

CYASM Assembler
User’s Guide
Version 2.02

May 7, 2004

• Cypress Semiconductor • Personal Communication Division •
• 3901 North First Street • San Jose, CA 95134 • (408) 943-2600 •

• www.cypress.com •

Cypress Semiconductor Corp, 1998, 1999, 2000, 2001, 2002, 2003,2004.
The information contained herein is subject to change without notice.

CYASM Assembler User’s Guide

 Table of Contents

1. Installing the CYASM Assembler... 1
2. Running CYASM ... 1
3. The Microprocessor... 2

3.1 Address Spaces ... 2
3.2 Instruction Format.. 4
3.3 Addressing Modes.. 4
3.4 Destination of Instruction Results... 5

4. Assembly Source File Syntax.. 5
5. List File Format .. 7
6. Assembler Directives... 10

BLKB - Allocate a Block of Bytes.. 11
BLKW - Allocate a Block of Words (2 bytes).. 11
CPU - Product specification ... 12
CSEG - Enter CODE Segment... 12
DB - Define Byte.. 13
DEFINE - Define Conditional Assembly Symbol.. 13
DS - Define ASCII String ... 13
DSEG - Enter DATA Segment .. 14
DSU - Define UNICODE String.. 15
DW - Define Word ... 15
DWL - Define Word, Little Endian Ordering ... 15
ELSE - Begin ELSE part of a Conditional Assembly Block.. 16
ENDIF - End a Conditional Assembly Block.. 16
EQU - Equate Label... 16
ERROR - Error Message... 17
FILLROM - Define unused program memory value ... 17
IF - Begin a Conditional Assembly Block ... 17
IFDEF - Begin a Conditional Assembly Block... 18
IFNDEF - Begin a Conditional Assembly Block.. 18
INCLUDE - Include source file ... 18
MACRO - Macro Definition Start ... 19
ENDM - Macro Definition End ... 19
ORG - Program Counter Origin ... 20
XPAGEOFF - Disable XPAGE Insertion .. 20
XPAGEON - Enable XPAGE Insertion ... 20

7. Instruction Set... 21

CYASM Version 2.01 1

1. Installing the CYASM Assembler
The floppy disk included with distribution contains the cyasm.exe and sample source files. Copy the
executable file to a working directory, or to a directory included in your search path.

2. Running CYASM

To run the assembler, from the command line enter the following command:

cyasm sourcefile.asm -b -t nn -pP -dD

The assembly language instructions reside in sourcefile, which has a ".asm" file name extension. The .asm
extension does not need to be included in the command line. The full path including disk and directory
names may be included in the source file name.

The following options may be included on the command line:

 -b Brief Suppresses warning messages for operands out of range and
 xpage crossings.

-t nn Tab Sets the tab spacing in the listing file to nn, where nn is a
 positive integer.

-pP Product Id Sets the Product ID. This is the same as using the CPU
 directive. P is the 6-character product name from CPU
 Product Identification Table.

-dD Define Define a symbol from the command line. This is the same
 as using the DEFINE directive. D is the symbol string to
 define.

Running the assembler will result in the creation of three files: sourcefile.rom, sourcefile.lst and
sourcefile.hex.

Generated File Description

sourcefile.rom ROM object file

sourcefile.lst Listing file

sourcefile.hex EPROM programming file

The following example first displays the command to assemble testfile.asm, then displays the message
returned after assembling the file. A list of the output files follows.

>cyasm testfile -t 4

CYASM Version 2.00 Beta 01
For A and B series USB Microcontrollers
(C) 1998,1999,2000,2001,2002 Cypress Semiconductor Corp.

Complete!
>

Input source: testfile.asm
Output rom file: testfile.rom
Output listing file: testfile.lst, with tab spacing of 4.

The assembler may be halted at any time during a run by pressing <Ctrl C>.

CYASM Assembler User’s Guide

2

3. The Microprocessor

The M8 is an 8-bit microprocessor core. It supports 8-bit operations, and it has been optimized to be small
and fast. There are two versions of this microprocessor — A and B version. The A version is only used in a
limited number of older products, and it supports a smaller instruction set. The B version is newer and has
extra instructions. The directive "CPU" is used to specify the target microprocessor core.

The Internal registers are: the accumulator "acc"; the index register "X"; the data stack pointer "dsp"; the
program stack pointer "psp"; the program counter "pc". All registers are 8 bits wide except pc; pc is
composed of two 8-bit registers (pcl and pch) that together form a 16-bit register. The lower 6 bits of pch
and all 8 bits of pcl form a 14-bit address to program memory. When the pc is pushed on the stack, Bit 7 of
the pch stores the carry flag ("cf") and bit 6 of the pch stores the zero flag ("zf").

pch pcl
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
cf zf a a a a a a a a a a a a a a

Upon reset, dsp and psp are reset to 0x00. The dsp grows down, with a pre-decrement, while the psp grows
upward with post-increment. Using a separate program stack simplifies data stack management, and
provides efficient function calls.

All instructions are 1 or 2 bytes wide and are fetched from program memory, in a separate address space
from data memory or IO. The second byte of an instruction is an 8-bit constant, referred to as the
instruction data byte or operand. The instruction data byte is used in four different ways: as an immediate
value, as a direct or offset Data RAM address, or as the lower byte of a 12-bitProgram ROM address.

There are two flag bits: zf the zero flag and cf a carry / borrow flag. The flags are affected by arithmetic
operations, logic and shift operations, the INDEX instruction and the JACC instruction. The manner in
which each flag is changed is dependent upon the instruction being executed. Section 6, Instruction Set
includes information about how each instruction affects the flags.

3.1 Address Spaces
Three separate address spaces are implemented in the CYASM assembler: IO, data RAM, and program
memory. The IO space is accessed through the IORD and IOWR instructions. Eight address bits are
available to access the IO space. The data RAM contains the data stack, program stack, and space for
variable storage. All the read and write instructions as well as instructions which operate on the stacks use
data RAM. Data RAM addresses are eight bits wide, although for RAM sizes 128 bytes or smaller, not all
bits are used.

The program memory is organized into 256-byte pages, such that the pch register contains the memory
page number and the pcl register contains the offset into that memory page. The assembler automatically
inserts an XPAGE instruction on the last location of a page to increment the page number (pch) in the
program counter. This has the effect of moving the user assembly instruction that would have been last on
one page into the first location of the next page. For two-byte instructions starting two bytes from the end
of a page, a NOP is placed before the XPAGE so both bytes of the instruction are forced onto the next
page. Automatic XPAGE insertion may be controlled with the XPAGEON and XPAGEOFF assembler
directives.

The INDEX instruction has one operand that is the lower part of the base address of a ROM table. The
lower nibble of the INDEX opcode forms the upper part of the base address, yielding a 12-bit address
range. The offset into the table is taken as the value of the accumulator when the INDEX instruction is
executed. The maximum readable table size when using a single INDEX instruction is limited by the range
of the accumulator to 256 bytes.

CYASM Version 2.00 3

An example of using an INDEX instruction is shown below.

tab1: DS “hello” ;define a table called tab1

 MOV A, 04
 INDEX tab1 ;fetch the 5th byte (“o”) from table tab1.

The program memory holds the user program, as well as the data tables referenced by the INDEX
instruction. INDEX, CALL (opcode 9xh), and all jump instructions have a 12-bit address range and are
thereby limited to a range of 4K (see Section 3.2 Instruction Format), yet the B version supports EPROM
sizes up to 8K. In order to circumvent the 4K limitation, the B version includes a second CALL instruction
(opcode 5xh) that allows access to anywhere in the upper 4K of the 8K EPROM.

The XPAGE instruction is the only method other than the CALL instruction for accessing the upper 4K
range of an 8K EPROM. After an XPAGE instruction has been used to cross the boundary there is then no
way to return back to the lower 4K region (other than another XPAGE instruction at the top of the upper
4K range). For this reason, the CALL/RET is the suggested method for utilizing the upper 4K of code
space.

