Only one FILLROM statement will be used to fill al unused locations.

IF - Begin a Conditional Assembly Block

The IF directive starts a conditional assembly block. If the expression eval uates to a non-zero value, the
block of code between the IF and the closing ENDIF or EL SE directive is assembled. If the expression
evaluates to zero, the following code block is not assembled (nor are any assembler directivesin the block
assembled) and the EL SE part of the conditional block, if one exists, is assembled.

Syntax:

IF expression ;comment

This sample code show the use of the IF directive, along with local |abels enclosed by aglobal |abels. The
example shows one way to determine if the length of afixed string is a multiple of eight.

0000 BLOCK:
0000 43 68Sl: DS "Character String"
61 72 61 63 74 65 72 20 53 74 72 69 6E 67
0010= .SL1: EQU ($ - .S1)
0010 43 68S2: DS "Character String 2"
61 72 61 63 74 65 72 20 53 74 72 69 6E 67 20 32
0012= .SL2: EQU ($ - . S2)
IF (.SL1 & 7H) ; String 1 length multiple of 8?
ELSE ;
0022 19 02 [04] MV A 2 ; Yes, use 2
ENDI F
IF (.SL2 & 7TH) ; String 2 length nultiple of 8?
0024 19 01 [04] MOV A 1 ; No, load 1
ELSE ;
ENDI F
0026 ENDBLOCK:

CYASM Version 2.00 17

CYASM Assembler User’s Guide

IFDEF - Begin a Conditional Assembly Block

The IFDEF directive starts a conditional assembly block. If the symbol has been defined previously with a
DEFINE directive, the block of code between the IFDEF and the closing ENDIF or EL SE directive is
assembled. If the symbol has not been defined previously, the following block of codeis not assembled
(nor are any assembler directivesin the block assembled) and the EL SE part of the conditional block, if one
exists, is assembled.

Syntax:
|FDEF symbol ;comment

Below isasamplelisting of conditional assembly using the IFDEF directive:

define DEBUG ; Define the debug synbol

i fdef DEBUG ; Load Awith 1 if we are debuggi ng
0000 19 01 [04] MOV A, 01 ;

ENDI F ;

Here is the same code fragment where the DEBUG symbol is not defined:

;;; define DEBUG ; Define the debug symbol
ifdef DEBUG ; Load Awith 1 if we are debugging
ENDI F ;

IFNDEF - Begin a Conditional Assembly Block

The IFNDEF directive starts a conditional assembly block. If the symbol has not been defined previously
with aDEFINE directive, the block of code between the IFNDEF and the closing ENDIF or ELSE
directive is assembled. If the symbol has been defined previously, the following code block is not
assembled (nor are any assembler directivesin the block assembled) and the el se part of the conditional
block, if one exists, is assembled.

Syntax:

IFNDEF symbol ;comment

INCLUDE - Include source file
The INCLUDE directive is used to include additional source files into the main file being assembled.

Syntax:

label : INCLUDE 'source_file' ;comment

Once an INCLUDE directiveis encountered the assembler reads in the new source file (source _file) until
either another INCLUDE is encountered or the end of fileisfound. When an end of fileis encountered, the
assembler resumes reading the previous file immediately following the INCLUDE directive. In other
words, INCLUDE directives cause nesting of source code being assembled. The source_file specified
should contain afull path nameif it does not reside in the current directory.

18

s
=9/ CYPRESS

MACRO - Macro Definition Start
ENDM - Macro Definition End

The MACRO and ENDM directives are used to specify the start and end of a macro definition.
Definition Syntax:
label: MACRO macroname parml,parmz2,...,parm(n) ;comment

macr o body consisting of lines of CYASM code
ENDM

Call Syntax:
label: macroname valuel,value2,...,value(n) ;comment

Thelines of code defined between a MACRO statement and an ENDM statement are not directly
assembled into the program. Instead, they form a macro that may later be substituted into the code by a
macro call. The MACRO directiveis followed by the name used to call the macro aswell asalist of
parameters. Each of the parametersis a string that can be used in the macro body as an operand, either
alone or as part of an expression. In amacro-call, each time a parameter is used in the macro body that
parameter will be replaced by the corresponding value from the macro call. Any labels defined in amacro
will have a#n, where n is a unique number for each macro call, appended. This makes the label unique
each time the macro is used.

