
Cypress Semiconductor
3901 North First Street
San Jose, CA 95134
Tel.: (800) 858-1810 (toll-free in the U.S.)
 (408) 943-2600
www.cypress.com

Version 1.1

BIOS User’s Manual

Cypress Disclaimer Agreement

The information in this document is subject to
change without notice and should not be con-
strued as a commitment by Cypress Semicon-
ductor Corporation Incorporated. While
reasonable precautions have been taken,
Cypress Semiconductor Corporation assumes
no responsibility for any errors that may appear
in this document.

No part of this document may be copied or
reproduced in any form or by any means with-
out the prior written consent of Cypress Semi-
conductor Corporation.

Cypress Semiconductor products are not
designed, intended, or authorized for use as
components in systems intended for surgical
implant into the body, or other applications
intended to support or sustain life, or for any
other application in which the failure of the
Cypress Semiconductor product could create a
situation where personal injury or death may
occur. Should Buyer purchase or use Cypress

Semiconductor products for any such unin-
tended or unauthorized application, Buyer shall
indemnify and hold Cypress Semiconductor
and its officers, employees, subsidiaries, affili-
ates and distributors harmless against all
claims, costs, damages, expenses, and rea-
sonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death
associated with such unintended or unautho-
rized use, even if such claim alleges that
Cypress Semiconductor was negligent regard-
ing the design or manufacture of the product.

The acceptance of this document will be con-
strued as an acceptance of the foregoing con-
ditions.

BIOS User’s Manual v1.1.

Copyright © 2003
Cypress Semiconductor Corporation.

All rights reserved.

Table of Contents
Chapter 1. BIOS Interface
 1.1 Introduction..1-1

 1.1.1 Overview..1-1
 1.1.2 General Notes..1-1

 1.2 Development Utilities...1-2
 1.2.1 GNU Development Tools from RedHat ...1-2

 1.3 BIOS Overview..1-2
 1.3.1 CY16 Memory Map..1-4
 1.3.2 BIOS Initialization Process ..1-7
 1.3.3 Boot Control...1-8

1.3.3.1 SIE1 Host/Peripheral USB Initialization ...1-8
1.3.3.2 Co-processor and Stand-alone Boot Control ...1-8

 1.4 Link Control Protocol (LCP)...1-9
 1.4.1 LCP Overview for Host Processor Interface (HPI)...1-9

1.4.1.1 Programming Overview..1-10
 1.4.2 LCP Overview for High Speed Serial (HSS)..1-10
 1.4.3 LCP Overview for Serial Peripheral Interface (SPI)...1-12

 1.5 Hardware Interrupts...1-13
 1.5.1 BIOS Hardware Interrupt Usage..1-15

1.5.1.1 Interrupts Not Used by the BIOS..1-15
1.5.1.2 Interrupts Used by the BIOS ..1-16

 1.6 Debugging Tools support ..1-18
 1.7 Software Interrupts ..1-19

 1.7.1 Interrupt 48-49: LCP Message Subroutines ..1-21
 1.7.2 Signature SCAN Support...1-21

1.7.2.1 Interrupt 67: SCAN_INT ...1-21
1.7.2.1.1 Software Interface..1-22
1.7.2.1.2 Example...1-23

1.7.2.2 Interrupt 79: SCAN_DECODE_INT..1-24
1.7.2.2.1 Software Interface..1-24

 1.7.3 OTG Interrupt Functions ..1-25
1.7.3.1 Interrupt 50 (OTG_STATE) ...1-26
1.7.3.2 Interrupt 112 (OTG_STATE_INT) ..1-26

1.7.3.2.1 Software Interface..1-26
1.7.3.3 Interrupt 88 (OTG Descriptor) ..1-27
1.7.3.4 Interrupt 84 (OTG_SRP_INT) ..1-28

1.7.3.4.1 Software Interface..1-28
1.7.3.5 Interrupt 86 (REMOTE_WAKEUP_INT)...1-28

1.7.3.5.1 Software Interface..1-28
i

(Table of Contents)
 1.7.4 USB Host Interrupt Functions..1-28
1.7.4.1 Interrupt 114/115: HUSB_SIE1_INIT_INT/ HUSB_SIE2_INIT_INT...................1-29

1.7.4.1.1 Software Interface ...1-29
1.7.4.1.2 Example:..1-29

1.7.4.2 Interrupt 116: HUSB_RESET_INT...1-29
1.7.4.2.1 Software Interface ...1-30
1.7.4.2.2 Example...1-30

 1.7.5 USB Peripheral Interrupt Functions...1-30
1.7.5.1 Interrupt 113: SUSB_INIT_INT ..1-31

1.7.5.1.1 Software Interface ...1-31
1.7.5.1.2 Example...1-31

1.7.5.2 Interrupt 90,106: SUSB1_DEVICE_DESCRIPTOR_VEC,
SUSB2_DEVICE_DESCRIPTOR_VEC..1-32

1.7.5.2.1 Software Interface ...1-32
1.7.5.2.2 Example...1-33

1.7.5.3 Interrupt 91,107:SUSB1_CONFIGURATION_DESCRIPTOR_VEC,
SUSB2_CONFIGURATION_DESCRIPTOR_VEC1-35

1.7.5.3.1 Software Interface ...1-35
1.7.5.3.2 Example...1-36

1.7.5.4 Interrupt 92,108:SUSB1_STRING_DESCRIPTOR_VEC,
SUSB2_STRING_DESCRIPTOR_VEC..1-36

1.7.5.4.1 Software Interface ...1-36
1.7.5.4.2 Example...1-36

1.7.5.5 Interrupt 89,105:SUSB1_FINISH_INT, SUSB2_FINISH_INT............................1-37
1.7.5.5.1 Software Interface ...1-37
1.7.5.5.2 Example...1-37

1.7.5.6 Interrupt 82,98: SUSB1_STALL_INT, SUSB2_STALL_INT...............................1-37
1.7.5.6.1 Software Interface ...1-37

1.7.5.7 Interrupt 83,99: SUSB1_STANDARD_INT, SUSB2_STANDARD_INT.............1-37
1.7.5.7.1 Software Interface ...1-38
1.7.5.7.2 Example...1-39

1.7.5.8 Interrupt 80, 96: SUSB1_SEND_INT, SUSB2_SEND_INT
(Send data to USB SIE1,2 endpoint x respectively)1-39

1.7.5.8.1 Software Interface ...1-40
1.7.5.8.2 Example...1-41

1.7.5.9 Interrupt 81,97: SUSB1_RECEIVE_INT,
SUSB2_RECEIVE_INT (Receive data from USB endpoint x)1-44

1.7.5.9.1 Software Interface ...1-44
1.7.5.9.2 Example...1-46

1.7.5.10 Interrupt 85,101: SUSB1_VENDOR_INT, SUSB2_VENDOR_INT..................1-48
1.7.5.10.1 Software Interface ..1-48
1.7.5.10.2 Example...1-49

1.7.5.11 Interrupt 87,103: SUSB1_CLASS_INT, SUSB2_CLASS_INT.........................1-50
1.7.5.11.1 Software Interface ...1-50
1.7.5.11.2 Example...1-51

1.7.5.12 Interrupt 94,110:SUSB1_LOADER_INT, SUSB2_LOADER_INT...................1-52
ii Table of Contents

(Table of Contents)
1.7.5.12.1 Software Interface..1-52
1.7.5.12.2 Example...1-53

1.7.5.13 Interrupt 95,111:SUSB1_DELTA_CONFIG_INT,
SUSB2_DELTA_CONFIG_INT ...1-55

1.7.5.13.1 Software Interface..1-55
1.7.5.13.2 Example...1-55

 1.7.6 Interrupt 51-63 and 118-125 ..1-56
 1.7.7 Memory Functions ...1-56

1.7.7.1 Interrupt 76: REDO_ARENA ..1-56
1.7.7.2 Interrupt 69: Memory Data Pointer ...1-56

1.7.7.2.1 Software Interface..1-56
1.7.7.3 Interrupt 68: ALLOC_INT ...1-57

1.7.7.3.1 Software Interface..1-57
1.7.7.3.2 Example...1-57

1.7.7.4 Interrupt 75: FREE_INT ...1-57
1.7.7.4.1 Software Interface..1-57
1.7.7.4.2 Example...1-58

1.7.7.5 Interrupt 73: PUSHALL_INT...1-58
1.7.7.5.1 Software Interface..1-58
1.7.7.5.2 Example...1-58

1.7.7.6 Interrupt 74: POPALL_INT ...1-58
1.7.7.6.1 Software Interface..1-58
1.7.7.6.2 Example...1-59

1.7.7.7 Interrupt 77: HW_SWAP_REG (Swap register bank)1-59
1.7.7.7.1 Software Interface..1-59
1.7.7.7.2 Example...1-59

1.7.7.8 Interrupt 78: HW_REST_REG (Restore register bank)......................................1-60
1.7.7.8.1 Software Interface..1-60
1.7.7.8.2 Example...1-60

 1.7.8 BIOS Idle task functions ..1-60
1.7.8.1 Interrupt 70: IDLE_INT ...1-60

1.7.8.1.1 Software Interface..1-61
1.7.8.1.2 Example...1-61

1.7.8.2 Interrupt 71: IDLER_INT ..1-61
1.7.8.2.1 Example...1-62

1.7.8.3 Interrupt 72: INSERT_IDLE_INT..1-63
1.7.8.3.1 Software Interface..1-64
1.7.8.3.2 Example...1-64

 1.7.9 Debugging Support functions ..1-65
1.7.9.1 Interrupt 126-127 Reserved for Debugger ...1-65

 1.7.10 Serial EEPROM support ..1-65
1.7.10.1 Interrupt 64: 2-wire Serial EEPROM (from 256-byte to 2 KByte)1-65

1.7.10.1.1 Software Interface..1-66
1.7.10.2 Interrupt 65: 2-wire Serial EEPROM from (4 KByte to 64 KByte)1-68

 1.7.11 UART functions..1-68
Table of Contents iii

(Table of Contents)
1.7.11.1 Interrupt 66: UART_INT ...1-68
1.7.11.1.1 Software Interface ...1-69
1.7.11.1.2 Example...1-70