During a CALL to the upper 4K, the lower 4K is not accessible by either the jump or INDEX instructions,
nor is it possible to make a CALL from the upper 4K to the lower 4K. After a call into the upper 4K, access
to the lower 4K is restored by the RET or RETI instructions; at that point the upper 4K is again not
accessible. The following table shows allowable operation. Please note that interrupt service routines do
continue to operate normally regardless of the upper/lower state at the time of the interrupt. ISRs must be
located in the lower 4K range and the RETI at the end of the ISR properly returns control to either the
upper or lower 4K range.

Control flow for B version microcontroller with 8K EPROM

Instruction Type Low 4K
to

Low 4K

Low 4K
to

High 4K

High 4K
to

Low 4K

High 4K
to

High 4K
JACC, JC, JMP, JNC, JNZ, JZ Yes No No Yes
CALL Yes

(9x opcode)
Yes
(5x opcode)

No Yes
(5x Opcode)

RET, RETI Yes Yes Yes Yes
INDEX Yes No No Yes
XPAGE All but

last page
Last page Last Page All but

last page

The assembler examines the destination of the CALL and automatically chooses the correct opcode. If an
attempt is made to do a jump, CALL or INDEX instruction that illegally crosses the 4K boundary, the
assembler will flag that operation as an error.

The assembler maintains two location counters, one for data memory (RAM), and the other for program
memory. The assembler switches between the two location-counters with the CSEG and DSEG directives.
The assembler validates that instructions and ROM data are assembled into program memo ry space
(CSEG) and RAM data is allocated in RAM memory space (DSEG).

CYASM Assembler User’s Guide

4

3.2 Instruction Format
Instruction addressing is divided into two groups: (1) Logic, arithmetic and data movement functions, (2)
jump and call instructions. (For the purpose of the following discussion, the INDEX opcode is grouped as a
jump instruction). In the following descriptions a “0” or “1” indicates the opcode group, a “c” indicates
other bits used to define opcodes, and an “a” indicates bits used to store an address or data value.

Logic, arithmetic, and data movement functions are one- or two-byte instructions. The first byte of the
instruction contains the opcode, for that instruction. In two-byte instructions, the second byte contains
either a data value or an address. The format for logic, arithmetic, and data movement instructions is:

Single byte instruction:

7 6 5 4 3 2 1 0
0 0 c c c c c c

Double bye instruction:

 Instruction Byte Instruction Data Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
0 0 c c c c c c a a a a a a a a

All jumps instructions, plus the CALL and the INDEX instructions are 2-byte instructions. The opcode is
contained in the upper 4 bits of the first instruction byte, and the destination address is stored in the
remaining 12 bits. For memory sizes larger than 4 Kbytes, destination address bits above the lower 12 will
be the same as those in the pc at the time the instruction is executed. The format for jump instruction is:

 Instruction Byte Instruction Data Byte
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
1 c c c a a a a a a a a a a a a

3.3 Addressing Modes
Three addressing modes are supported — Immediate, Direct, and Indexed. The address mode is inferred
from the syntax of the assembly code. The square brackets, [] are used to denote one level of indirection.
The three modes are illustrated in the following examples:

Immediate:
The immediate addressing mode is identified by a value without square brackets in the operand field.
Immediate addressing causes the operand itself to be used as a value in the operation.

 ADD A, 7 ;In this case the value 7 is added to the accumulator.

Direct:
The direct addressing mode is identified by a value within square brackets in the operand field. This
mode causes the Data RAM value which is addressed by the operand to be used in the operation.

 ADD A, [7] ;In this case the value in location 7 of the Data RAM is added to the
 ;accumulator.

CYASM Version 2.00 5

Indexed:
The indexed addressing mode is identified by the “[X+ value]” syntax. This mode uses the value of
the X-register as a base address and the operand as the offset to access locations in the Data RAM.
This addressing mode is useful for indexing into a block of data within the Data RAM.

 ADD A, [X+7] ;In this case, 7 is added to the current value of X-register to form the
 ;address. This address is then used to access the Data RAM value
 ;which is to be added to the accumulator.

3.4 Destination of Instruction Results
The result of a given instruction is stored in the entity that is placed next to the opcode in the assembly
code. This allows a given result to be stored in a location other than the accumulator. Direct and Indexed
addressed Data RAM locations, as well as the X-register, are additional destinations for some instructions.
The AND instruction is a good illustration of this feature:

Syntax Operation
AND A, expr acc ← acc & k

AND A, [expr] acc ← acc & [k]

AND A, [X + expr] acc ← acc & [X + k]

AND [expr], A [k] ← acc & [k]

AND [X+ expr], A [X+ k] ← acc & [X+ k]

The ordering of the entities within the instruction determines where the result of the instruction is stored.
In this example, the last two cases perform the same operation as the previous two. The difference is the
destination of the instruction.

4. Assembly Source File Syntax
Assembly language instructions reside in files with ".asm" extensions. Each instruction has one operation
on a single line, each with the format described below. The maximum line-length is 255 characters. Each
keyword is separated by white spaces.

Syntax: label : MNEMONIC operands ;comment

Label is a case-sensitive set of alphanumeric characters and "_" followed by a colon ":". A
label may be up to 127 characters long. If used as shown in the Syntax line above, a label
will be assigned a value, but labels may als o be used as operands. A label is assigned the
value of the current location counter (DSEG or CSEG) unless it is defined on a line with
an EQU directive. Labels can be included on any line, including blank lines, but are
required within an EQU directive. A label may only be defined once in an assembly
program, but may be used as an operand multiple times.

 If the label begins with the " ." character, that label has local scope only and is recognized
only between the two global labels that surround it. If the label does not begins with the
"." character, that label is a global label. A label that begins with the " ." character must
exists between two global labels. These local labels can re-use the same names within
differing global scopes.

CYASM Assembler User’s Guide

6

For example:

Wait: mov a,10 ;First global label
.lp1: dec A
 jnz .lp1 ;Refers to local ".lp1" above
 ret
Next: mov A,20 ;Second global label
.lp1: dec A
 jnz .lp1 ;Refers to local ".lp1" after "Next"
 ret
Last:

 In the above example the label ".lp1" is reused and is unique in both cases. This feature
allows files to be included such that label-use conflicts are reduced.

 Local labels are restricted and may be used only between global labels. For example, a
programmer may not use a local label before a global label has been defined, and there
must be at least one global label after the last local label.

MNEMONIC is an assembly instruction, an assembler directive, or a user defined macro name. All are
defined in more detail in Section 7, Instruction Set and Section 6, Assembler Directives.
There can be 0 or 1 MNEMONIC on a line of assembly code. MNEMONICs, with the
exception of macro names, are case insensitive.

Operands either specify the addressing mode for an instruction as described in Sections 3.3 and 3.4,
or are expressions that specify a value used by an instruction. The number and type of
operands accepted on a line depends on the MNEMONIC on that line. Refer to Section 6,
Assembler Directives and Section 7, Instruction Set for information on which operands
are accepted by specific MNEMONICs. A line with no MNEMONIC must have no
operands.

Expressions may be constructed using a number of algebraic and logical operators with any of the
operand types listed in the next section. The order of precedence of the expression
operators is:

 1. Bitwise Complement ~

 Unary LSB >

 Unary MSB <

 2. Multiplication *
 Division /

 3. Addition +
 Subtraction -

 4. Bitwise Shift Left <<
 Bitwise Shift Right >>

 5. Bitwise AND &

 6. Bitwise XOR ^

 7. Bitwise OR |

 Parenthesis may be used to force lower precedence operations to be executed first.

CYASM Version 2.00 7

Operand Types Labels used as operands are replaced with their defined value. Definitions may be made
anywhere within the source file as described in the section on labels above. The colon
that follows a label does not need to be included when used as an operand.