One example of amacro isthe variable delay loop shown below.

Macro definition from sourcefile:

0000 MACRO wai t del ay
0000 MV a, del ay

0000 | oop: DEC a

0000 INZ | oop

0000 ENDM

Macro call from sourcefile:
wait 50

Macro instantiation from the listing file:

*EkE MACRO **** wai t 50
0100 19 32 [04] MOV a, 50

0102 25 [04] | oop#l: DEC a

0103 B1 02 [05] JNZ | oop#1:

***END MACRO* * *

A macro must be defined earlier in the assembly file than it is called. Macro definitions may not be nested,
but macros that are already defined may be used in following macro definitions.

CYASM Version 2.00 19

CYASM Assembler User’s Guide

ORG - Program Counter Origin

The origin (ORG) directive allows the programmer to set the value of the current location during assembly.
Thisis most often used to set the start of atable in conjunction with the define directives BLKB, BLKW,
DB, DS and DW. The ORG directive only modifies the location counter of the active segment either CSEG
or DSEG.

Syntax:

label : ORG operand ;comment

The operand isrequired for an ORG directive and may be any valid constant expression, including
expressions that use integer constants, labels, or “$” (current location counter). The assembler does not
keep track of previously defined areas and will not flag overlapping areasin asingle sourcefile. Below isa
sample listing of an assembled set of DB directives.

00D1 ORG 00D1h
00D1 03 [00] DB 3
00FD ORG 00FDh

XPAGEOFF - Disable XPAGE Insertion

The XPAGEOFF directive disables the automatic insertion of XPAGE instructions at page breaks. Most
often thisis useful when defining ROM tables or jump tables.

Syntax:
label: XPAGEOFF

After the XPAGEOFF directive is encountered, the assembler will not insert XPAGE and NOP instructions
at program memory page-crossings until an XPAGEON directiveis encountered. The assembler defaults to
XPAGE insertion on at the top of thefile.

XPAGEON - Enable XPAGE Insertion

The XPAGEON directive enables the automatic insertion of XPAGE instructions at page breaks. Often this
is useful when defining ROM or JUMP tables.
Syntax:

label: XPAGEON

The XPAGEON directive enables automatic insertion XPAGE and NOPinstructions at page breaks after
an XPAGEOFF directive has disabled it. The assembler defaults to XPAGE insertion on at the top of the
file.

%TPH ESS

7. Instruction Set

The following notation will be used throughout this section of the document:

acc Accumulator
expr expression

k operand value
X X register

The conditional jump instructions (JC, JNC, JZ, JNZ) list two numbers in the Cycles column. The first
number isthe number of cyclesfor the instruction execution when the branch is taken. The second number,
shown in parenthesis, is the number of cycles when the branch is not taken.

ADD Add Without Carry
Syntax: Operation:

ADD A, expr acc- acc+k

ADD A, [expr] acc- acc + [K]

ADD A, [X + expr] acc- acc + [X +K]

Description: Addsavalue; k, [K] or [X+ k] to the contents of the accumulator and places the result in

the accumul ator.

Condition Flags:
CF: Set if, treating the numbers as unsigned, the result > 255; cleared otherwise.

ZF: Set if theresult is zero; cleared otherwise.
Source Machine Code ~ Cycles
For mat Opcode Operand
ADD A, expr 01h Immediate byte 4
ADD A, [expr] 02h Direct address byte
ADD A, [X+expr] 03h Offset byte 7

CYASM Version 2.00 21

CYASM Assembler User’s Guide

ADC Add With Carry
Syntax: Operation:

ADC A, expr acc— acc+Kk +cf

ADC A, [expr] acc~ acc + [K] +cf

ADC A, [X + expr] acc- acc + [X +K] +cf

Description: Adds the content of the carry bit along with the contents of the accumulator to avalue; k,

[K] or [X+ k] and places the result in the accumulator.

Condition Flags:
CF: Set if, treating the numbers as unsigned, the result > 255; cleared otherwise.