1.7.11.2 Interrupt 123: KBHIT ..1-70
1.7.11.2.1 Overview..1-70
1.7.11.2.2 Software Interface ...1-70
1.7.11.2.3 Example...1-70

Chapter 2. Link Control Protocol Firmware
 2.1 Introduction ...2-1

 2.1.1 Overview..2-1
 2.1.2 Scope ..2-1

 2.2 Detailed Design...2-2
 2.2.1 Architectural Outline ..2-2
 2.2.2 Transport Requirements..2-3
 2.2.3 BIOS ROM Code (LCP)...2-3

2.2.3.1 Data Structures and Variables for Port Command Processing............................2-3
2.2.3.2 Command Descriptions..2-4

Chapter 3. USB Host BIOS Specifications
 3.1 Introduction ...3-1

 3.1.1 Co-processor Mode ...3-1
 3.1.2 Stand-alone Mode ...3-2

 3.2 Functional Requirements ..3-2
 3.3 USB Host BIOS Overview...3-2

 3.3.1 Block Diagram ...3-2
3.3.1.1 HUSB_SIEx_INIT_INT...3-3
3.3.1.2 HUSB_RESET_INT ...3-4

 3.3.2 Flow Chart of USB Transfer ..3-4
 3.4 Software Interface Between HCD and BIOS...3-6

 3.4.1 TD Semaphore Address ..3-7
3.4.1.1 HUSB_SIEx_pCurrentTDPtr ..3-7
3.4.1.2 EOT and HUSB_pEOT ..3-7
3.4.1.3 HUSB_SIEx_pTDListDone_Sem ...3-8

 3.4.2 TD SIE Mailbox Message ..3-8
 3.5 TD List Data Structure...3-9

 3.5.1 BaseAddress (WORD: 0x00-01) ..3-9
 3.5.2 Port_Length (WORD: 0x02-03) ..3-10
 3.5.3 PID_EP (BYTE: 0x04) ...3-11
 3.5.4 DevAdd (BYTE: 0x05) ..3-12
 3.5.5 Control (BYTE: 0x06) ...3-12
 3.5.6 Status (BYTE: 0x07) ...3-13
 3.5.7 RetryCnt (BYTE: 0x08) ...3-14
iv Table of Contents

(Table of Contents)
 3.5.8 Residue (BYTE: 0x09) ...3-15
 3.5.9 NextTDPointer (WORD: 0x0A-0B) ..3-15

 3.6 Error Handling ...3-16
 3.7 Schedule Bus Transaction Times..3-18
 3.8 Detail Design ...3-19

 3.8.1 HUSB_SIEx_INIT_INT...3-19
3.8.1.1 Software Interface ..3-19
3.8.1.2 Example: ..3-19

 3.8.2 HUSB_RESET_INT ...3-19
3.8.2.1 Software Interface ..3-19
3.8.2.2 Example ...3-20
3.8.2.3 Flow Chart..3-20

Chapter 4. Slave Support Module Firmware
 4.1 Introduction..4-1

 4.1.1 Overview..4-1
 4.1.2 Scope...4-1

 4.2 Functional Requirements ..4-1
 4.3 Detailed Design ...4-4

 4.3.1 Endoint0 Processing Outline ...4-4
4.3.1.1 Behavior ...4-4
4.3.1.2 Architecture ..4-5

 4.3.2 Generic Endpoint Support ...4-6
4.3.2.1 Behavior ...4-6
4.3.2.2 Architecture ..4-7
4.3.2.3 Data Structures ..4-8
4.3.2.4 Code Structure ...4-9

 4.3.3 Reasons for Important Choices ...4-11

Chapter 5. HPI Transport Module
 5.1 Introduction..5-1

 5.1.1 Overview..5-1
 5.1.2 Scope...5-1

 5.2 Functional Requirements ..5-1
 5.3 Detailed Design ...5-1

 5.3.1 HPI General Description ...5-1
 5.3.2 HPI Signal Description...5-2
 5.3.3 Host DMA to/from EZ-Host/EZ-OTG Memory via HPI Port ...5-3
 5.3.4 HPI INIT Routine..5-4
 5.3.5 Host to EZ-Host/EZ-OTG MailBox Message ...5-4
 5.3.6 EZ-Host/EZ-OTG to Host MailBox Message ...5-4
 5.3.7 HPI TRANSFER DIAGRAMS FOR LCP..5-5
Table of Contents v

(Table of Contents)
5.3.7.1 COMM_RESET via HPI ...5-5
5.3.7.2 COMM_JUMP2CODE via HPI ...5-5
5.3.7.3 COMM_CALL_CODE via HPI..5-6
5.3.7.4 COMM_WRITE_CTRL_REG via HPI ..5-7
5.3.7.5 COMM_READ_CTRL_REG via HPI ..5-8
5.3.7.6 COMM_READ_XMEM via HPI ..5-9
5.3.7.7 COMM_WRITE_XMEM via HPI...5-10
5.3.7.8 COMM_EXEC_INT via HPI ...5-11

Chapter 6. SPI Transport Module Firmware
 6.1 Introduction ...6-1

 6.1.1 Overview..6-1
 6.1.2 Scope ..6-1

 6.2 Functional Requirements ..6-1
 6.3 Detailed Design...6-1

 6.3.1 General Outline ...6-2
 6.3.2 SPI INIT Routine..6-2
 6.3.3 SPI_RX_ISR..6-2
 6.3.4 SPI_Done_ISR ..6-2
 6.3.5 SPI_Send_Blk Routine ..6-3
 6.3.6 SPI_Rec_Blk Routine ..6-3
 6.3.7 SPI polling the Status ..6-3
 6.3.8 SPI TRANSFER DIAGRAMS FOR LCP..6-4

6.3.8.1 COMM_RESET via SPI ...6-4
6.3.8.2 COMM_JUMP2CODE via SPI ...6-5
6.3.8.3 COMM_CALL_CODE via SPI ..6-6
6.3.8.4 COMM_WRITE_CTRL_REG via SPI...6-7
6.3.8.5 COMM_READ_CTRL_REG via SPI ..6-8
6.3.8.6 COMM_WRITE_MEM via SPI ...6-9
6.3.8.7 COMM_READ_MEM via SPI ...6-10
6.3.8.8 COMM_WRITE_XMEM via SPI ...6-11
6.3.8.9 COMM_READ_XMEM via SPI...6-12
6.3.8.10 COMM_EXEC_INT via SPI..6-13

Chapter 7. HSS Transport Module
 7.1 Introduction ...7-1

 7.1.1 Overview..7-1
 7.1.2 Scope ..7-1

 7.2 Functional Requirements ..7-1
 7.3 Detailed Design...7-1

 7.3.1 General Outline ...7-2
 7.3.2 HSS INIT Routine ..7-2
 7.3.3 HSS RX ISR ..7-2
vi Table of Contents

(Table of Contents)
 7.3.4 HSS_DONE_ISR...7-2
 7.3.5 HSS_SEND_BLOCK Routine..7-3
 7.3.6 HSS_RECEIVE_BLOCK Routine ..7-3
 7.3.7 HSS TRANSFER DIAGRAMS FOR LCP ..7-4

7.3.7.1 COMM_RESET via HSS..7-4
7.3.7.2 COMM_JUMP2CODE via HSS..7-5
7.3.7.3 COMM_CALL_CODE via HSS ..7-6
7.3.7.4 COMM_WRITE_CTRL_REG via HSS ...7-7
7.3.7.5 COMM_READ_CTRL_REG via HSS...7-8
7.3.7.6 COMM_WRITE_MEM via HSS..7-9
7.3.7.7 COMM_READ_MEM via HSS ...7-10
7.3.7.8 COMM_WRITE_XMEM via HSS ...7-11
7.3.7.9 COMM_READ_XMEM via HSS ...7-12
7.3.7.10 COMM_EXEC_INT via HSS ..7-13
7.3.7.11 COMM_CONFIG via HSS..7-14

Appendix A
Definitions...Appendix - 1

Appendix B
References ...Appendix - 3

Appendix C
Revision History ...Appendix - 5
Table of Contents vii

viii Table of Contents

List of Figures
 Figure 1-1. Overview ..1-3
 Figure 1-2. CY16 Memory Map ..1-6
 Figure 1-3. 2-wire Serial for up to 256 byte up to 2-KByte Connection ..1-66
 Figure 1-4. 2-wire Serial from 4K up to 64-KByte Connection ..1-66
 Figure 2-1. Link Control Protocol ..2-2
 Figure 3-1. Co-processor Mode ..3-1
 Figure 3-2. Block Diagram of USB Host BIOS ...3-3
 Figure 3-3. Flow Chart of USB Transfer ...3-5
 Figure 3-4. Time Domain Behavior ...3-6
 Figure 3-5. End Of Transfer Point ..3-8
 Figure 3-6. Error Handling Interface ...3-17
 Figure 3-7. Flow chart of HUSB_RESET_INT ..3-20
 Figure 4-1. Override-ability Dependency Stack ..4-3
 Figure 4-2. Control Transfer Handler State Diagram ..4-4
 Figure 4-3. Control Transfer Processing Architecture ..4-5
 Figure 4-4. Generic Endpoint Support Sequence Diagram ..4-7
 Figure 4-5. Generic Endpoint Support Architecture ..4-8
 Figure 4-6. Endpoint Processing Code Flow ..4-10
 Figure 5-1. EZ-Host/EZ-OTG Chip ...5-3
 Figure 5-2. COMM_RESET via HPI ...5-5
 Figure 5-3. COMM_JUMP2CODE via HPI ...5-5
 Figure 5-4. COMM_CALL_CODE via HPI ..5-6
 Figure 5-5. COMM_WRITE_CTRL_REG via HPI ..5-7
 Figure 5-6. COMM_READ_CTRL_REG via HPI ..5-8
 Figure 5-7. COMM_READ_XMEM ...5-9
 Figure 5-8. COMM_WRITE_XMEM via HPI ...5-10
 Figure 5-9. COMM_EXEC_INT via HPI ..5-11
 Figure 6-1. COMM_RESET via SPI ...6-4
 Figure 6-2. COMM_JUMP2CODE via SPI ...6-5
 Figure 6-3. COMM_CALL_CODE via SPI ..6-6
 Figure 6-4. COMM_WRITE_CTRL_REG via SPI ...6-7
 Figure 6-5. COMM_READ_CTRL_REG via SPI ..6-8
 Figure 6-6. COMM_WRITE_MEM via SPI ...6-9
 Figure 6-7. COMM_READ_MEM via SPI ...6-10
 Figure 6-8. COMM_WRITE_XMEM via SPI ...6-11
 Figure 6-9. COMM_READ_XMEM via SPI ...6-12
ix