 Constants are specified as binary, decimal, hexadecimal, or character. The radix for a
number is specified by a letter following thet number: b for binary, d for decimal, h for
hexadecimal. If no radix is specified it is assumed to be decimal. For example 1010b,
10d, 10, and Ah are all equivalent.

 Character constants are enclosed by single quotes and have the ASCII value of the
character. One or two characters may be included in quotes to form an 8-bit or 16-bit
value. The backslash \ is used as an escape character. To enter a single quote ‘ as a
character, type \’. To enter a \ type \\. Some character constant examples: "A" has the
value of 41h, "AB" has the value 4142h, and " \’ " has the ASCII value of ‘ (single quote).

 The dollar sign $, is replaced by the value of the current location counter (CSEG or
DSEG). For example, the instruction JMP $ is a Jump instruction that jumps to itself.

Comment is anything following a semicolon “;” or a double slash “//” to the end of a line. A
comment is typically used to explain the assembly code and it may be placed anywhere in
the source file. Comments are ignored by the assembler; however, they are written to the
listing file.

5. List File Format

When cyasm is run on an assembly file, a listing file with a .lst extension is created. The listing shows how
the assembly program was mapped into actual memory values. It also provides a listing of errors, warnings,
and a reference table of labels.

The following is a small assembly program (example.asm) and below that is its listing (example.lst).

Sample file to assemble: example.asm:

 JMP START
 DB 3FAh
 ;only a comment on this line
 ORG 20h ;set program counter to 20h
START: MOV a, 16d

CYASM Assembler User’s Guide

8

Listing of assembled file: example.lst

CYASM Version 2.00 Beta 01
(C) 1998,1999,2000,2001,2002 Cypress Semiconductor Corp.

0000 80 20 [05] JMP START
**** Warning : '3FAh' is larger than a byte.
0002 FA [00] DB 3FAh
 ;only a comment on this line
0020 ORG 20h ;set program counter to 20h
0020 19 10 [04] START: MOV a, 16d

CheckSum = 01C3
Warnings = 1
Errors = 0

Product: 63000, CPU Family=A, RAM=128 bytes, ROM=2048 bytes

 *************** RAM USAGE MAP ***************

 |01234567|89ABCDEF|01234567|89ABCDEF|
 0-1F| | | | |
20-3F| | | | |
40-5F| | | | |
60-7F| | | | |
80-9F|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
A0-BF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
C0-DF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
E0-FF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|

 RAM Used = 0(+) RAM Available = 128

 *************** ROM USAGE MAP ***************

 |01234567|89ABCDEF|01234567|89ABCDEF|
0000-01FF|p p | | | |
0200-03FF| | | | |
0400-05FF| | | | |
0600-07FF| | | | |
0800-09FF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
0A00-0BFF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
0C00-0DFF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
0E00-0FFF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1000-11FF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1200-13FF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1400-15FF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1600-17FF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1800-19FF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1A00-1BFF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1C00-1DFF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|
1E00-1FFF|XXXXXXXX|XXXXXXXX|XXXXXXXX|XXXXXXXX|

 ROM Used = 5 ROM Available = 2043
 F = Full Block
 p = Partially Full Block
 X = Unpopulated Block

 ************ SYMBOLIC REFERENCE TABLE ************

 Value Label # Uses
 ----- ------------------------------------ ------
 20H START 1

CYASM Version 2.00 9

With one exception, the first column of the listing file displays either the address where the instruction is
stored, or the RAM block that is allocated to it. If a plus sign "+" follows the address, the location is a
RAM block addresse. The exception occurs when an EQU directive is assembled. In that case, the value in
the first column is the value that was assigned to the label; this is further highlighted with an equal sign "="
immediately to the right of the assigned value.

The next two columns show the opcode and operand for that instruction. The exceptions to this are the
define directives (see Section 6), which place defined data in each of these columns, and instructions with
no operands for which column three will be left blank. The number of clock cycles required to execute the
instruction is next shown in square brackets. Then the source code line corresponding to the previous
information is displayed. Any warnings and errors are shown above the line that caused them.

Following the body of the listing is a checksum, a count of warnings and errors and is the symbolic
reference table. Every label defined in the assembly program is included in the symbol table. The value
assigned to a label is shown alongside a count of the number of times the label is used. If a label is defined
by an EQU directive (see Section 6) an "=" is included between the value and label name.

 As an example, look at the first line of the listing file example.lst. On the right is the "JMP START" from
the source code. The opcode for the jump instruction (80) is placed at memory location 0000. A “20” is
placed as the operand for the jump instruction at memory location 0001. The value of the operand
"START" can be checked in the Symbolic Reference Table at the end of the listing. The next line of the
listing is an example of a warning. In this case, the operand-value of the following define-byte (DB)
assembler directive is larger than an 8-bit value. Column two of the listing line for the DB shows that the
assembler used the rightmost eight bits (FA) of the operand.

CYASM Assembler User’s Guide

10

6. Assembler Directives
The CYASM assembler allows the following assembler directives:

BLKB Allocate a Block of Bytes
BLKW Allocate a Block of Words (2 bytes)
CPU Product specification
CSEG Enter Code Segment
DB Define Byte
DEFINE Define Conditional Assembly Symbol
DS Define ASCII String
DSEG Enter Data Segment
DSU Define UNICODE String
DW Define Word (2 bytes)
DWL Define Word with little endian ordering
ELSE Begin else part of conditional assembly block
ENDIF End a conditional assembly block
EQU Equate label to variable value
ERROR Error ‘message’
FILLROM Define unused program memory value
IF Begin a conditional assembly block (based on expression result)
IFDEF Begin a conditional assembly block (when a symbol is defined)
IFNDEF Begin a conditional assembly block (when a symbol is not defined)
INCLUDE Include source file
MACRO Macro definition
ORG Origin
XPAGEON Xpage enable
XPAGEOFF Xpage disable

CYASM Version 2.00 11

BLKB - Allocate a Block of Bytes

The BLKB directive allocates a block of bytes in DATA space.

Syntax:

label : BLKB expr ;comment

The following is an example of allocating a block of bytes in DATA space:

Sample file to assemble: BLKB.asm

 DSEG
 ORG 10h ;set program counter to 10h
WORD_BUF: BLKW 5
COUNT: BLKB 1

Listing:

CYASM Version 2.00 Beta 01
(C) 1998,1999,2000,2001,2002 Cypress Semiconductor Corp.

0000+ DSEG
0010+ ORG 10h ;set program counter to 10h
0010+ WORD_BUF: BLKW 5
001A+ COUNT: BLKB 1

BLKW - Allocate a Block of Words (2 bytes)

The BLKW directive allocates a block of words in DATA space.

Syntax:

label : BLKW expr ;comment

The following is an example of allocating a block of bytes in DATA space:

Sample file to assemble: BLKW.asm

 DSEG
 ORG 10h ;set program counter to 10h
WORD_BUF: BLKW 5
COUNT: BLKB 1

Listing:

CYASM Version 2.00 Beta 01
(C) 1998,1999,2000,2001,2002 Cypress Semiconductor Corp.

0000+ DSEG
0010+ ORG 10h ;set program counter to 10h
0010+ WORD_BUF: BLKW 5
001A+ COUNT: BLKB 1

CYASM Assembler User’s Guide

12

CPU - Product specification
The CPU directive specifies to the assembler the resources available within the Microcontroller. The CPU
directive also defines two implied symbols that can be used with the conditional assembly directives. The
first symbol is the same as the Product ID listed in the CPU Product Identification Table found on page 43.
The second symbol is either "ACPU" or "BCPU", based on the CPU type from the same table.

Syntax:

CPU productName ;comment

The following is an example of conditional assembly code using the implied processor symbol:

0000 CPU 63413 ; Select the 63413
 IFDEF 63413 ; Load 14 for the 63413
0000 19 0E [04] MOV A, 14 ;
 ELSE ; Otherwise
 ENDIF

CSEG - Enter CODE Segment

The enter-code segment directive changes the current memory space to the CODE segment. Any labels
that follow the CSEG directive are assigned values based on the program memory location-counter.