ZF: Set if theresult is zero; cleared otherwise.
Sour ce | Machine Code Cycles |
Format ' Opcode | Operand |
ADCA, expr 04h Immediate byte 4
ADCA, [expr] 05h Direct address byte 6
ADCA, [X+expr] 06h Offset byte 7
AND Bitwise AND
Syntax: Operation:
AND A, expr acc— acc& k
AND A, [expr] acc~ acc & [K]
AND A, [X + expr] acc- acc & [X +K]
AND [expr], A [K] = acc & [K]
AND [X+ expr], A [X+K] - acc& [X+K]

Description: A bitwise AND of avalue; k, [K] or [X+ k] and the contents of the accumulator. The
result is placed in either the accumulator, [k] or [X+ K] according to the field just to the

right of the opcode.

Condition Flags:
CF: Always cleared.

ZF: Set if the result is zero; cleared otherwise.
Source Machine Code Cycles
Format Opcode Operand
AND A, expr 10h Immediate byte 4
AND A, [expr] 11h Direct address byte 6
AND A, [X+expr] 12h Offset byte 7
AND [expr], A 35h Direct address byte 7
AND [X+ expr], A 36h Offset byte 8

%}%TPH ESS

ASL Arithmetic Shift L eft
Syntax: ASL Aor ASL
CF | - SO N R R I -
Operation: b bo 0
Description: Shifts all bits of the accumulator one place to the left. The most significant bit of the

accumulator is loaded into the CF flag. Bit 0 is loaded with a zero.

Condition Flags:
CF: Set if the MSB of the accumulator was set, before the shift, cleared otherwise.

ZF: Set if theresult is zero; cleared otherwise.

Sour ce Machine Code ' Cycles

Format Opcode Operand \
ASL 3Bh 4
ASR Arithmetic Shift Right
Syntax: ASR or ASR A

® ® ® ® ® ® ®

Operation: brl - - ||] || ®]CF
Description: Shifts all bits of the accumulator one place to the right. Bit 0 of the accumulator isloaded

into the CF flag. Bit 7 remains the same.
Condition Flags:

CF: Set if LSB of the accumulator was set, before the shift, cleared otherwise.
ZF: Set if theresult is zero; cleared otherwise.

Machine Code ' Cycles

Opcode Operand \
ASR 3Ch 4

CYASM Version 2.00 23

CYASM Assembler User’s Guide

CALL Call Function
Syntax: CALL address
Operation: [psp] = pc
psp -~ psp+2
pc- k
Description: Executes ajump to a subroutine starting at the address given as an operand. The Program

counter (pc) is pushed onto the program stack without disturbing the data stack. The zero
flag (zf) and carry flag (cf) are pushed along with the pc. The program stack pointer is
incremented. The program counter isloaded with the address value.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Sour ce Machine Code | Cycles
Format Opcode Operand \
CALL addr Xh address byte (first 4K ROM) 10
CALL addr 5xh address byte (second 4K ROM, B CPUs only) 10
CMP Non-destructive Compare
Syntax: Operation:
CMPA, expr cf- acc-k
CMP A, [expr] cf = acc - [K]
CMPA, [X + expr] cf = acc - [X +K]
Description: Subtracts avalue; k, [K] or [X+ K] from the contents of the accumulator and sets the flag

bits. The contents of the accumulator are unaffected.

Condition Flags:

CF: Set if the accumulator contents < operand value; cleared otherwise.
ZF Set if theresult is zero; cleared otherwise.
Source Machine Code ' Cycles
Format Opcode Operand |
CMPA, expr 16h Immediate byte 5
CMPA, [expr] 17h Direct address byte 7
CMPA, [X+expr] 18h Offset byte 8

24

g}%’mﬂ ESS

CPL Complement Accumulator
Syntax: CPL Aor CPL

Operation: acc—~ acc

Description: Replace each bit in the accumulator with its complement.

Condition Flags:
CF: Always set.

ZF: Set if theresult is zero; cleared otherwise.

Source Machine Code Cycles

Format Opcode Operand
CPL A 3Ah 4
DEC Decrement
Syntax: Operation:
DEC A acc- acc-1
DEC X X= X-1
DEC [expr] K= [K] -
DEC [X+ expr] [X+K - [X+Kk] -1

Description: Subtract one from the contents of aregister or Data RAM location. Thefield to the right
of the opcode determines which entity is effected: accumulator; X register; direct or
index addressed Data RAM location.

Condition Flags:

CF: Set if theresult is-1; cleared otherwise.
ZF: Set if theresult is zero; cleared otherwise.