(List of Figures)
 Figure 6-10. COMM_EXEC_INT via SPI ..6-13
 Figure 7-1. COMM_RESET via HSS ..7-4
 Figure 7-2. COMM_JUMP2CODE via HSS ..7-5
 Figure 7-3. COMM_CALL_CODE via HSS ..7-6
 Figure 7-4. COMM_WRITE_CTRL_REG via HSS ...7-7
 Figure 7-5. COMM_READ_CTRL_REG via HSS ...7-8
 Figure 7-6. COMM_WRITE_MEM via HSS ..7-9
 Figure 7-7. COMM_READ_MEM via HSS ...7-10
 Figure 7-8. COMM_WRITE_XMEM via HSS ...7-11
 Figure 7-9. COMM_READ_XMEM via HSS ...7-12
 Figure 7-10. COMM_EXEC_INT via HSS ..7-13
 Figure 7-11. COMM_CONFIG via HSS ..7-14
x List of Figures

List of Tables
Table 1-1. Memory Map . 1-5
Table 1-2. Boot Control Pins . 1-8
Table 1-3. Commands Used for each Transport . 1-9
Table 1-4. Hardware Interrupt Table . 1-13
Table 1-5. Interrupts not used by the BIOS . 1-15
Table 1-6. Hardware Interrupt Table . 1-16
Table 1-7. Software Interrupt Table . 1-19
Table 3-1. TD List Data Structure . 3-9
Table 3-2. BaseAddress (WORD: 0x00-01) . 3-9
Table 3-3. Port_Length (WORD: 0x02-03) . 3-10
Table 3-4. PID_EP (BYTE: 0x04) . 3-11
Table 3-5. DevAdd (BYTE: 0x05) . 3-12
Table 3-6. Control (BYTE: 0x06) . 3-12
Table 3-7. Status (BYTE: 0x07) . 3-13
Table 3-8. RetryCnt (BYTE: 0x08) . 3-14
Table 3-9. NextTDPointer (WORD: 0x0A-0B) . 3-15
Table 4-1. Standard Command (Chapter 9) Requirements . 4-2
Table 4-2. Vendor Request Requirements . 4-2
Table 4-3. Generic Frame (1/ Send/Receive Request) Used by Generic Endpoint Processing. . . . 4-8
xi

xii List of Tables

Chapter 1 BIOS Interface

1.1 Introduction

1.1.1 Overview

Cypress Semiconductor offers the industry’s broadest portfolio of USB solutions. EZ-Host
(CY7C67300) and EZ-OTG (CY7C67200) are two of Cypress’s dual-role host/peripheral control-
lers. Although these devices are tailored toward different applications, they rely on many common
core blocks. As a result they share the same microprocessor, the CY16 processor. Embedded
within the internal ROM of these devices is a Basic Input Output System (BIOS) that is also com-
mon to both devices. This document describes the BIOS operation and software interrupts.

1.1.2 General Notes

This specification assumes that you have some knowledge of the CY16 assembly language. You
should read and understand the EZ-Host or EZ-OTG datasheet before attempting to read this doc-
ument.

All numbers described in this document are marked as decimal numbers unless prefixed ("0x" for
hexadecimal, "0b" for binary) and unless otherwise indicated, the contents of registers R0, R1, R2
and R8 may be lost.

Unless otherwise mentioned, if a register or memory location used as a pointer is zero, it is used as
a NULL pointer, meaning that it does not point at anything.

If the specific USB controller that the BIOS is running on does not have the hardware associated
with a particular software interrupt, the BIOS will return without effect.
Chapter 1. BIOS Interface Page 1-1

BIOS User’s Manual
1.2 Development Utilities

1.2.1 GNU Development Tools from RedHat

In order to support firmware development for the CY16 processor, Cypress provides a complete
development system, including a GUI based Integrated Development Environment, Assembler, C
Compiler, Linker, Debugger (GDB) and Binary Tools. For detailed information on the capabilities
and use of this system, please refer to the documentation accompanying the tools. This develop-
ment system may be used for creation of new application specific firmware, or to develop code
that will replace or supplement functionality provided by the BIOS.

1.3 BIOS Overview

The BIOS consists mostly of interrupt service routines and a main/start-up routine. Other routines
are typically not available to the user. Users should only use software vectors and not call arbitrary
BIOS functions since these may move in newer versions of the BIOS.
Page 1-2 BIOS User’s Manual v1.1

 Figure 1-1 illustrates various BIOS layers and components.

Figure 1-1. Overview

STARTUP

EEPROM UART SSCAN SUSB HUSBHSS HPI SPI

BOOT Layer

Functional Layer

SW INT Layer

HW INT Layer

Services

SW
Interrupt
Vector
Table

INT Command

EEPROM

IDLE

PUSH/POP

ALLOC/FREE

REG SWAP

SSCAN

SUSB

HUSB

UART

ISR Groups

DEBUG

HW
Interrupt
Vector
Table

HW Interrupt
or INT Command

TIMERS

UART

SPI

HSS

HPI

SIE1 - Host

SIE1 - Slave

SIE2 - Host

ISR Groups

SIE2 - Slave

GPIO

IDE

SIE1 - OTG

SIE1
EP0-EP7

SIE2
EP0-EP7

SW ISR's

HW ISR's

OTG (HNP/SRP)
Chapter 1. BIOS Interface Page 1-3

BIOS User’s Manual
1.3.1 CY16 Memory Map

The total memory space directly addressable by the CY16 processor is 64 Kbytes. Program, data,
and I/O space are contained within a 64 Kbyte address space. The program code or data can be
stored in internal RAM, external RAM, or external ROM.

The EZ-Host device allows extended data or program code to be stored in external DRAM, SRAM,
or ROM.The total size of extended memory can be up to 2 MByte. The CY16 processor can
access extended memory via two address windows of 0x8000-0x9FFF and 0xA000-0xBFFF. The
page-register 0xc018 is used to control the address window 0x8000-0x9FFF and the page register
0xC01A is used to control the address window of 0xA000-0xBFFF.

The HSS/HPI/SIE1/SIE2/SPI/IDE DMA engines ONLY transfer data between the support hard-
ware to internal RAM (IRAM) and/or internal ROM (IROM). Setting up DMA to external memory
space may result in internal RAM data corruption because the hardware does not check the
address range. For example, setting up a DMA transfer to an external memory address like
0x8000 might result in a DMA transfer into address 0x0000.

The EZ-Host device provides a 16-bit memory interface that can support a wide variety of external
DRAM, RAM, and ROM devices. At boot-up time, the BIOS attempts to detect 8-bit/16-bit external
RAM and external ROM. For external RAM that is mapped to 0x4000-0x7FFF, BIOS attempts to
check the size (8-bit/16-bit) via a write followed by a read verify. If there is SRAM connected to this
BUS, it will allocate this RAM to become part of the BIOS memory space. If there is no SRAM con-
nected to the bus, it will result in an 8-bit setting in the register 0xC03A.

If external ROM is mapped to the address 0xC100, which has a valid signatures scan (i.e. 0xC3B6
or 0xCB36), the BIOS will allow a boot-up from the external ROM code. BIOS can also auto detect
booting up from an 8-bit external ROM or 16-bit external ROM using the special scan signatures at
location 0xC100.

The BIOS will not setup the external memory space. The decision to connect either SRAM or
ROM is left to the user.

The EZ-Host/EZ-OTG memory space is byte addressable. Table 1-1 shows how memory is
divided (1k = 1024 bytes).
Page 1-4 BIOS User’s Manual v1.1

NOTES:
1. If code is contained in the Extended Memory Pages, only 32K is usable because the CY16 RISC Core has 16-bit

address generation.
2. If used for ROM space total ROM space is 16K+7936.
3. The external memory interfaces are only available on the EZ-Host and not on EZ-OTG

Figure 1-2 illustrates how memory is organized. Each external memory space can be 8- or 16-bits
wide, and can be programmed to have up to seven wait states.On power-up, the BIOS sets all the
default external memory wait state at 7-wait states (i.e. Register 0xC03A will be initialized to
0x27F7).

Note: Each memory wait state results in an extra 20.8ns added to the read/write cycle.