Syntax:

label : CSEG ;comment

The following is an example of allocating a block of bytes in DATA space:

Sample file to assemble: cseg.asm

 CPU 63722
 DSEG
P_STK: BLKB 10
APP_RAM:
 CSEG
 JMP RESET
 ORG 40h ;set program counter to 40h
RESET: MOV a, P_STK
 MOV PSP, A

Listing:

CYASM Version 2.00 Beta 01
(C) 1998,1999,2000,2001,2002 Cypress Semiconductor Corp.

0000 CPU 63722
0000+ DSEG
0000+ P_STK: BLKB 10
000A+ APP_RAM:
0000 CSEG
0000 80 40 [05] JMP RESET
0040 ORG 40h ;set program counter to 40h
0040 19 00 [04] RESET: MOV a, P_STK
0042 60 [04] MOV PSP, A

CYASM Version 2.00 13

DB - Define Byte
The define-byte directive reserves a byte of ROM and assigns the specified value to the reserved byte. This
directive is useful for creating tables in ROM.

Syntax:

label : DB operand1, operand2, ... operand(n) ;comment

The operands may be a constant or a label. The number of operands in a DB statement can be zero to as
many as will fit on the source line. Below is a sample listing of an assembled set of DB directives

00D1 00 [00] tab1: DB 0,3,4
00D2 03 [00]
00D3 04 [00]
00D4 06 [00] DB 0110b

DEFINE - Define Conditional Assembly Symbol

The define-conditional assembly symbol directive defines a symbol that can be tested for conditional
assembly.

Syntax:

DEFINE symbol ;comment

DS - Define ASCII String

The define-string directive stores a string of characters as ASCII values. The string must start and end with
quotation marks "".

Syntax:

label : DS 'String of characters' ;comment

The string is stored character by character in ASCII hex format. The listing file shows the first two ASCII
characters on the line with the source code. The backslash character \ is used in the string as an escape
character. The \ is not assembled as part of the string, but the character following it is, even if it is a \ . A
quotation mark “ can be entered into the middle of a string as \”.

The remaining characters are shown on the following line. The string is not null-terminated. To create a
null terminated string, follow the DS with a DB. Below is a sample listing for a define-ASCII string
directive with a DB for a null terminated string.

00D8 41 42 ... DS "ABCDEFGHIJK"
 43 44 45 46 47 48 49 4A 4B
00E3 00 [00] DB 0

CYASM Assembler User’s Guide

14

DSEG - Enter DATA Segment

The enter-data segment directive changes the current memory space to the DATA segment. Any labels that
follow the DSEG directive are assigned values based on the data memory location-counter. The enter-data
segment directive accepts two optional arguments: SAVE and RESTORE.

The current location-counter normally points to Program memory, but will point to Data memory after a
DSEG command is used. When the DSEG SAVE command is used, the location counter points to some
Data memory location and saves that address to a temporary counter then increments by one. The DSEG
location counter can be saved to a depth of 256 times.

The program continues executing, then when the DSEG RESTORE command is used, the program looks at
the temporary counter and pops the previous location into the current location counter. This sets the
location counter to the last location saved by the DSEG SAVE command.

Syntax:

label : DSEG ;comment

Syntax:

label : DSEG SAVE ;comment

Syntax:

label : DSEG RESTORE ;comment

The following is an example of allocating a block of bytes in DATA space:

File to assemble: dseg.asm

 CPU 63722
 DSEG
P_STK: BLKB 10
APP_RAM:
 CSEG
 JMP RESET
 ORG 40h ;set program counter to 40h
RESET: MOV a, P_STK
 MOV PSP, A

Listing:

CYASM Version 2.00 Beta 01
(C) 1998,1999,2000,2001,2002 Cypress Semiconductor Corp.

0000 CPU 63722
0000+ DSEG
0000+ P_STK: BLKB 10
000A+ APP_RAM:
0000 CSEG
0000 80 40 [05] JMP RESET
0040 ORG 40h ;set program counter to 40h
0040 19 00 [04] RESET: MOV a, P_STK
0042 60 [04] MOV PSP, A

CYASM Version 2.00 15

DSU - Define UNICODE String
The define-UNICODE-string directive stores a string of characters as UNICODE values with little endian
byte order. The string must start and end with quotation marks "".

Syntax:

label : DSU 'String of characters' ;comment

The string is stored character by character in UNICODE format. Each character in the string is stored with
the low byte followed by the high byte. The backslash character \ is used in the string as an escape
character. The \ is not assembled as part of the string, but the character following it is, even if it is a \ . To
enter a quotation mark “ into the middle of a string, enter \”.

The listing file shows the first character on the line with the source code. The remaining characters are
shown on the following line. The string is not null-terminated. Below is a sample listing of an assembled
define-UNICODE string directive.

08FE 41 00 ... DSU "ABCDE"
 42 00 43 00 44 00 45 00

DW - Define Word

The define-word directive reserves two bytes of ROM and assigns the specified words to the reserved two
bytes. This directive is useful for creating tables in ROM.

Syntax:

label : DW operand1, operand2, ... operand(n) ;comment

The operands may be either a constant or a label. The number of operands in a DW statement is only
limited by the length of the source line. Below is a sample listing of an assembled set of DW directives.

00D1 FF FE [00] tab2: DW -2
00D3 01 DF [00] DW 01DFh
00D5 00 11 [00] DW x
0011= x: EQU 11h

DWL - Define Word, Little Endian Ordering

The define word, little endian ordering, directive reserves two bytes of ROM and assigns the specified
words to the reserved two bytes, swapping the upper and lower bytes.

Syntax:

label : DW operand1, operand2, ... operand(n) ;comment

The operands may be either a constant or a label. The number of operands in a DW statement is only
limited by the length of the source line. Below is a sample listing of an assembled set of DW directives.

00D1 FE FF [00] tab2: DWL -2
00D3 DF 01 [00] DWL 01DFh
00D5 11 00 [00] DWL x
0011= x: EQU 11h

CYASM Assembler User’s Guide

16

ELSE - Begin ELSE part of a Conditional Assembly Block
The ELSE directive begins the else part of a conditional assembly block. The code between the ELSE
directive and the closing ENDIF directive is assembled only if the opening IF, IFDEF, or IFNDEF directive
evaluates to false. The ELSE directive does not accept parameters.

Syntax:

ELSE ;comment

The sample below shows the ELSE part of a conditional assembly block assembled:

0002 ; DEBUG symbol is not defined
 IFDEF DEBUG ; Load 25 for debugging
 ELSE ; Otherwise
0002 19 14 [04] MOV A, 20 ; Use 20
 ENDIF

ENDIF - End a Conditional Assembly Block
The ENDIF directive ends a conditional assembly block. The ENDIF directive does not accept parameters.

Syntax:

ENDIF ;comment

The sample below shows the ENDIF directive used in as part of a conditional assembly block assembled:

0002 ; DEBUG symbol is not defined
 IFDEF DEBUG ; Load 25 for debugging
 ELSE ; Otherwise
0002 19 14 [04] MOV A, 20 ; Use 20
 ENDIF

EQU - Equate Label

The EQUATE (EQU) directive is used to assign an integer value to a label.

Syntax:

label : EQU operand ;comment

The label and operand are required for an EQU directive. The operand must be a valid expression. If the
expression uses the $ (current location counter), the current memory segment location counter is used.
Each EQU directive may have only one operand and if a label is defined more than once, an assembly error
will occur. Below is a sample listing of an assembled set of EQU directives.

0000 10 [00] DB zz
0001 00 11 [00] DW yy ;Example of how label is used
0010= xx: EQU 10h
0011= yy: EQU 11h
0010= zz: EQU xx

CYASM Version 2.00 17

ERROR - Error Message

The ERROR Message directive causes the assembler to generate an assembly error that emits the message.
This can be used in conjunction with conditional assembly to assure proper assembly.