Sour ce M achine Code Cycles

Format Opcode Operand

DECA 25h 4|
DEC X 26h 4
DEC [expr] 27h direct address byte 7
DEC [X+ expr] 28h offset address byte 8

CYASM Version 2.00 25

CYASM Assembler User’s Guide

DI Disable Interrupts
Syntax: DI B CPU only

Operation: None

Description: Disablesinterrupts.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected

Sour ce M achine Code

Format Opcode Operand

El Enable Interrupts
Syntax: El B CPU only

Operation: None

Description: Enablesinterrupts.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected

Machine Code - Cycles

Opcode Operand \
El 72h 4

26

%}%&’PH ESS

HALT Halt Execution

Syntax: HALT

Operation: None

Description: Halts execution of the processor core until the occurrence of areset - Watchdog, POR or
UsB

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected

Source Machine Code
Format Opcode Operand
HALT 00h 7
INC | ncrement
Syntax: Operation:
INC A acc- acc+1
INC X X= X+1
INC [expr] [k]- [K +1
INC [X+ expr] [X+K - [X+Kk] +1

Description: Add one to the contents of aregister or Data RAM location. Thefield to the right of the
opcode determines which entity is effected: accumulator; X register; direct or index
addressed Data RAM location.

Condition Flags:
CF: Set if value after the increment is O; cleared otherwise.
ZF: Set if theresult is zero; cleared otherwise.

Machine Code Cycles
Opcode Operand
INCA 21h 4
INC X 22h 4
INC [expr] 23h direct address byte 7
INC [X+ expr] 24h offset address byte 8

CYASM Version 2.00 27

CYASM Assembler User’s Guide

INDEX Table Read
Syntax: INDEX address

Operation: acc - ROM[addr + acc]

Description: Places the contents of ROM location indexed by the sum of the accumulator and the

address operand, into the accumulator. The INDEX instruction modifies one byte of
RAM that isindexed by the current value of the PSP.

Condition Flags:
CF: Set if computed address is on adifferent page from the base address; cleared
otherwise.
ZF: Set if the low byte of the computed address is 00; cleared otherwise.

Sour ce M achine Code Cycles

Format Opcode Operand
INDEX address Fxh address byte 14
|PRET |O Write, Pop, and Return (a cru only)
Syntax: I PRET address
Operation: IO[address] € acc, POP acc, RET
Description: Places the contents of the accumulator into 10 location indexed the by address, then pop

the accumulator from the data stack, then return from interrupt.

Condition Flags:
CF: Carry restored to the value that was pushed onto the program stack.
ZF: Zero restored to the value that was pushed onto the program stack.

Sour ce Machine Code ' Cycles

Format Opcode Operand \
IPRET address 1Eh address byte 13

28

& e

|ORD Read IO
Syntax: | ORD address

Operation: acc - 10[K]

Description: Places the contents of 10 location indexed the by address operand into the accumulator.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Sour ce M achine Code Cycles

Format Opcode Operand
IORD address 2% address byte 5 |
|OWR Write IO
Syntax: IOWR address
Operation: IO[K] = acc
Description: Place the contents of the accumulator into the 1O location indexed by the address
operand.

Condition Flags:
CF: Carry unaffected.
ZF: Zero unaffected.

Sour ce M achine Code Cycles

Format Opcode Operand

IOWR address 2Ah address byte 5 |

CYASM Version 2.00 29

CYASM Assembler User’s Guide

|OWX Indexed 10 Write
Syntax: IOWX [x + address]

Operation: IO[x + K] = acc

Description: Place the contents of the accumulator into the 1O location given by the sum of the index

register and the address operand.

Condition Flags:
CF: Carry unaffected.
ZF: Zero unaffected.

Source Machine Code
Format Opcode Operand
IOWX address 3% address byte 6
JACC Jump Accumulator
Syntax: JACC address
Operation: pc- acc+Kk
Description: Jump unconditionally to the address computed by the sum of the accumulator and the

12-bit address operand. The accumulator is not affected by thisinstruction.

Condition Flags:
CF: Set if computed address is on a different page from the base address; cleared
otherwise.
ZF: Set if the low byte of the computed addressis 00; cleared otherwise.