Table 1-1. Memory Map

Function Address Memory size Note

Internal RAM
Hardware Interrupts
Software Interrupts
Primary Register Bank
Swapped Register Bank
HPI Interrupt and Mailbox
LCP CMD Processor Variables
USB Control Registers
Slave Setup Packet
BIOS Stack
USB Slave and OTG Variables
User Code/Data Space (Internal RAM)

0x0000 – 0x3FFF
0x0000 – 0x007F
0x0080 – 0x00FF
0x0100 – 0x010F
0x0120 – 0x013F
0x0140 – 0x0148
0x014A – 0x01FF
0x0200 – 0x02FF
0x0300 – 0x030F
0x0310 – 0x03FF
0x0400 – 0x04A2
0x04A4 – 0x3FFF

16 KBytes

External RAM 0x4000 – 0x7FFF 16 KBytes 3

Extended Page 1
 DRAM/SRAM/ROM

0x8000 – 0x9FFF 8 KBytes 1, 2, 3

Extended Page 2
 DRAM/SRAM/ROM

0xA000 – 0xBFFF 8 KBytes 1, 2, 3

Memory Mapped Registers 0xC000 – 0xC0FF 256 Bytes

External ROM/External SRAM 0xC100 – 0xDFFF 7,936 Bytes 3

Internal ROM 0xE000 – 0xFFFF 8K Bytes
Chapter 1. BIOS Interface Page 1-5

BIOS User’s Manual
Figure 1-2. CY16 Memory Map

Note: The external memory interface is only available on the EZ-Host device.

HW INT's

SW INT's

Primary Registers

Swap Registers

Internal ROM
BIOS (8K)

USER CODE
~15KB

EXT RAM (8K)
0x4000

8K Extended
Memory Page 1

DRAM/SRAM/ROM

8K Extended
Memory Page 2

DRAM/SRAM/ROM

0x8000

0xA00
0

EXT ROM0xC100

Internal Memory

External Memory

Control Registers

BIOS stack

0x120-- 0x13F

0x100-- 0x11F

0x000-- 0x0FF

0x140-- 0x148 HPI Interrupt and
Mailbox

LCP CMD Processor
Variables

0x14A-- 0x1FF

0x200-- 0x2FF USB Registers

Slave Setup Packet0x300-- 0x30F

0x310-- 0x3FF

USB slave and OTG0x400-- 0x4A2

0x4A4-- 0x3FFF

0xC000-- 0xC0FF

0xE000-- 0xFFFF
Page 1-6 BIOS User’s Manual v1.1

1.3.2 BIOS Initialization Process

On reset, the BIOS performs the following:

• Hardware reset — Sets the speed control register to divide by 16 ([0xC008] = 0x000F).
This provides the CY16 processor with a 3 MHz clock. Sets the program counter to
0xFF00.

• Jumps to 0xE000, the start of BIOS ROM code.

• Sets call stack pointer (r15) to 0x400.

• Sets the speed control register to zero ([0xC008] = 0x0) and disables global interrupt.

• The BIOS then sets the external memory control register for a 16-bit XROM and 16-bit
XRAM five wait states ([0xC03A] = 0x2777).

• If an external ROM contains the pattern 0xCB36 in location 0xC100, the BIOS immediately
jumps to location 0xC102.

• The BIOS then tests ROM at location 0xC100 for the pattern 0xC3B6 in 8-bit mode. If the
external ROM shows only the pattern 0xB6, then bit 7 of the external memory control reg-
ister (0xC03A) is set to one for 8-bit operation. In the EZ-OTG device (i.e., the 48-pin
package) the BIOS sets up from 8-bit ROM mode to GPIO mode, if the BIOS does not
detect any valid scan signatures.

• Sets 0xC018 = 0 (page0: from 0x8000-0x9FFF) and 0xC01A = 1 (page1: from 0xA000-
0xBFFF).

• Tests and enables RAM at location 0x6000 for 8- or 16-bit operation as appropriate.

• Sets the global interrupt enable register (0xC00E) to zero.

• Initializes hardware/software interrupt vectors.

• Initializes arena information (memory management).

• Initializes hardware for serial EEPROM and UART

• Initializes software for LCP idle task and USB idle task.

• Performs BOOT CONTROL (see Section 1.3.3, "Boot Control").

• Performs SCAN_INT if data at ROM address 0xC100 = 0xC3B6.

• Enters execution idle tasks and waits for interrupts.
Chapter 1. BIOS Interface Page 1-7

BIOS User’s Manual
1.3.3 Boot Control

Two pins (GPIO [30:31]) on the EZ-Host and EZ-OTG devices are used for boot control. The boot
control is used to configure the device for Host or peripheral operation and to select a communica-
tion port for connection to an external processor.

1.3.3.1 SIE1 Host/Peripheral USB Initialization
GPIO 29 (OTG ID pin) is used to select either Host USB initialization or peripheral USB initializa-
tion.

1.3.3.2 Co-processor and Stand-alone Boot Control
EZ-Host and EZ-OTG devices can be used in two basic configurations: stand-alone mode and co-
processor mode. In stand-alone mode the chip is not connected to an external CPU of any kind.
Application specific firmware must be run on the internal processor. One option for loading this
code is to use an external EEPROM, which is selected using the boot control pins.

In co-processor mode the chip is connected to an external master via one of three possible inter-
faces: Host Processor Interface (HPI), High Speed Serial (HSS), or Serial Peripheral Interface
(SPI). The BIOS uses the boot control pins to determine the default port. This port is used to load
code and data, and is monitored for Link Control Protocol (LCP) commands.

GPIO pins 30 and 31 are used as the boot control pins. The possible configurations are described
below:

Note:
* In co-processor mode all USB ports are disabled at power-up and must be turned on the

external processor using LCP commands. For example, in peripheral mode the chip will not
respond to any USB commands from the host until the ports have been enabled.

* In stand-alone mode, the USB-PortC always goes into full speed peripheral mode, which is
dedicated for the debugger usage. The USB-PortA goes into peripheral mode if GPIO29 is
high, and goes into host mode when GPIO29 is low.

* In stand-alone mode, users can use the serial EEPROM to over-ride the default mode for
both USB-PortA and USB-PortC. In this mode, BIOS will use SCAN_INT so user applica-
tions can be loaded into RAM from the EEPROM.

Table 1-2. Boot Control Pins

GPIO 30 GPIO 31 Mode Boot Port and Baud

0 0 co-processor HPI

0 1 co-processor HSS GPIO mode, Baud = 115.2K

1 0 co-processor SPI GPIO mode

1 1 stand-alone EEPROM
Page 1-8 BIOS User’s Manual v1.1

1.4 Link Control Protocol (LCP)

The link control protocol allows an external processor to have full access and control over the EZ-
Host/EZ-OTG devices. The boot control determines which interface (HPI/HSS/SPI) will be enabled
for receiving LCP commands on power-up. The LCP commands are common for all interfaces but
the communication protocol varies slightly between them due to capability differences of the inter-
faces. This section describes the methods used to access the EZ-Host/EZ-OTG devices via each
of the three interfaces.

The BIOS does not support queuing of LCP commands. Only one LCP command may be exe-
cuted at one time.

The following table shows which LCP commands are available and useful for each port.

Note: *BIOS returns COMM_ACK ONLY.

1.4.1 LCP Overview for Host Processor Interface (HPI)

Refer to Chapter 5, "HPI Transport Module" for a complete discussion on this topic.

HPI is a dual channel interface. By default, the BIOS uses the HPI direct memory access for mem-
ory read/write of data, and the mailbox for LCP commands and responses.

LCP commands are always sent in a 16-bit word, and a 16-bit response is expected. A sequence
diagram of each LCP command is given in Chapter 5.

Note: Unless specifically mentioned, all responses are either COMM_ACK or COMM_NAK.

Table 1-3. Commands Used for each Transport

LCP Command HPI
Transport

HSS
Transport

SPI
Transport

COMM_RESET Yes Yes Yes
COMM_JUMP2CODE Yes Yes Yes
COMM_CALL_CODE Yes Yes Yes
COMM_EXEC_INT Yes Yes Yes
COMM_READ_CTRL_REG Yes Yes Yes
COMM_WRITE_CTRL_REG Yes Yes Yes
COMM_READ_MEM Yes* Yes Yes
COMM_WRITE_MEM Yes* Yes Yes
COMM_READ_XMEM Yes Yes Yes
COMM_WRITE_XMEM Yes Yes Yes
COMM_CONFIG Yes* Yes Yes*
Chapter 1. BIOS Interface Page 1-9

BIOS User’s Manual
1.4.1.1 Programming Overview
HPI functionality is such that the following operations should happen for each LCP Command that
is issued:

• Any data required for the LCP CMD is sent via HPI DMA (i.e., COMM_CODE_ADDR).

• The LCP command is then sent via HPI mailbox.

• The HPI status register is polled (or an ISR is used) to wait for mailbox response back
from the BIOS.

• The response is then read from the mailbox.

• Any additional data from CMD execution is read using HPI DMA (i.e.,
COMM_CTRL_REG_DATA).

1.4.2 LCP Overview for High Speed Serial (HSS)

Refer to Chapter 7, "HSS Transport Module" for complete details on this topic.

HSS is a full-duplex interface. By default, the BIOS sets up the HSS port as a simple 2-wire inter-
face with no hardware or software handshaking.

LCP commands are always sent in an 8-byte packet. This packet contains the 16-bit LCP com-
mand and in some cases additional data for the command (like address and length of data to fol-
low). When the Host sends down a command, the Host must be ready to receive the resultant data
via an ISR.

A sequence diagram of each LCP command is given in Chapter 7.