For example, when a series of commands are programmed, the assembler may find the sequence of
commands unacceptable and will therefore output the message declaring an error.

Syntax:

label : ERROR ' message ' ;comment

FILLROM - Define unused program memory value
The FILLROM directive is used to force all unused bytes of program memory to a specified value.

Syntax:

label: FILLROM value ;comment

Every byte of program memory, which is not otherwise used, will be assigned the value following the
FILLROM directive. Only one FILLROM statement will be used to fill all unused locations.

IF - Begin a Conditional Assembly Block
The IF directive starts a conditional assembly block. If the expression evaluates to a non-zero value, the
block of code between the IF and the closing ENDIF or ELSE directive is assembled. If the expression
evaluates to zero, the following code block is not assembled (nor are any assembler directives in the block
assembled) and the ELSE part of the conditional block, if one exists, is assembled.

Syntax:

IF expression ;comment

This sample code show the use of the IF directive, along with local labels enclosed by a global labels. The
example shows one way to determine if the length of a fixed string is a multiple of eight.

0000 BLOCK:
0000 43 68S1: DS "Character String"
 61 72 61 63 74 65 72 20 53 74 72 69 6E 67
0010= .SL1:EQU ($ - .S1)
0010 43 68S2: DS "Character String 2"
 61 72 61 63 74 65 72 20 53 74 72 69 6E 67 20 32
0012= .SL2:EQU ($ - .S2)

 IF (.SL1 & 7H) ; String 1 length multiple of 8?
 ELSE ;
0022 19 02 [04] MOV A, 2 ; Yes, use 2
 ENDIF

 IF (.SL2 & 7H) ; String 2 length multiple of 8?
0024 19 01 [04] MOV A, 1 ; No, load 1
 ELSE ;
 ENDIF
0026 ENDBLOCK:

CYASM Assembler User’s Guide

18

IFDEF - Begin a Conditional Assembly Block
The IFDEF directive starts a conditional assembly block. If the symbol has been defined previously with a
DEFINE directive, the block of code between the IFDEF and the closing ENDIF or ELSE directive is
assembled. If the symbol has not been defined previously, the following block of code is not assembled
(nor are any assembler directives in the block assembled) and the ELSE part of the conditional block, if one
exists, is assembled.

Syntax:

IFDEF symbol ;comment

Below is a sample listing of conditional assembly using the IFDEF directive:

 define DEBUG ; Define the debug symbol
 ifdef DEBUG ; Load A with 1 if we are debugging
0000 19 01 [04] MOV A, 01 ;
 ENDIF ;

Here is the same code fragment where the DEBUG symbol is not defined:

 ;;;define DEBUG ; Define the debug symbol
 ifdef DEBUG ; Load A with 1 if we are debugging
 ENDIF ;

IFNDEF - Begin a Conditional Assembly Block
The IFNDEF directive starts a conditional assembly block. If the symbol has not been defined previously
with a DEFINE directive, the block of code between the IFNDEF and the closing ENDIF or ELSE
directive is assembled. If the symbol has been defined previously, the following code block is not
assembled (nor are any assembler directives in the block assembled) and the else part of the conditional
block, if one exists, is assembled.

Syntax:

IFNDEF symbol ;comment

INCLUDE - Include source file

The INCLUDE directive is used to include additional source files into the main file being assembled.

Syntax:

label : INCLUDE 'source_file' ;comment

Once an INCLUDE directive is encountered the assembler reads in the new source file (source_file) until
either another INCLUDE is encountered or the end of file is found. When an end of file is encountered, the
assembler resumes reading the previous file immediately following the INCLUDE directive. In other
words, INCLUDE directives cause nesting of source code being assembled. The source_file specified
should contain a full path name if it does not reside in the current directory.

CYASM Version 2.00 19

MACRO - Macro Definition Start
ENDM - Macro Definition End

The MACRO and ENDM directives are used to specify the start and end of a macro definition.

Definition Syntax:

label: MACRO macroname parm1,parm2,...,parm(n) ;comment

 macro body consisting of lines of CYASM code

 ENDM

Call Syntax:

label: macroname value1,value2,...,value(n) ;comment

The lines of code defined between a MACRO statement and an ENDM statement are not directly
assembled into the program. Instead, they form a macro that may later be substituted into the code by a
macro call. The MACRO directive is followed by the name used to call the macro as well as a list of
parameters. Each of the parameters is a string that can be used in the macro body as an operand, either
alone or as part of an expression. In a macro-call, each time a parameter is used in the macro body that
parameter will be replaced by the corresponding value from the macro call. Any labels defined in a macro
will have a #n, where n is a unique number for each macro call, appended. This makes the label unique
each time the macro is used.

One example of a macro is the variable delay loop shown below.

Macro definition from source file:
0000 MACRO wait delay
0000 MOV a,delay
0000 loop: DEC a
0000 JNZ loop
0000 ENDM

Macro call from source file:
 wait 50

Macro instantiation from the listing file:

**** MACRO **** wait 50
0100 19 32 [04] MOV a,50
0102 25 [04] loop#1: DEC a
0103 B1 02 [05] JNZ loop#1:
END MACRO

A macro must be defined earlier in the assembly file than it is called. Macro definitions may not be nested,
but macros that are already defined may be used in following macro definitions.

CYASM Assembler User’s Guide

20

ORG - Program Counter Origin

The origin (ORG) directive allows the programmer to set the value of the current location during assembly.
This is most often used to set the start of a table in conjunction with the define directives BLKB, BLKW,
DB, DS and DW. The ORG directive only modifies the location counter of the active segment either CSEG
or DSEG.

Syntax:

label : ORG operand ;comment

The operand is required for an ORG directive and may be any valid constant expression, including
expressions that use integer constants, labels, or “$” (current location counter). The assembler does not
keep track of previously defined areas and will not flag overlapping areas in a single source file. Below is a
sample listing of an assembled set of DB directives.

00D1 ORG 00D1h
00D1 03 [00] DB 3
00FD ORG 00FDh

XPAGEOFF - Disable XPAGE Insertion

The XPAGEOFF directive disables the automatic insertion of XPAGE instructions at page breaks. Most
often this is useful when defining ROM tables or jump tables.

Syntax:

label: XPAGEOFF

After the XPAGEOFF directive is encountered, the assembler will not insert XPAGE and NOP instructions
at program memory page-crossings until an XPAGEON directive is encountered. The assembler defaults to
XPAGE insertion on at the top of the file.

XPAGEON - Enable XPAGE Insertion

The XPAGEON directive enables the automatic insertion of XPAGE instructions at page breaks. Often this
is useful when defining ROM or JUMP tables.

Syntax:

label: XPAGEON

The XPAGEON directive enables automatic insertion XPAGE and NOP instructions at page breaks after
an XPAGEOFF directive has disabled it. The assembler defaults to XPAGE insertion on at the top of the
file.

CYASM Version 2.00 21

7. Instruction Set
The following notation will be used throughout this section of the document:

acc Accumulator
expr expression
k operand value
X X register

The conditional jump instructions (JC, JNC, JZ, JNZ) list two numbers in the Cycles column. The first
number is the number of cycles for the instruction execution when the branch is taken. The second number,
shown in parenthesis, is the number of cycles when the branch is not taken.

ADD Add Without Carry

Syntax: Operation:
ADD A, expr acc ← acc + k
ADD A, [expr] acc ← acc + [k]
ADD A, [X + expr] acc ← acc + [X + k]

Description: Adds a value; k, [k] or [X+ k] to the contents of the accumulator and places the result in
the accumulator.