Machine Code ' Cycles

Opcode Operand |
JACC address BExh address byte 7

& e

JC Jump if Carry

Syntax: JC address

Operation: if CF=1, thenpc - k

Description: If the carry flag is set, then jump to the address (place the addressin the program
counter).

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Machine Code - Cycles
Opcode Operand \
JC address Cxh address byte 5(4)
JMP Jump
Syntax: JMP address
Operation: pc- k
Description: Jump unconditionally to the address (place the address in the program counter).

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Source Machine Code ' Cycles
Format Opcode Operand \
JMP address 8h address byte 5
JNC Jump if No Carry
Syntax: JNC address
Operation: if CF=Othenpc- k
Description: If the carry flag is hot set, then jump to the address (place the addressin the program
counter).

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Sour ce Machine Code Cycles

__Format _ Opcode Operand
JNC address Dxh address byte 5(4)

CYASM Version 2.00 31

CYASM Assembler User’s Guide

JNZ Jump if Not Zero

Syntax: JNZ address

Operation: if ZF=Othenpc- k

Description: If the zero flag is not set then jump to the address (place the address in the program
counter).

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Machine Code Cycles

Opcode Operand

JINZ address address byte 5(4)

JZ Jump if Zero
Syntax: JZ address

Operation: if ZF=1thenpc- k

Description: If the zero flag is set then jump to the address (place the address in the program counter).

Condition Flags:

CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Sour ce M achine Code Cycles

Format Ocode Operand

JZ address address byte 5 (4)

32

%}%TPH ESS

MOV Move

Syntax: Operation:

MOV A, expr acc— k

MOV A, [expr] acc- [K]

MOV A, [X + expr] acc- [X +K]

MOV [expr], A [K] = acc

MOV [X +expr], A [X + K -~ acc

MOV X, expr X- Kk

MOV X, [expr] X = [K

MOV X, A X = acc B CPU

MOV AX acc € X B CPU

MOV PSP,A PSP < acc B CPU

Description: Thisinstruction allows for anumber of combinations of moves. Immediate, direct and
indexed addressing is supported. All movesinvolve either the accumulator or the X
register.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Sour ce Machine Code Cycles

Format Opcode Operand
MOV A, expr 1%h Immediate byte 4
MOV A, [expr] 1Ah Direct address byte 5
MOV A, [X+expr] 1Bh Offset byte 6
MOV [expr], A 31h Direct address byte 5
MOV [X+ expr],A 32h Offset byte 6
MOV X, expr 1Ch Immediate byte 4
MOV X, [expr] 1Dh Direct address byte 5
MOV A X 40h 4
MOV X,A 41h 4
MOV PSP,A 60h 4

CYASM Version 2.00 3

CYASM Assembler User’s Guide

NOP No Operation
Syntax: NOP

Operation: none

Description: This one byte instruction performs no operation.

Condition Flags:
CF: Carry flag unaffected
ZF: Zero flag unaffected.

Source Machine Code
Format Opcode Operand
NOP 20h 4
OR Bitwise OR
Syntax: Operation:
OR A, expr acc- accUk
OR A, [expr] acc- acc U [K]
OR A, [X + expr] acc~ acc U [X +K]
OR [expr], A [K] ~ acc U [K]
OR [X+ expr], A [X+K] = accU[X+K]
Description: A bitwise OR of avalue; k, [K] or [X+ K] and the contents of the accumulator. The result
isplaced in either the accumulator, [k] or [X+ K] according to the field just to the right of
the opcode.

Condition Flags:
CF: Always cleared.

ZF Set if theresult is zero; cleared otherwise.
Sour ce Machine Code - Cycles
Format Opcode | Operand \
OR A, expr 0Dh Immediate byte 4
OR A, [expr] OEh Direct address byte 6
OR A, [X+expr] OFh Offset byte 7
OR [expr], A 33h Direct address byte 7
OR [X+ expr], A 34h Offset byte 8

g}%’mﬂ ESS

POP Pop Data Stack into Register
Syntax Operation
POP A acc— [dsp]
dsp- dsp+1
POP X X = [dsp]
dsp- dsp+1
Description: Place the contents of the top of the stack into the designated register. Increment the data
stack pointer.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Source Machine Code ' Cycles
Format Opcode Operand \
POPA 2Bh 4
POP X 2Ch 4
PUSH Push Register into Data Stack
Syntax Operation
PUSH A dsp- dsp-1
[dsp] = acc
PUSH X dsp- dsp-1
[dsp] = X

Description: Decrement the data stack pointer. Push the contentsof the designated register onto the
data stack.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand
PUSH A 2Dh 5
PUSH X 2Eh 5

CYASM Version 2.00 35

CYASM Assembler User’s Guide

RET Return
Syntax: RET
Operation: psp - psp-2
pc— [psp]
Description: Pop two bytes off of the program stack into the program counter.