Note: The external host processor is in full control of the interface as a master. The Host must give
time to the BIOS in between sending LCP commands. The Host should wait at least 30 microsec-
onds between sending a new command packet. While changing BAUD rate commands via the
COMM_CONFIG, the Host must wait at least 100 microseconds before sending any new com-
mands with the new baud rate.
Page 1-10 BIOS User’s Manual v1.1

bool hss_xfer(char *cmd; int len; char *buf)
{

int i, stat;
bool data_wr=FALSE;
if (len>2048) return FALSE; // (*) hss HW support upto 1024-words
for (i=0; i<8; i++)

HSS_Write_byte(cmd[i]); // (8-byte commands) no delay here
// Read_ACK/NAK status:
stat=HSS_Read_byte();
stat = (HSS_Read_byte() << 8) + stat;
i = (cmd[0] + (cmd[1]<<8));
switch (i)
{
case COMM_WRITE_XMEM:
case COMM_WRITE_MEM: data_wr = TRUE;
}
if (len > 0)
{

if (data_wr) for (i=0; i<len; i++) HSS_Write_byte(buf[i]);
else for (i=0; i<len; i++) buf[i] = HSS_Read_byte();

}
if (i==COMM_CONFIG) Delay_100us() // requires for change baud rate
else Delay_30us(); // between LCP need this delay
return TRUE;

}

* The HSS hardware transfer length only supports up to 2048 bytes, i.e., 1024 words.
Chapter 1. BIOS Interface Page 1-11

BIOS User’s Manual
1.4.3 LCP Overview for Serial Peripheral Interface (SPI)

Refer to Chapter 6, "SPI Transport Module Firmware" for complete details on this topic.

In SPI mode the EZ-Host or EZ-OTG device acts as an SPI Slave to the external host. The SPI
connection requires a more detailed protocol because it is a master driver, synchronous, half-
duplex interface. Hence the master must poll for the data after an LCP command is issued or it
must use an additional hardware interrupt to notify the Host that data is ready. The BIOS supports
both modes of communication. In the SPI mode, the GPIO24 line can be used as the interrupt line
to the external processor, if the application avoids polling the COMM_ACK status.

Note: The external host processor is in full control of the interface as a master. The Host must give
time to the BIOS in between sending LCP commands and reading responses. The Host should
wait at least 100 microseconds after sending a CMD packet before attempting to poll the
response. Also, after receiving a response the host should wait 100 microseconds before issuing
another CMD packet. For example:

bool spi_xfer(char *cmd; int len; char *buf)
{

int i, stat;
bool data_wr=FALSE;
if (len>1024) return FALSE; // (*) spi HW support upto 512-words
for (i=0; i<8; i++)

SPI_Write_byte(cmd[i]); // (8-byte commands) no delay here
// Read_ACK/NAK status:
do
{

Delay_100us();
stat=SPI_Read_byte();

} while (stat == 0xff);
stat = (SPI_Read_byte() << 8) + stat;
i = (cmd[0] + (cmd[1]<<8));
switch (i)
{
case COMM_WRITE_XMEM:
case COMM_WRITE_MEM: data_wr = TRUE;
}
if (len > 0)
{

if (data_wr) for (i=0; i<len; i++) SPI_Write_byte(buf[i]);
else for (i=0; i<len; i++) buf[i] = SPI_Read_byte();

}
Delay_100us(); // between LCP need this delay
return TRUE;

}

* The SPI hardware transfer length only support up to 1024-byte i.e. 512 word.
Page 1-12 BIOS User’s Manual v1.1

1.5 Hardware Interrupts

There are 48 hardware interrupt vectors for the EZ-Host/EZ-OTG devices. The only real difference
between a hardware interrupt and a software interrupt is the fact that a hardware interrupt is trig-
gered by an event in hardware. This may seem obvious, but it is important to understand that hard-
ware interrupts can be called with the INT instruction the same way as software interrupts are, and
any reserved or free hardware interrupts can be used as a software interrupt since there is no
hardware stimulus associated with it. The EZ-Host/EZ-OTG hardware interrupt vectors are listed in
Table 1-4.

Table 1-4. Hardware Interrupt Table

Interrupt
Number

Vector
Address Interrupt Type Note

0 0x00 Timer0 (free for developer) 2
1 0x02 Timer1 (free for developer) 2
2 0x04 GP IRQ0 (free for developer) 2
3 0x06 GP IRQ1 (free for developer) 2
4 0x08 UART Tx (reserved for debugger) 1
5 0x0A UART Rx (reserved for debugger) 1
6 0x0C HSS DMA Done (reserved for LCP) 1
7 0x0E HSS Rx Full (reserved for LCP) 1
8 0x10 IDE DMA Done (free for developer) 3
9 0x12 Reserved for future hardware 4

10 0x14 HPI Mailbox RX Empty (reserved for LCP) 1
11 0x16 HPI Mailbox TX Full (reserved for LCP) 1
12 0x18 SPI Tx (reserved for LCP) 1
13 0x1A SPI Rx (reserved for LCP) 1
14 0x1C SPI DMA Done (reserved for LCP) 1
15 0x1E OTG ID / VBUS Valid (free for developer) 3
16 0x20 SIE1 Host Done (reserved for BIOS) 1
17 0x22 SIE1 Host SOF (reserved for BIOS) 1
18 0x24 SIE1 Host Ins/Remove (free for developer) 3
19 0x26 Reserved for future hardware 4
20 0x28 SIE1 Peripheral Reset (reserved for BIOS) 1
21 0x2A SIE1 Peripheral SOF (reserved for BIOS) 1
22 0x2C Reserved for future hardware 4
23 0x2E Reserved for future hardware 4
24 0x30 SIE2 Host Done (reserved for BIOS) 1
25 0x32 SIE2 Host SOF (reserved for BIOS) 1
Chapter 1. BIOS Interface Page 1-13

BIOS User’s Manual
NOTES:
1. These hardware interrupt vectors are reserved for internal BIOS usage. Users should not attempt to overwrite these

functions.
2. These hardware interrupt vectors are not initialized.
3. These hardware interrupt vectors are initialized with empty ISR subroutine
4. These hardware interrupt vectors are reserved for future hardware expansion. Users should not use these vectors

All these vector interrupts are read/write accessible. Users can overwrite these default interrupt
vectors by replacing their interrupt service subroutine. Example 1, “Modify Timer 1 Interrupt Vec-
tor” demonstrates how you can replace the hardware interrupt.

Example 1: Modify Timer 1 Interrupt Vector.

Initialize:
mov [0x0002],Timer1_isr ; New Timer1 ISR
or [0xc00e],2 ; enable timer1 interrupt
…
ret

26 0x34 SIE2 Host Ins/Remove (free for developer) 3
27 0x36 Reserved for future hardware 4
28 0x38 SIE2 Peripheral Reset (reserved for BIOS) 1
29 0x3A SIE2 Peripheral SOF (reserved for BIOS) 1
30 0x3C Reserved for future hardware 4
31 0x3E Reserved for future hardware 4
32 0x40 SIE1 Endpoint 0 Interrupt (reserved for BIOS) 1
33 0x42 SIE1 Endpoint 1 Interrupt (reserved for BIOS) 1
34 0x44 SIE1 Endpoint 2 Interrupt (reserved for BIOS) 1
35 0x46 SIE1 Endpoint 3 Interrupt (reserved for BIOS) 1
36 0x48 SIE1 Endpoint 4 Interrupt (reserved for BIOS) 1
37 0x4A SIE1 Endpoint 5 Interrupt (reserved for BIOS) 1
38 0x4C SIE1 Endpoint 6 Interrupt (reserved for BIOS) 1
39 0x4E SIE1 Endpoint 7 Interrupt (reserved for BIOS) 1
40 0x50 SIE2 Endpoint 0 Interrupt (reserved for BIOS) 1
41 0x52 SIE2 Endpoint 1 Interrupt (reserved for BIOS) 1
42 0x54 SIE2 Endpoint 2 Interrupt (reserved for BIOS) 1
43 0x56 SIE2 Endpoint 3 Interrupt (reserved for BIOS) 1
44 0x58 SIE2 Endpoint 4 Interrupt (reserved for BIOS) 1
45 0x5A SIE2 Endpoint 5 Interrupt (reserved for BIOS) 1
46 0x5C SIE2 Endpoint 6 Interrupt (reserved for BIOS) 1
47 0x5E SIE2 Endpoint 7 Interrupt (reserved for BIOS) 1

Table 1-4. Hardware Interrupt Table (Continued)

Interrupt
Number

Vector
Address Interrupt Type Note
Page 1-14 BIOS User’s Manual v1.1

Timer1_isr:
push [0xc000] ; push the flags register
mov [0xc012],30000 ; reload timer 1
…
pop [0xc000] ; Restore flags
sti ; enable interrupts
ret ; return

1.5.1 BIOS Hardware Interrupt Usage

Most hardware interrupts are used by the BIOS. The user can override these ISRs but care must
be taken.

1.5.1.1 Interrupts Not Used by the BIOS
The following interrupts are not used by the BIOS and can be utilized by the developer.

NOTE: Interrupt 15 is available to implement USB On-The-Go support

Table 1-5. Interrupts not used by the BIOS

Interrupt
Number Interrupt Name Notes

0 Timer0

1 Timer1

2-3 GPIO IRQ0 and GPIO IRQ1

8 IDE DMA Done

15 OTG ID / VBUS Valid 1

18 SIE1 Host Insert/Remove

26 SIE2 Host Insert/Remove
Chapter 1. BIOS Interface Page 1-15

BIOS User’s Manual
1.5.1.2 Interrupts Used by the BIOS
The following interrupts are used by the BIOS.

Table 1-6. Hardware Interrupt Table

Interrupt
Number Interrupt Name Notes

4 UART Tx ISR: transmits characters from the software 16-byte FIFO
Note: Overriding effects tool support over UART

5 UART Rx ISR: receives characters and store into the software 16-
byte FIFO.
Note: Overriding effects tool support over UART

6 HSS DMA Done ISR: Used by HSS Transport to support LCP
7 HSS Rx Full ISR: Used by HSS Transport to support LCP
9 Reserved Reserved for future HW

10 HPI Mailbox TX Empty ISR: Used by HPI Transport to support LCP
11 HPI Mailbox RX Full Not used: Reserved for BIOS
12 SPI Tx Not used: Reserved for BIOS
13 SPI Rx ISR: Used by SPI Transport to support LCP
14 SPI DMA Done ISR: Used by SPI Transport to support LCP
16 SIE1 Host Done ISR: services a single packet via the Transfer Descriptor

(TD). It will post the message to the HPI mailbox register
0x144 with 0x1000 after all the TD list items are serviced.