Condition Flags:
 CF: Set if, treating the numbers as unsigned, the result > 255; cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

ADD A, expr 01h Immediate byte 4
ADD A, [expr] 02h Direct address byte 6
ADD A, [X+expr] 03h Offset byte 7

CYASM Assembler User’s Guide

22

ADC Add With Carry

Syntax: Operation:
ADC A, expr acc ← acc + k + cf
ADC A, [expr] acc ← acc + [k] + cf
ADC A, [X + expr] acc ← acc + [X + k] + cf

Description: Adds the content of the carry bit along with the contents of the accumulator to a value; k,
[k] or [X+ k] and places the result in the accumulator.

Condition Flags:
 CF: Set if, treating the numbers as unsigned, the result > 255; cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

ADC A, expr 04h Immediate byte 4
ADC A, [expr] 05h Direct address byte 6
ADC A, [X+expr] 06h Offset byte 7

AND Bitwise AND

Syntax: Operation:
AND A, expr acc ← acc & k
AND A, [expr] acc ← acc & [k]
AND A, [X + expr] acc ← acc & [X + k]
AND [expr], A [k] ← acc & [k]
AND [X+ expr], A [X+ k] ← acc & [X+ k]

Description: A bitwise AND of a value; k, [k] or [X+ k] and the contents of the accumulator. The
result is placed in either the accumulator, [k] or [X+ k] according to the field just to the
right of the opcode.

Condition Flags:
 CF: Always cleared.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

AND A, expr 10h Immediate byte 4
AND A, [expr] 11h Direct address byte 6
AND A, [X+expr] 12h Offset byte 7
AND [expr], A 35h Direct address byte 7
AND [X+ expr], A 36h Offset byte 8

CYASM Version 2.00 23

ASL Arithmetic Shift Left

Syntax: ASL A or ASL
 ← ← ← ← ← ← ← ←

Operation:
CF ← b7 - - - - - - b0 ← 0

Description: Shifts all bits of the accumulator one place to the left. The most significant bit of the
accumulator is loaded into the CF flag. Bit 0 is loaded with a zero.

Condition Flags:
 CF: Set if the MSB of the accumulator was set, before the shift, cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

ASL 3Bh 4

ASR Arithmetic Shift Right

Syntax: ASR or ASR A
 → → → → → → →

Operation:
b7 - - - - - - b0 → CF

Description: Shifts all bits of the accumulator one place to the right. Bit 0 of the accumulator is loaded
into the CF flag. Bit 7 remains the same.

Condition Flags:
 CF: Set if LSB of the accumulator was set, before the shift, cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

ASR 3Ch 4

CYASM Assembler User’s Guide

24

CALL Call Function

Syntax: CALL address

Operation: [psp] ← pc
 psp ← psp + 2
 pc ← k

Description: Executes a jump to a subroutine starting at the address given as an operand. The Program
counter (pc) is pushed onto the program stack without disturbing the data stack. The zero
flag (zf) and carry flag (cf) are pushed along with the pc. The program stack pointer is
incremented. The program counter is loaded with the address value.

 Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

CALL addr 9xh address byte (first 4K ROM) 10
CALL addr 5xh address byte (second 4K ROM, B CPUs only) 10

CMP Non-destructive Compare

Syntax: Operation:
CMP A, expr cf ← acc - k
CMP A, [expr] cf ← acc - [k]
CMP A, [X + expr] cf ← acc - [X + k]

Description: Subtracts a value; k, [k] or [X+ k] from the contents of the accumulator and sets the flag
bits. The contents of the accumulator are unaffected.

Condition Flags:
 CF: Set if the accumulator contents < operand value; cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

CMP A, expr 16h Immediate byte 5
CMP A, [expr] 17h Direct address byte 7
CMP A, [X+expr] 18h Offset byte 8

CYASM Version 2.00 25

CPL Complement Accumulator

Syntax: CPL A or CPL

Operation: acc ← acc

Description: Replace each bit in the accumulator with its complement.

Condition Flags:
 CF: Always set.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

CPL A 3Ah 4

DEC Decrement

Syntax: Operation:
DEC A acc ← acc - 1
DEC X X ← X - 1
DEC [expr] [k] ← [k] - 1
DEC [X+ expr] [X+ k] ← [X+ k] - 1

Description: Subtract one from the contents of a register or Data RAM location. The field to the right
of the opcode determines which entity is effected: accumulator; X register; direct or
index addressed Data RAM location.

Condition Flags:
 CF: Set if the result is -1; cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

DEC A 25h 4
DEC X 26h 4
DEC [expr] 27h direct address byte 7
DEC [X+ expr] 28h offset address byte 8

CYASM Assembler User’s Guide

26

DI Disable Interrupts

Syntax: DI B CPU only
Operation: None

Description: Disables interrupts.

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected

Source Machine Code Cycles
Format Opcode Operand

DI 70h 4

EI Enable Interrupts

Syntax: EI B CPU only
Operation: None

Description: Enables interrupts.

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected

Source Machine Code Cycles
Format Opcode Operand

EI 72h 4

CYASM Version 2.00 27

HALT Halt Execution

Syntax: HALT
Operation: None

Description: Halts execution of the processor core until the occurrence of a reset - Watchdog, POR or
USB

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected

Source Machine Code Cycles
Format Opcode Operand

HALT 00h 7

INC Increment

Syntax: Operation:
INC A acc ← acc + 1
INC X X ← X + 1
INC [expr] [k] ← [k] + 1
INC [X+ expr] [X+ k] ← [X+ k] + 1

Description: Add one to the contents of a register or Data RAM location. The field to the right of the
opcode determines which entity is effected: accumulator; X register; direct or index
addressed Data RAM location.

Condition Flags:
 CF: Set if value after the increment is 0; cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

INC A 21h 4
INC X 22h 4
INC [expr] 23h direct address byte 7
INC [X+ expr] 24h offset address byte 8

CYASM Assembler User’s Guide

28

INDEX Table Read

Syntax: INDEX address

Operation: acc ← ROM[addr + acc]

Description: Places the contents of ROM location indexed by the sum of the accumulator and the
address operand, into the accumulator. The INDEX instruction modifies one byte of
RAM that is indexed by the current value of the PSP.

Condition Flags:
 CF: Set if computed address is on a different page from the base address; cleared

 otherwise.
 ZF: Set if the low byte of the computed address is 00; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

INDEX address Fxh address byte 14

IPRET IO Write , Pop, and Return (A CPU only)

Syntax: IPRET address

Operation: IO[address] ß acc , POP acc, RET

Description: Places the contents of the accumulator into IO location indexed the by address, then pop
the accumulator from the data stack, then return from interrupt.

Condition Flags:
 CF: Carry restored to the value that was pushed onto the program stack.
 ZF: Zero restored to the value that was pushed onto the program stack.

Source Machine Code Cycles
Format Opcode Operand

IPRET address 1Eh address byte 13

CYASM Version 2.00 29

IORD Read IO

Syntax: IORD address

Operation: acc ← IO[k]

Description: Places the contents of IO location indexed the by address operand into the accumulator.

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

IORD address 29h address byte 5

IOWR Write IO
Syntax: IOWR address

Operation: IO[k] ← acc

Description: Place the contents of the accumulator into the IO location indexed by the address
operand.

Condition Flags:
 CF: Carry unaffected.
 ZF: Zero unaffected.

Source Machine Code Cycles
Format Opcode Operand

IOWR address 2Ah address byte 5

CYASM Assembler User’s Guide

30

IOWX Indexed IO Write
Syntax: IOWX [x + address]

Operation: IO[x + k] ← acc

Description: Place the contents of the accumulator into the IO location given by the sum of the index
register and the address operand.

Condition Flags:
 CF: Carry unaffected.
 ZF: Zero unaffected.

Source Machine Code Cycles
Format Opcode Operand

IOWX address 39h address byte 6

JACC Jump Accumulator

Syntax: JACC address

Operation: pc ← acc + k

Description: Jump unconditionally to the address computed by the sum of the accumulator and the
12-bit address operand. The accumulator is not affected by this instruction.