Condition Flags: Dependson A or B versions CPUs

A version:
CF: Carry restored to the value that was pushed onto the program stack.
ZF: Zero restored to the value that was pushed onto the program stack.

B version:
CF: Carry unchanged by thisinstruction.
ZF: Zero unchanged by thisinstruction.

Sour ce Opcode Machine Code
Format Operand | Comments
RET 3FH A: flags restored
RET 3FH B: flagsreturned 8

RETI Return from Interrupt
Syntax: RETI B CPU only.
Operation: psp - psp-2
pc— [psp]
Description: Pop two bytes off of the program stack into the program counter, and re-enables
interrupts.

Condition Flags:
CF: Carry restored to the value that was pushed onto the program stack.
ZF: Zero restored to the val ue that was pushed onto the program stack.

Sour ce M achine Code

Format Operand | Comments
RETI 73H flags restored 8

%}%TPH ESS

RLC Rotate Left Through Carry

Syntax: RLCAorRLC

I_CF_|b7------boe|

Description: Shifts all bits of the accumulator one place to the left. Bit O is loaded with the carry flag.
The most significant bit of the accumulator isloaded into the carry flag.

Operation:

Condition Flags:
CF: Set if the MSB of the accumulator was set, before the shift, cleared otherwise.
ZF: Set if theresult is zero; cleared otherwise.

Sour ce M achine Code Cycles

Format Opcode Operand

3Dh 4
RRC Rotate Right Through Carry
Syntax: RRC Aor RRC

|—>C':®b7----_.bo-J

Description: Shifts all bits of the accumulator one place to theright. The carry flag isloaded into the
most significant bit of the accumulator, bit 7. Bit O of the accumulator is loaded into the

Carry flag.

Operation:

Condition Flags:
CF: Set if LSB of the accumulator was set, before the shift, cleared otherwise.
ZF: Set if theresult is zero; cleared otherwise.

Sour ce M achine Code Cycles

Format Opcode Operand \
RRCA 3Eh 4

CYASM Version 2.00 37

CYASM Assembler User’s Guide

SUB Subtract without Borrow
Syntax: Operation:

SUB A, expr acc~ acc-k

SUB A, [expr] acc- acc - [K]

SUB A, [X + expr] acc- acc - [X +K]

Description: Subtracts avalue; k, [K] or [X+ k] from the contents of the accumulator and places the

result in the accumul ator.

Condition Flags:

CF: Set if, treating the numbers as unsigned, the result < O; cleared otherwise.
ZF: Set if theresult is zero; cleared otherwise.
Sour ce Machine Code ' Cycles
Format Opcode Operand
SUB A, expr Immediate byte 4
SUB A, [expr] 08h Direct address byte 6
SUB A, [X+expr] 0%h Offset byte 7
SBB Subtract with Borrow
Syntax: Operation:
SBB A, expr acc—- acc- (K + cf)
SBB A, [expr] acc- acc - ([K] +cf)
SBB A, [X + expr] acc- acc - ([X +Kk] +cf)

Description: Subtracts avalue; k, [K] or [X+ K], plusthe carry flag, from the contents of the
accumulator and places the result in the accumulator.

Condition Flags:

CF: Set if, treating the numbers as unsigned, the result < O; cleared otherwise.
ZF: Set if the result is zero; cleared otherwise.
Sour ce Machine Code ' Cycles

Format Opcode Operand \
SBB A, expr OAh Immediate byte 4
SBB A, [expr] 0Bh Direct address byte 6
SBB A, [X+expr] 0Ch Offset byte 7

%}%TPH ESS

SWAP Swap
Syntax: Operation:
SWAPA, X t- X
X = acc
acc— t
SWAP A, DSP t- DSP
DSP- acc
acc— t
Description: Operates on either the X register or the data stack pointer. Use the temporary register to

facilitate a swap of the contents of the accumulator with that of the X register or the data
stack pointer.