17 SIE1 Host SOF ISR: services the TD list that supply from the application.
As soon as the TD is not empty, it will start TD transaction.

20 SIE1 Peripheral Reset ISR: enter this ISR after 5us of the falling edge of the
USB_RESET. This interrupt will call the SUSB1_INIT_INT
and will post the message to the HPI mailbox register
0x144 with value 0x100

21 SIE1 Peripheral SOF ISR: services for every 1ms SOF detect from USB Host.
After second SOF detection, it will send a message to HPI
mailbox register 0x144 with value 0x200. After detecting
seven consecutive missing SOFs, it will set the value
0x800 to the HPI mailbox register 0x144

24 SIE2 Host Done ISR: services a single packet via the Transfer Descriptor
(TD). It will post the message to the HPI mailbox register
0x148 with 0x1000 after all the TD list items are serviced.

25 SIE2 Host SOF ISR: services the TD list that supply from the application.
As soon as the TD is not empty, it will start TD transaction.
Page 1-16 BIOS User’s Manual v1.1

28 SIE2 Peripheral Reset ISR: enter this ISR after 5us of the falling edge of the
USB_RESET. This interrupt will call the SUSB2_INIT_INT
and will post the message to the HPI mailbox register
0x148 with value 0x100

29 SIE2 Peripheral SOF ISR: services for every 1ms SOF detect from USB Host.
After second SOF detection, it will send a message to HPI
mailbox register 0x148 with value 0x200. After detecting
seven consecutive missing SOFs, it will set the value
0x800 to the HPI mailbox register 0x148

32 SIE1 Endpoint0 ISR: services USB full/low speed enumeration in portA,
which defined by the SUSB_INIT_INT. It handles retry
when detect any ERROR in the USB bus. It also supports
RedHat debugger/QTOOL and services the
SUSB1_SEND_INT + SUSB1_RECEIVE_INT. It will set
the bit0 of the HPI mailbox register 0x144 for every
SUSB1_SEND_INT.

32-39 SIE1 Endpoint 1-7 Interrupt ISR: This interrupt supports the SUSB1_SEND_INT and
SUSB1_RECEIVE_INT. It handles retry when it detects an
ERROR in the USB BUS. After the transfer of data that
defines this interface is complete, it will set bits 1-7 in the
HPI mailbox register 0x144.

40 SIE2 Endpoint0 ISR: services USB full/low speed enumeration in portA,
which defined by the SUSB_INIT_INT. It handles retry
when detect any ERROR in the USB bus. It also supports
the Red Hat debugger and services the
SUSB2_SEND_INT + SUSB2_RECEIVE_INT. It will set
the bit0 of the HPI mailbox register 0x148 for every
SUSB2_SEND_INT.

41-47 SIE2 Endpoint 1-7 Interrupt ISR: This interrupt supports the SUSB2_SEND_INT and
SUSB2_RECEIVE_INT. It handles retry when detect
ERROR in the USB BUS. After the transfer of data that
defines this interface is complete, it will set bits 1-7 in the
HPI mailbox register 0x148.

Table 1-6. Hardware Interrupt Table (Continued)

Interrupt
Number Interrupt Name Notes
Chapter 1. BIOS Interface Page 1-17

BIOS User’s Manual
1.6 Debugging Tools support

The BIOS supports the debugger via the following interfaces:

UART: Default baud rate = 28800, 8-bit, no-parity, 1 stop-bit, flow control: none
The UART port will be used by the debugger

USB-portC will be used by the debugger.

HPI/HSS/SPI via LCP. The debugger software does not support debugging over these
interfaces. Users will make use of these interfaces for their application development.

Note: USB-portA can also be used for the debugger, when it is configured as the peripheral. In co-
processor mode, both USB-portA and USB-portC will not be available to the debugger. Only the
UART will be available in the EZ-Host chip because of design requirements.

Note: In co-processor mode, the debugger on the USB ports can be enabled by calling the
SUSB_INIT_INT via the LCP interface in both EZ-Host and EZ-OTG devices.

Note: The UART and USB debugging ports are not available when the EZ-OTG chip is setup in
the HPI mode (co-processor mode) because HPI pins are shared with the UART pins. However,
the UART will be available when the EZ-OTG chip is setup in either HSS or SPI mode.

Note: The UART debugging port is available when the EZ-Host chip is setup in the HPI/HSS/SPI
mode.
Page 1-18 BIOS User’s Manual v1.1

1.7 Software Interrupts

The EZ-Host and EZ-OTG allocate address locations from 0x0060 to 0x00FE to software inter-
rupts. The software interrupt vectors are listed in Table 1-7.

Table 1-7. Software Interrupt Table

Interrupt
Number

Vector
Address Interrupt Type Notes

48 0x60 Reserved for LCP status message 1
49 0x62 Reserved for LCP asynchronous message 1
50 0x64 Reserved for future BIOS on OTG Variable Data: Default =

0 = OTG State
2

51-63 0x66-0x7F Free for developers 3,4
64 0x80 Two-wire serial EEPROM (from 256-byte to 2K-byte) 1
65 0x82 Two-wire serial EEPROM from (4k-byte to 16k byte) 1
66 0x84 UART_INT 1
67 0x86 SCAN_INT 1
68 0x88 ALLOC_INT 1
69 0x8A Variable Data Pointer: start of free memory 2
70 0x8C IDLE_INT 1
71 0x8E IDLER_INT 1
72 0x90 INSERT_IDLE_INT 1
73 0x92 PUSHALL_INT 1
74 0x94 POPALL_INT 1
75 0x96 FREE_INT 1
76 0x98 REDO_ARENA 1
77 0x9A HW_SWAP_REG 1
78 0x9C HW_REST_REG 1
79 0x9E SCAN_DECODE_INT 1
80 0xA0 SUSB1_SEND_INT 1
81 0xA2 SUSB1_RECEIVE_INT 1
82 0xA4 SUSB1_STALL_INT 1
83 0xA6 SUSB1_STANDARD_INT 1
84 0xA8 OTG_SRP_INT 1
85 0xAA SUSB1_VENDOR_INT (default=SUSB1_STALL_INT) 4
86 0xAC REMOTE_WAKEUP_INT 1
87 0xAE SUSB1_CLASS_INT (default=SUSB1_STALL_INT) 4
88 0xB0 Variable Data pointer: OTG descriptor 4
89 0xB2 SUSB1_FINISH_INT 1
Chapter 1. BIOS Interface Page 1-19

BIOS User’s Manual
NOTES:
1. These software vectors are used by the internal BIOS.
2. These vectors are used as the data pointers. Users should not execute code (i.e. JMP or INT) to these vectors.
3. These interrupt vectors are not initialized.
4. These interrupt vectors are free for developers

90 0xB4 Variable Data pointer: SUSB1 Device Descriptor. Default =
Cypress Device Descriptor

2,4

91 0xB6 Variable Data pointer: SUSB1Configuration Descriptor.
Default = Cypress Configuration Descriptor

2,4

92 0xB8 Variable Data pointer: SUSB1 String Descriptor. Default =
Cypress String Descriptor

2,4

93 0xBA Reserved for future BIOS 1
94 0xBC SUSB1_LOADER_INT 1
95 0xBE SUSB1_DELTA_CONFIG_INT 1
96 0xC0 SUSB2_SEND_INT 1
97 0xC2 SUSB2_RECEIVE_INT 1
98 0xC4 SUSB2_STALL_INT 1
99 0xC6 SUSB2_STANDARD_INT 1
100 0xC8 Reserved for future BIOS 1
101 0xCA SUSB2_VENDOR_INT (default: SUSB2_STALL_INT) 4
102 0xCC Reserved for future BIOS 1
103 0xCE SUSB2_CLASS_INT (default: SUSB2_STALL_INT) 4
104 0xD0 Reserved for future BIOS 1
105 0xD2 SUSB2_FINISH_INT 1
106 0xD4 Variable Data pointer: SUSB2 Device Descriptor. Default =

Cypress Device Descriptor
2,4

107 0xD6 Variable Data pointer: SUSB2Configuration Descriptor.
Default = Cypress Configuration

2,4

108 0xD8 Variable Data pointer:SUSB2 String Descriptor. Default =
Cypress String Descriptor

2,4

109 0xDA Reserved for future BIOS 1
110 0xDE SUSB2_LOADER_INT 1
111 0xE0 SUSB2_DELTA_CONFIG_INT 1
112 0xE2 Reserved for future BIOS on OTG_STATE_INT 1
113 0xE4 SUSB_INIT_NT 1
114 0xE6 HUSB_SIE1_INIT_INT 1
115 0xE8 HUSB_SIE2_INIT_INT 1
116 0xEA HUSB_RESET 1
117 0xEC KBHIT_INT 1

118- 125 0xEE-0xFA Free for developers 3,4
126- 127 0xFC-0xFF Reserved for debugger 3

Table 1-7. Software Interrupt Table (Continued)

Interrupt
Number

Vector
Address Interrupt Type Notes
Page 1-20 BIOS User’s Manual v1.1

1.7.1 Interrupt 48-49: LCP Message Subroutines

The BIOS uses these two interrupts for the lcp_idle task, so users should not modify these inter-
rupts. Note: LCP only supports the HPI/HSS/SPI hardware interfaces and is designed to work in
co-processor mode.