Condition Flags:
 CF: Set if computed address is on a different page from the base address; cleared

 otherwise.
 ZF: Set if the low byte of the computed address is 00; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

JACC address Exh address byte 7

CYASM Version 2.00 31

JC Jump if Carry

Syntax: JC address

Operation: if CF=1, then pc ← k

Description: If the carry flag is set, then jump to the address (place the address in the program
counter).

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

JC address Cxh address byte 5 (4)

JMP Jump

Syntax: JMP address

Operation: pc ← k

Description: Jump unconditionally to the address (place the address in the program counter).

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

JMP address 8xh address byte 5

JNC Jump if No Carry

Syntax: JNC address

Operation: if CF=0 then pc ← k

Description: If the carry flag is not set, then jump to the address (place the address in the program
counter).

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

JNC address Dxh address byte 5 (4)

CYASM Assembler User’s Guide

32

JNZ Jump if Not Zero

Syntax: JNZ address

Operation: if ZF=0 then pc ← k

Description: If the zero flag is not set then jump to the address (place the address in the program
counter).

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

JNZ address Bxh address byte 5 (4)

JZ Jump if Zero

Syntax: JZ address

Operation: if ZF=1 then pc ← k

Description: If the zero flag is set then jump to the address (place the address in the program counter).

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

JZ address Axh address byte 5 (4)

CYASM Version 2.00 33

MOV Move

Syntax: Operation:
MOV A, expr acc ← k
MOV A, [expr] acc ← [k]
MOV A, [X + expr] acc ← [X + k]
MOV [expr], A [k] ← acc
MOV [X + expr], A [X + k] ← acc
MOV X, expr X ← k
MOV X, [expr] X ← [k]
MOV X, A X ← acc B CPU
MOV A,X acc ß X B CPU
MOV PSP,A PSP ß acc B CPU

Description: This instruction allows for a number of combinations of moves. Immediate, direct and
indexed addressing is supported. All moves involve either the accumulator or the X
register.

Conditi on Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

MOV A, expr 19h Immediate byte 4
MOV A, [expr] 1Ah Direct address byte 5
MOV A, [X+expr] 1Bh Offset byte 6
MOV [expr], A 31h Direct address byte 5
MOV [X+ expr],A 32h Offset byte 6
MOV X, expr 1Ch Immediate byte 4
MOV X, [expr] 1Dh Direct address byte 5
MOV A,X 40h 4
MOV X,A 41h 4
MOV PSP,A 60h 4

CYASM Assembler User’s Guide

34

NOP No Operation

Syntax: NOP

Operation: none

Description: This one byte instruction performs no operation.

Condition Flags:
 CF: Carry flag unaffected
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

NOP 20h 4

OR Bitwise OR

Syntax: Operation:
OR A, expr acc ← acc ∨ k
OR A, [expr] acc ← acc ∨ [k]
OR A, [X + expr] acc ← acc ∨ [X + k]
OR [expr], A [k] ← acc ∨ [k]
OR [X+ expr], A [X+ k] ← acc ∨ [X+ k]

Description: A bitwise OR of a value; k, [k] or [X+ k] and the contents of the accumulator. The result
is placed in either the accumulator, [k] or [X+ k] according to the field just to the right of
the opcode.

Condition Flags:
 CF: Always cleared.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

OR A, expr 0Dh Immediate byte 4
OR A, [expr] 0Eh Direct address byte 6
OR A, [X+expr] 0Fh Offset byte 7
OR [expr], A 33h Direct address byte 7
OR [X+ expr], A 34h Offset byte 8

CYASM Version 2.00 35

POP Pop Data Stack into Register

Syntax Operation

POP A acc ← [dsp]
 dsp ← dsp + 1
POP X X ← [dsp]
 dsp ← dsp + 1

Description: Place the contents of the top of the stack into the designated register. Increment the data
stack pointer.

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

POP A 2Bh 4
POP X 2Ch 4

PUSH Push Register into Data Stack

Syntax Operation
PUSH A dsp ← dsp - 1
 [dsp] ← acc
PUSH X dsp ← dsp - 1
 [dsp] ← X

Description: Decrement the data stack pointer. Push the contents of the designated register onto the
data stack.

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

PUSH A 2Dh 5
PUSH X 2Eh 5

CYASM Assembler User’s Guide

36

RET Return

Syntax: RET

Operation: psp ← psp - 2
 pc ← [psp]

Description: Pop two bytes off of the program stack into the program counter.

Condition Flags: Depends on A or B versions CPUs

 A version:
 CF: Carry restored to the value that was pushed onto the program stack.
 ZF: Zero restored to the value that was pushed onto the program stack.

B version:
 CF: Carry unchanged by this instruction.
 ZF: Zero unchanged by this instruction.

Source Opcode Machine Code Cycles
Format Operand Comments

RET 3FH A: flags restored 8
RET 3FH B: flags returned 8

RETI Return from Interrupt

Syntax: RETI B CPU only.

Operation: psp ← psp - 2
 pc ← [psp]

Description: Pop two bytes off of the program stack into the program counter, and re-enables
interrupts.

Condition Flags:
 CF: Carry restored to the value that was pushed onto the program stack.
 ZF: Zero restored to the value that was pushed onto the program stack.

Source Opcode Machine Code Cycles
Format Operand Comments

RETI 73H flags restored 8

CYASM Version 2.00 37

RLC Rotate Left Through Carry

Syntax: RLC A or RLC

Operation:
CF ← b7 - - - - - - b0

Description: Shifts all bits of the accumulator one place to the left. Bit 0 is loaded with the carry flag.
The most significant bit of the accumulator is loaded into the carry flag.

Condition Flags:
 CF: Set if the MSB of the accumulator was set, before the shift, cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

RLC A 3Dh 4

RRC Rotate Right Through Carry
Syntax: RRC A or RRC

Operation:
CF → b7 - - - - - - b0

Description: Shifts all bits of the accumulator one place to the right. The carry flag is loaded into the
most significant bit of the accumulator, bit 7. Bit 0 of the accumulator is loaded into the
Carry flag.

Condition Flags:
 CF: Set if LSB of the accumulator was set, before the shift, cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

RRC A 3Eh 4

CYASM Assembler User’s Guide

38

SUB Subtract without Borrow

Syntax: Operation:
SUB A, expr acc ← acc - k
SUB A, [expr] acc ← acc - [k]
SUB A, [X + expr] acc ← acc - [X + k]

Description: Subtracts a value; k, [k] or [X+ k] from the contents of the accumulator and places the
result in the accumulator.

Condition Flags:
 CF: Set if, treating the numbers as unsigned, the result < 0; cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

SUB A, expr 07h Immediate byte 4
SUB A, [expr] 08h Direct address byte 6
SUB A, [X+expr] 09h Offset byte 7

SBB Subtract with Borrow

Syntax: Operation:
SBB A, expr acc ← acc - (k + cf)
SBB A, [expr] acc ← acc - ([k] + cf)
SBB A, [X + expr] acc ← acc - ([X + k] + cf)

Description: Subtracts a value; k, [k] or [X+ k], plus the carry flag, from the contents of the
accumulator and places the result in the accumulator.

Condition Flags:
 CF: Set if, treating the numbers as unsigned, the result < 0; cleared otherwise.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

SBB A, expr 0Ah Immediate byte 4
SBB A, [expr] 0Bh Direct address byte 6
SBB A, [X+expr] 0Ch Offset byte 7

CYASM Version 2.00 39

SWAP Swap

Syntax: Operation:
SWAP A, X t ← X
 X ← acc
 acc ← t
SWAP A, DSP t ← DSP
 DSP ← acc
 acc ← t

Description: Operates on either the X register or the data stack pointer. Use the temporary register to
facilitate a swap of the contents of the accumulator with that of the X register or the data
stack pointer.