Condition Flags:

CF: Carry flag unaffected.
ZF: Zero flag unaffected.
Sour ce Machine Code ' Cycles
Format Opcode Operand \
SWAPA, X 2Fh 5
SWAPA, DSP 30h 5
XOR Bitwise XOR
Syntax: Operation:
XOR A, expr acc- acc A k
XOR A, [expr] acc-~ acc A [K]
XOR A, [X + expr] acc-~ acc A [X +K]
XOR [expr], A [K] = acc A [K]
XOR [X+ expr], A [X+K = acc A [X+K]

Description: A bitwise Exclusive OR of avalue; k, [k] or [X+ k] and the contents of the accumulator.
Theresult is placed in either the accumulator, [k] or [X+ k] according to the field just to

theright of the opcode.

Condition Flags:

CF: Cleared always.
ZF: Set if theresult is zero; cleared otherwise.
Source Machine Code - Cycles
Format Ocode Operand
XOR A, expr Immediate byte 4|
XORA, [expr] 14h Direct address byte 6
XORA, [X+expr] 15h Offset byte 7
XOR [expr], A 37h Direct address byte 7
XOR [X+ expr], A 38h Offset byte 8

CYASM Version 2.00

CYASM Assembler User’s Guide

XPAGE Memory Page
Syntax: XPAGE

Operation: pch- pch+1

Description: Increment the upper byte of the program counter.

Condition Flags:
CF: Carry flag unaffected.
ZF: Zero flag unaffected.

Source Machine Code Cycles

Format Opcode Operand

XPAGE 1Fh 4

Alphabetic Instruction Table

M achine Code Cycles | Bytes Flags

& e

Opcode Operand cf zZf | int |

ADD A, expr 01h Immediate byte 4 2 c|C
ADD A, [expr] 0zh Direct address byte 6 2 c|C
ADD A, [X+expr] 03h Offset byte 7 2 c|C
ADCA, expr 04h Immediate byte 4 2 c|C
ADCA, [expr] 05h Direct address byte 6 2 c|C
ADCA, [X+expr] 06h Offset byte 7 2 c|C
AND A, expr 10h Immediate byte 4 2 0| C
AND A, [expr] 11h Direct address byte 6 2 0| C
AND A, [X+expr] 12h Offset byte 7 2 0| C
AND [expr], A 35h Direct address byte 7 2 0| C
AND [X+ expr], A 36h Offset byte 8 2 0| C
ASL or ASL A 3Bh 4 1 cC|C
ASRorASRA 3Ch 4 1 cC|C
CALL addr 9xh address byte 10 2

CALL addr 5xh addressbyte 10 2

CMPA, expr 16h Immediate byte 5 2 c|CC
CMPA, [expr] 17h Direct address byte 7 2 c| C
CMPA, [X+expr] 18h Offset byte 8 2 c|C
CPL or CPL A 3Ah 4 1 1| C
DECA 25h 4 1 cC|C
DEC X 26h 4 1 cC|C
DEC [expr] 27h direct address byte 7 2 c|C
DEC [X+ expr] 28h offset address byte 8 2 c| C
DI 70h 4 1 0
El 72h 4 1 1
HALT 00h 7 1

INCA 21h 4 1 cC|C
INC X 22h 4 1 cC|C
INC [expr] 23h direct address byte 7 2 c|C
INC [X+ expr] 24h offset address byte 8 2 c|C
INDEX address Fxh address byte 14 2 cC|C
IORD address 2% address byte 5 2

IOWR address 2Ah address byte 5 2

IOWX [X+ expr] 3% offset address byte 6 2

IPRET 1Eh IO address 13 2

JACC address Exh address byte 7 2 c|C
JC address Cxh address byte 5(4) 2

JMP address 8xh address byte 5 2

JNC address Dxh address byte 5(4) 2

JINZ address Bxh address byte 5(4) 2

JZ address Axh address byte 5(4) 2

MOV A, expr 1%h Immediate byte 4 2

MOV A, [expr] 1Ah Direct address byte 5 2

MOV A, [X+expr] 1Bh Offset byte 6 2

MOV [expr], A 31h Direct address byte 5 2

CYASM Version 2.00

41

CYASM Assembler User’s Guide

Alphabetic Instruction Table (Continued)