1.7.2 Signature SCAN Support

The signature scan support is a comprehensive control protocol that allows UART, serial EEPROM
(I2C), USB, and external ROM to interface to the BIOS. The design of this interface provides users
a consistent method to expand the capabilities of the BIOS, over-ride BIOS functions and support
a debugger interface.

At power-up, the BIOS will do a signature SCAN for the I2C (stand-alone mode) and external
ROM. After power-up, the BIOS will create two idle tasks, which are UART tasks and USB tasks
for monitoring the signature SCAN in real-time. Note: Both these tasks run concurrently, so both
debuggers can be executed at a same time. The BIOS reserves a background task for the UART/
USB via the uart_idle and usb_idle tasks. These background tasks call the SCAN interrupt for the
special signature word 0xC3B6 (not 0xCB36) from the UART/USB. All chip-access utilities and
debuggers use this command protocol.

The following functions are supported and subsequently described:

• SCAN_INT

• SCAN_DECODE_INT

1.7.2.1 Interrupt 67: SCAN_INT
The SCAN interrupt is used in conjunction with other software interrupts to allow loading and exe-
cuting of user code and data. During boot-up the BIOS scans the external ROM and serial
EEPROM (I2C) for a valid Scan Signature of 0xC3B6. If found, the Signature Scan Opcodes and
data are processed, allowing code and data to be moved into the CY16’s RAM space and exe-
cuted. As mentioned earlier, the debugging utilities use this system for low-level communication to
the EZ-Host or EZ-OTG devices. During run-time, BIOS will use the uart_idle and usb_idle back-
ground tasks to continuously scan the signature. So, these tasks need to be maintained (see the
STUB source code) and this requires correct use of the IDLE_INT.

Note: Interrupts will not be enabled until these scans have been completed.

During the BIOS boot-up, a special external ROM signature of 0xCB36 will cause the BIOS to jump
into the location following the signature for the entire BIOS override.
Chapter 1. BIOS Interface Page 1-21

BIOS User’s Manual
1.7.2.1.1 Software Interface
Entry:

R7: Contains the address of a subroutine that is called by this interrupt when the next byte is
required. This routine must:

• Return the byte in the lower half of R0 with the upper half cleared

• Leave R1, R2, R8, and R9 intact

Registers Usage: None.

Signature Data Structure Format:

dw 0xc3b6 Starting Signature

dw Length Length of data to follow, exclusive of signature, length, and opcode

db OpCode Type of action to take

db Data[] 1 to n bytes of data, depending on OpCode and length

Format of Data for each OpCode:

OpCode = 0x00: Write Data

dw Starting Address
db Data0..DataN

OpCode = 0x01: Write At Interrupt Vector

db Interrupt Vector Number
db Data0..DataN

OpCode = 0x02: Write Interrupt Service Routine

db Interrupt Vector Number
db Data0..DataN (see Note 1 below)

OpCode = 0x03: Fix-up (relocate) ISR Code

db Interrupt Vector Number
dw Offset0..OffsetN (see Note 2 below)

OpCode = 0x04: Jump to Absolute Address

dw Address

OpCode = 0x05: Call Absolute Address

dw Address

OpCode = 0x06: Call Interrupt

db Interrupt Number
Page 1-22 BIOS User’s Manual v1.1

OpCode = 0x07: Read Memory using Interrupt

db Interrupt Number
dw Interface Address (if interface needs an address)
dw Address of data to write
dw Length of data to write

OpCode = 0x08: Move Data using Interrupt

db Interrupt Number
dw initial address to write
db Data0..DataN to write using Interrupt

OpCode = 0x09: Write Configuration

db configuration address to write (a 0xc000 is added for the device address)
dw data to write to above address
db next configuration address
dw next data to write

dw 0xc3b6 if more data to follow
or dw 0000 if no more data

Note 1: If data is code, the code must be re-locatable, i.e., no calls or long jumps within the
code unless a fix-up is done (see Note 2).

Note 2: A fix-up is an offset to code that is assembled assuming a start point of zero. This off-
set should then have the real starting location added to it.

1.7.2.1.2 Example
BIOS Sample code for copying code and data from external ROM to external RAM starting at
address 0xC100.

;***
; scan external ROM
;***
scan_xrom:

mov r10,0xc100 ;XROM_BEGIN
mov r7,get_next_byte ;get next byte from external ROM
int SCAN_INT
ret

get_next_byte:
mov r0,b[r10++]
ret

In this example, the user creates a file called “sample1.asm”, which has the following header in the
external ROM that mapped to address 0xC100.
Chapter 1. BIOS Interface Page 1-23

BIOS User’s Manual
Example 2: Download code/data from external ROM to internal RAM at 0x500 and jump
to execute this code after finish downloading.

org 0xc100
IRAM equ 0x500 ;destination execute address inside IRAM

dw 0xC3B6 ;dummy signature for code alignment
dw 4
db 0 ;mov [0xc008],0
dw 0xc008 ;address = 0xc008
dw 0 ;data = 0

dw 0xC3B6 ;
dw (END-START)+2) ;Include the length+1byte alignment
db 0 ;Type 0x00 = Copy from external ROM to external RAM
dw IRAM ;Copy to external RAM starts at 0x500
reloc IRAM ;Relocate compiled symbols

START:
;User code. Beginning of program starts here
;Code and Data
…

END:
;The following sequence instructs the BIOS to execute
;the copied program.

Signature1:
dw 0xC3B6
dw 2 ;Length = 2
db 5 ;Type 0x05 = call the following location
dw IRAM ;Jump to IRAM code start
db 0 ;Stop Scan word

1.7.2.2 Interrupt 79: SCAN_DECODE_INT
Interrupt 67 calls interrupt 79 for function table decoding of the interrupt 67 calls. Interrupt 79 is
reserved for BIOS use.

1.7.2.2.1 Software Interface
Entry:

R7 pointer to get_next_byte subroutine

Registers Usage: R0, R8, R9

Return:

R0 = 0
Page 1-24 BIOS User’s Manual v1.1

Example: BIOS Listing of the SCAN_INT that call the SCAN_DECODE_INT

scan:
call scan_get_word
cmp r0,0xc3b6
jne scan_exit
call scan_get_word ; length
mov r2,r0
call r7 ; opcode
int SCAN_DECODE_INT
jmp scan

scan_exit:
xor r0,r0
ret

;***
; return r0 word data
;***
scan_get_word:

call r7 ; Uses Routine pointed by R7 to Read byte
push r0
call r7
shl r0,8 ; upper byte
or r0,[r15] ; r0 = r0 or pop(r0)
ret

1.7.3 OTG Interrupt Functions

The following functions are dedicated for the OTG design and subsequently described:

• OTG_STATE

• OTG_STATE_INT

• OTG Descriptor

• OTG_SRP_INT

• REMOTE_WAKEUP_INT

Note: These functions are not implemented in the current release of the BIOS and these interrupts
and variables are reserved for future BIOS.
Chapter 1. BIOS Interface Page 1-25

BIOS User’s Manual
1.7.3.1 Interrupt 50 (OTG_STATE)
The BIOS uses this location as the variable for the OTG state machine i.e., b_idle and a_idle state
machines from the On-The-Go (OTG) supplement to the USB 2.0 Specification. This variable will
be updated when users call the OTG_STATE_INT. The defined state will be shown as follows:

a_idle equ 0
a_wait_bcon equ 1
a_host equ 2
a_suspend equ 3
a_peripheral equ 4
a_wait_vfall equ 5
b_idle equ 6
b_peripheral equ 7
b_host equ 8

Note: This variable is used by the BIOS. Users should not write to this location.

1.7.3.2 Interrupt 112 (OTG_STATE_INT)
The BIOS supports both a_idle and b_idle state machines for USB-portA only. This interrupt pro-
vides support for Session Request Protocol (SRP) and Host Negotiation Protocol (HNP). The
BIOS controls and monitors all the low-level interface i.e. VBUS, OTG_ID, D+/D- pull-up/down,
VBUS pump charge, VBUS pull-up, VBUS-discharge and user’s request (i.e. a_bus_drop,
a_bus_req, b_bus_req etc.). The results of this interrupt will return the state transition from the
current to the next state that follow the OTG supplement to the USB 2.0 specification.

1.7.3.2.1 Software Interface
Entry:

R0 [15:0] bits are defined as follow:

a_bus_drop equ 0x0001 ;from application: A-device request bus drop
a_set_b_hnp_en equ 0x0002 ;from application: enable hnp
bus_req equ 0x0004 ;from application: for both a_bus_req & b_bus_req
a_suspend_req equ 0x0008 ;from application: A-device request bus suspend

b_do_srp equ 0x0010 ;from app: must call otg_srp then set this variable
b_hnp_en equ 0x0040 ;from app: Slave needs to detect the SET_FEATURE
b_speed equ 0x0080 ;from app: 0=full, 1=low

Registers Usage: None.

Return:

R0 = OTG_STATE (location at address 50*2 = 0x0064)

R0 = return one of the value define as shown below:
Page 1-26 BIOS User’s Manual v1.1

a_idle equ 0
a_wait_bcon equ 1
a_host equ 2
a_suspend equ 3
a_peripheral equ 4
a_wait_vfall equ 5
b_idle equ 6
b_peripheral equ 7
b_host equ 8

Note: BIOS handles these following states for a_idle state machine:

a_idle -> a_wait_vrise->a_wait_bcon: a_wait_vrise is handled by the BIOS
Any state transition to a_vbus_err will go to a_wait_vfall.

b_idle -> b_srp_init: when bus_req and b_do_srp are true, BIOS will do the b_srp_init and
return back to b_idle.

If the state is in b_peripheral, BIOS will handle the b_wait_acon state and the result will be
either in the b_host or the b_peripheral state.