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

SWAP A, X 2Fh 5
SWAP A, DSP 30h 5

XOR Bitwise XOR

Syntax: Operation:
XOR A, expr acc ← acc ⊕ k
XOR A, [expr] acc ← acc ⊕ [k]
XOR A, [X + expr] acc ← acc ⊕ [X + k]
XOR [expr], A [k] ← acc ⊕ [k]
XOR [X+ expr], A [X+ k] ← acc ⊕ [X+ k]

Description: A bitwise Exclusive OR of a value; k, [k] or [X+ k] and the contents of the accumulator.
The result is placed in either the accumulator, [k] or [X+ k] according to the field just to
the right of the opcode.

Condition Flags:
 CF: Cleared always.
 ZF: Set if the result is zero; cleared otherwise.

Source Machine Code Cycles
Format Opcode Operand

XOR A, expr 13h Immediate byte 4
XOR A, [expr] 14h Direct address byte 6
XOR A, [X+expr] 15h Offset byte 7
XOR [expr], A 37h Direct address byte 7
XOR [X+ expr], A 38h Offset byte 8

CYASM Assembler User’s Guide

40

XPAGE Memory Page

Syntax: XPAGE

Operation: pch ← pch + 1

Description: Increment the upper byte of the program counter.

Condition Flags:
 CF: Carry flag unaffected.
 ZF: Zero flag unaffected.

Source Machine Code Cycles
Format Opcode Operand

XPAGE 1Fh 4

CYASM Version 2.00 41

Alphabetic Instruction Table

Source Machine Code Cycles Bytes Flags
Format Opcode Operand cf zf int

ADD A, expr 01h Immediate byte 4 2 C C
ADD A, [expr] 02h Direct address byte 6 2 C C
ADD A, [X+expr] 03h Offset byte 7 2 C C
ADC A, expr 04h Immediate byte 4 2 C C
ADC A, [expr] 05h Direct address byte 6 2 C C
ADC A, [X+expr] 06h Offset byte 7 2 C C
AND A, expr 10h Immediate byte 4 2 0 C
AND A, [expr] 11h Direct address byte 6 2 0 C
AND A, [X+expr] 12h Offset byte 7 2 0 C
AND [expr], A 35h Direct address byte 7 2 0 C
AND [X+ expr], A 36h Offset byte 8 2 0 C
ASL or ASL A 3Bh 4 1 C C
ASR or ASR A 3Ch 4 1 C C
CALL addr 9xh address byte 10 2
CALL addr 5xh address byte 10 2
CMP A, expr 16h Immediate byte 5 2 C C
CMP A, [expr] 17h Direct address byte 7 2 C C
CMP A, [X+expr] 18h Offset byte 8 2 C C
CPL or CPL A 3Ah 4 1 1 C
DEC A 25h 4 1 C C
DEC X 26h 4 1 C C
DEC [expr] 27h direct address byte 7 2 C C
DEC [X+ expr] 28h offset address byte 8 2 C C
DI 70h 4 1 0
EI 72h 4 1 1
HALT 00h 7 1
INC A 21h 4 1 C C
INC X 22h 4 1 C C
INC [expr] 23h direct address byte 7 2 C C
INC [X+ expr] 24h offset address byte 8 2 C C
INDEX address Fxh address byte 14 2 C C
IORD address 29h address byte 5 2
IOWR address 2Ah address byte 5 2
IOWX [X+ expr] 39h offset address byte 6 2
IPRET 1Eh IO address 13 2
JACC address Exh address byte 7 2 C C
JC address Cxh address byte 5 (4) 2
JMP address 8xh address byte 5 2
JNC address Dxh address byte 5 (4) 2
JNZ address Bxh address byte 5 (4) 2
JZ address Axh address byte 5 (4) 2
MOV A, expr 19h Immediate byte 4 2
MOV A, [expr] 1Ah Direct address byte 5 2
MOV A, [X+expr] 1Bh Offset byte 6 2
MOV [expr], A 31h Direct address byte 5 2

CYASM Assembler User’s Guide

42

Alphabetic Instruction Table (Continued)

Source Machine Code Cycles Bytes Flags
Format Opcode Operand cf zf int

MOV [X+ expr],A 32h Offset byte 6 2
MOV X, expr 1Ch Immediate byte 4 2
MOV X, [expr] 1Dh Direct address byte 5 2
MOV A,X 40h 4 1
MOV X,A 41h 4 1
MOV PSP,A 60h 4 1
NOP 20h 4 1
OR A, expr 0Dh Immediate byte 4 2 0 C
OR A, [expr] 0Eh Direct address byte 6 2 0 C
OR A, [X+expr] 0Fh Offset byte 7 2 0 C
OR [expr], A 33h Direct address byte 7 2 0 C
OR [X+ expr], A 34h Offset byte 8 2 0 C
POP A 2Bh 4 1
POP X 2Ch 4 1
PUSH A 2Dh 5 1
PUSH X 2Eh 5 1
RET (CPU A) 3Fh 8 1 C C
RET (CPU B) 3Fh 8 1
RETI 73h 8 1 C C 1
RLC or RLC A 3Dh 4 1 C C
RRC or RRC A 3Eh 4 1 C C
SUB A, expr 07h Immediate byte 4 2 C C
SUB A, [expr] 08h Direct address byte 6 2 C C
SUB A, [X+expr] 09h Offset byte 7 2 C C
SBB A, expr 0Ah Immediate byte 4 2 C C
SBB A, [expr] 0Bh Direct address byte 6 2 C C
SBB A, [X+expr] 0Ch Offset byte 7 2 C C
SWAP A, X 2Fh 5 1
SWAP A, DSP 30h 5 1
XOR A, expr 13h Immediate byte 4 2 0 C
XOR A, [expr] 14h Direct address byte 6 2 0 C
XOR A, [X+expr] 15h Offset byte 7 2 0 C
XOR [expr], A 37h Direct address byte 7 2 0 C
XOR [X+ expr], A 38h Offset byte 8 2 0 C
XPAGE 1Fh 4 1

Instructions in bold are not available for both CPU types
cf: carry flag, zf: zero flag, int: B CPU interrupt enable
In Flag columns blank is unchanged, C is changed, and 0 or 1 is set to that value

The conditional jump instructions (JC, JNC, JZ, JNZ) list two numbers in the Cycles column. The
first number is the number of cycles for the instruction execution when the branch is taken. The
second number, shown in parenthesis, is the number of cycles when the branch is not taken.

CYASM Version 2.00 43

CPU Product Identification Table

Product ID CPU type RAM EPROM
63000 63 / A CPU 128 bytes 2K bytes
63001 63 / A CPU 128 bytes 4K bytes
63100 63 / A CPU 128 bytes 2K bytes
63101 63 / A CPU 128 bytes 4K bytes
63200 63 / A CPU 128 bytes 2K bytes
63201 63 / A CPU 128 bytes 4K bytes
63221 64 / B CPU 96 bytes 3K bytes
63231 64 / B CPU 96 bytes 3K bytes
63411 64 / B CPU 256 bytes 4K bytes
63412 64 / B CPU 256 bytes 6K bytes
63413 64 / B CPU 256 bytes 8K bytes
63511 64 / B CPU 256 bytes 4K bytes
63512 64 / B CPU 256 bytes 6K bytes
63513 64 / B CPU 256 bytes 8K bytes
63612 64 / B CPU 256 bytes 6K bytes
63613 64 / B CPU 256 bytes 8K bytes
63722 64 / B CPU 256 bytes 6K bytes
63723 64 / B CPU 256 bytes 8Kbytes
63742 64 / B CPU 256 bytes 6K bytes
63743 64 / B CPU 256 bytes 8K bytes
64013 64 / B CPU 256 bytes 8K bytes
64113 64 / B CPU 256 bytes 8K bytes
65013 64 / B CPU 256 bytes 8K bytes
65113 64 / B CPU 256 bytes 8K bytes
66013 64 / B CPU 256 bytes 8K bytes
66113 64 / B CPU 256 bytes 8Kbytes

CYASM Assembler User’s Guide

44