M achine Code Cycles | Bytes Flags

Opcode Operand cf zZf | int |
MOV [X+ expr],A 32h Offset byte 6 2
MOV X, expr 1Ch Immediate byte 4 2
MOV X, [expr] 1Dh Direct address byte 5 2
MOV A X 40h 4 1
MOV X,A 41h 4 1
MOV PSP,A 60h 4 1
NOP 20h 4 1
OR A, expr 0Dh Immediate byte 4 2 0| C
OR A, [expr] OEh Direct address byte 6 2 0| C
OR A, [X+expr] OFh Offset byte 7 2 0| C
OR [expr], A 33h Direct address byte 7 2 0| C
OR [X+ expr], A 34h Offset byte 8 2 0| C
POPA 2Bh 4 1
POP X 2Ch 4 1
PUSH A 2Dh 5 1
PUSH X 2Eh 5 1
RET (CPU A) 3Fh 8 1 c|C
RET (CPU B) 3Fh 8 1
RETI 73h 8 1 cC|C
RLCorRLCA 3Dh 4 1 cC|C
RRC or RRC A 3Eh 4 1 cC|C
SUB A, expr 07h Immediate byte 4 2 c|C
SUB A, [expr] 08h Direct address byte 6 2 c| C
SUB A, [X+expr] 0%h Offset byte 7 2 c|C
SBB A, expr O0Ah Immediate byte 4 2 c|C
SBB A, [expr] 0Bh Direct address byte 6 2 c|C
SBB A, [X+expr] 0Ch Offset byte 7 2 c| C
SWAPA, X 2Fh 5 1
SWAPA, DSP 30h 5 1
XOR A, expr 13h Immediate byte 4 2 0| C
XORA, [expr] 14h Direct address byte 6 2 0| C
XORA, [X+expr] 15h Offset byte 7 2 0| C
XOR [expr], A 37h Direct address byte 7 2 0| C
XOR [X+ expr], A 33h Offset byte 8 2 0| C
XPAGE 1Fh 4 1

Instructionsin bold are not available for both CPU types

cf: carry flag, zf: zero flag, int: B CPU interrupt enable
In Flag columns blank is unchanged, C is changed, and O or 1 is set to that value

The conditional jump instructions (JC, INC, JZ, INZ) list two numbers in the Cycles column. The

first number is the number of cycles for the instruction execution when the branch istaken. The
second number, shown in parenthesis, is the number of cycles when the branch is not taken.

42

CYASM Version 2.00

CPU Product |dentification Table

Product ID | CPU type RAM EPROM
63000 63/A CPU | 128bytes | 2K bytes
63001 63/A CPU | 128bytes | 4K bytes
63100 63/A CPU | 128bytes | 2K bytes
63101 63/A CPU | 128bytes | 4K bytes
63200 63/A CPU | 128bytes | 2K bytes
63201 63/A CPU | 128bytes | 4K bytes
63221 64/B CPU | 96 bytes 3K bytes
63231 64 /B CPU | 96 bytes 3K bytes
63411 64/B CPU | 256 bytes | 4K bytes
63412 64/B CPU | 256 bytes | 6K bytes
63413 64/B CPU | 256 bytes | 8K hytes
63511 64/B CPU | 256 bytes | 4K bytes
63512 64/B CPU | 256 bytes | 6K bytes
63513 64 /B CPU | 256 bytes | 8K hytes
63612 64/B CPU | 256 bytes | 6K bytes
63613 64/B CPU | 256 bytes | 8K bytes
63722 64/B CPU | 256 bytes | 6K bytes
63723 64/B CPU | 256 bytes | 8Kbytes
63742 64/B CPU | 256 bytes | 6K bytes
63743 64/B CPU | 256 bytes | 8K bytes
64013 64/B CPU | 256 bytes | 8K bytes
64113 64/B CPU | 256 bytes | 8K bytes
65013 64/B CPU | 256 bytes | 8K bytes
65113 64/B CPU | 256 bytes | 8K bytes
66013 64/B CPU | 256 bytes | 8K bytes
66113 64/B CPU | 256 bytes | 8Kbytes

%TPH ESS

CYASM Assembler User’s Guide