For a complete understanding on how the a_idle and b_idle state machines work, refer to the OTG
supplement to the USB 2.0 specification for more details.

1.7.3.3 Interrupt 88 (OTG Descriptor)
The BIOS uses this interrupt as the variable data pointer for the OTG descriptor. At power-up the
BIOS sets this location to zero, i.e., BIOS will send STALL for SET_FEATURE command of
requesting SRP/HNP. When this location contains the OTG descriptor, the BIOS returns an ACK
on the SET_FEATURE of SRP/HNP command. In co-processor mode, this location should be set
before making a call to the SUSB_INIT_INT. In stand-alone mode, it must be overridden by either
serial EEPROM or external ROM if users wish to enable the OTG feature.

Example of the OTG descriptor:

otg_desc: db 3 ; len=3
db 9 ; type = OTG
db 3 ; HNP|SRP supported

To over-ride the otg_desc do:

mov [(88*2)],otg_desc

Note: The OTG descriptor should be part of the configuartion_descriptor.
Chapter 1. BIOS Interface Page 1-27

BIOS User’s Manual
1.7.3.4 Interrupt 84 (OTG_SRP_INT)
This interrupt will do the SRP. The BIOS will pulse the data bus (either D+ or D- depending on the
user’s speed) and VBUS. Before calling this function, both VBUS and D+/D- should be turned off.
If the OTG_ID pin changes from high to low during the pulsing of VBUS and/or D+/D-, the function
will exit and return R0=0. BIOS will try to pull down both Data+ and Data- and it will check if either
Data+ or Data- is still high, it will return R0 with non-zero value to indicate the ERROR.

1.7.3.4.1 Software Interface
Entry:

R0 = VBUS pulse time in milliseconds (must be greater than zero and not more than 30 ms).

R1 = 0 = full speed, 1=low speed.

Registers Usage: None.

Return:

R0 = 0 = Success, else ERROR.

VBUS and D+/D- will turn off.

1.7.3.5 Interrupt 86 (REMOTE_WAKEUP_INT)
This interrupt can be used to do the remote wake-up. When calling this interrupt, it will force the K-
State for 10 milliseconds in the USB bus.

1.7.3.5.1 Software Interface
Entry:

R0 = sie_num (0 = SIE1, else = SIE2)

Registers Usage: None.

Return:

 R0 = 0 = Success, else ERROR.

1.7.4 USB Host Interrupt Functions

The following functions are dedicated for the USB Host design:

• HUSB_SIE1_INIT_INT/ HUSB_SIE2_INIT_INT

• HUSB_RESET_INT
Page 1-28 BIOS User’s Manual v1.1

1.7.4.1 Interrupt 114/115: HUSB_SIE1_INIT_INT/ HUSB_SIE2_INIT_INT
HUSB_SIEx_INIT_INT is used to execute the TD list. Refer to Chapter 3 for a detailed discussion
on these interrupts. In co-processor mode, these interrupts must be called via the LCP commands.
In stand-alone mode, the BIOS will call the HUSB_SIE1_INIT_INT if the OTG_ID (GPIO29) pin is
low. The BIOS will set the SIE2 as the full speed peripheral.

1.7.4.1.1 Software Interface
Entry: None.

Registers Usage: None.

Return: None.

1.7.4.1.2 Example:
Set SIE1 as Host and be ready to execute the TD list.

int HUSB_SIE1_INIT_INT ;Set SIE1 as Host
ret

1.7.4.2 Interrupt 116: HUSB_RESET_INT
HUSB_RESET_INT has three functions:

USB Reset: Before accessing a USB device, the HUSB_RESET_INT generates a
USB reset and sends it to USB bus.This forces the peripheral device to its
default address of zero. The minimum time required to hold the USB bus
in USB reset is >=10milliseconds.

After detecting a USB reset, every device responds to USB address zero.
After a USB reset, configuration software can read every device’s
descriptor at the same default address, one device at a time.

Speed Detect: The HUSB_RESET_INT detects the full/low speed of the attached device
then returns the port status: FULL SPEED, LOW SPEED or NO DEVICE.

SOF/EOP Generation: Based on the device speed, HUSB_RESET_INT generates an SOF for
full speed and an EOP for low speed. If no device is attached on this port,
there will be no SOF/EOP.
Chapter 1. BIOS Interface Page 1-29

BIOS User’s Manual
1.7.4.2.1 Software Interface
Entry:

R1: Port number: 0=USB-Port0
1=USB-Port1
2=USB-Port2
3=USB-Port3

R0: Time interval for USB reset in milliseconds.

Registers Usage: None.

Return:

This interrupt will return the speed on that port.

R0: Bit0 = 0 Full speed
Bit0 = 1 Slow speed
Bit1 = 1 No device
Bit1 = 0 Device is connected

1.7.4.2.2 Example
Reset port A, generate SOF/EOP based on the speed and return the speed for that port.

mov r1, cPortA ;port A
mov r0, 10 ;USB reset interval is 10 ms
int HUSB_RESET_INT ;Reset USB and genera SOF
ret

1.7.5 USB Peripheral Interrupt Functions

The following functions are dedicated for the USB Peripheral design and subsequently described:

• SUSB_INIT_INT

• SUSB1_DEVICE_DESCRIPTOR_VEC, SUSB2_DEVICE_DESCRIPTOR_VEC

• SUSB1_CONFIGURATION_DESCRIPTOR_VEC,
SUSB2_CONFIGURATION_DESCRIPTOR_VEC

• SUSB1_STRING_DESCRIPTOR_VEC, SUSB2_STRING_DESCRIPTOR_VEC

• SUSB1_FINISH_INT, SUSB2_FINISH_INT

• SUSB1_STALL_INT, SUSB2_STALL_INT

• SUSB1_STANDARD_INT, SUSB2_STANDARD_INT

• SUSB1_SEND_INT, SUSB2_SEND_INT
Page 1-30 BIOS User’s Manual v1.1

• SUSB1_RECEIVE_INT, SUSB2_RECEIVE_INT

• SUSB1_VENDOR_INT, SUSB2_VENDOR_INT

• SUSB1_CLASS_INT, SUSB2_CLASS_INT

• SUSB1_LOADER_INT, SUSB2_LOADER_INT

• SUSB1_DELTA_CONFIG_INT, SUSB2_DELTA_CONFIG_INT

1.7.5.1 Interrupt 113: SUSB_INIT_INT
The BIOS start-up or user code will call this interrupt to enable the designated SIE for peripheral
operation. In co-processor mode, this interrupt must be called via the LCP commands. In stand-
alone mode, the BIOS will set the SIE1 to the full speed peripheral if the OTG_ID (GPIO29) pin is
high. The BIOS will set the SIE2 as the full speed peripheral.

Note: During power-up, if the user overrides this interrupt via either serial EEPROM or the external
ROM, the BIOS will skip this interrupt. The debugger will not work with the USB port if SIEs are set
in the Host mode. However, the debugger for the UART will be available.

Note: This interrupt will be called by the user and also inside the USB_RESET. When this subrou-
tine is called inside the USB_RESET, it will remember the user’s defined speed.

1.7.5.1.1 Software Interface
Entry:

R1: Speed (0 for Full Speed, 1 for Low Speed)

R2: SIE Number (1 for SIE1 and 2 for SIE2)

Registers Usage: R8, R10-R12, R1-R4

Return: None.

1.7.5.1.2 Example
Example 3: Initialize SIE1 for a device with 1 endpoint.

;Full speed; SIE1
mov r1, 0 ;0 for full speed, 1 for low
mov r2, 1 ;SIE1
int SUSB_INIT_INT

;Low speed; SIE1
mov r1,1 ;low speed
mov r2,1 ;SIE1
int SUSB_INIT_INT
Chapter 1. BIOS Interface Page 1-31

BIOS User’s Manual
;Full speed; SIE2
mov r1,0 ;full speed
mov r2,2 ;SIE2
int SUSB_INIT_INT

;Full speed; SIE2
mov r1,1 ; low speed
mov r2,2 ; SIE2
int SUSB_INIT_INT

1.7.5.2 Interrupt 90,106: SUSB1_DEVICE_DESCRIPTOR_VEC,
 SUSB2_DEVICE_DESCRIPTOR_VEC

These interrupt locations contains the pointer to the default Cypress Device Descriptor (refer to
USB Specification version 2.0 for details). A pointer to a different device descriptor may be written
here if necessary.

It is important to note that changing the descriptor will not have any effect unless the associated
module has been previously enabled either by the BIOS, or by the program via the
SUSB_INIT_INT. This must be done for low speed operation.

Note: In stand-alone mode, these descriptors can be changed either via the serial EEPROM or the
external ROM.

Note: In co-processor mode, these descriptors can be changed via the LCP command.

Note: The BIOS only supports one configuration, so the number of configurations should be set to
‘1’ (see the example below).

1.7.5.2.1 Software Interface
The default Cypress Device Descriptor is as follows:

dev_desc:
db 18 ;length
db 1 ;desc type
dw 0x0200 ;USB spec 1.1
db 0xff ;device class
db 0 ;device subclass
db 0 ;protocol
db 8 ;max packet size for endpoint 0
dw 0x4b4 ;Vendor ID (Cypress)
dw 0x7200 ;Product ID
dw 0x0000 ;device release number
db 1 ;index of manufacture string
db 1 ;index of product string
db 1 ;index of serial number string
db 1 ;number of configurations
Page 1-32 BIOS User’s Manual v1.1

1.7.5.2.2 Example
Example 4: Overwrite SIE1/SIE2 Device Descriptor, Configuration Descriptor and

String Descriptor.

usb_init:
; SIE 1

mov [(90*2)],new_dev_desc ;replace new device descriptor
mov [(91*2)],new_conf_desc ;replace new configuration descriptor
mov [(92*2)],new_string_desc

;SIE2
mov [(106*2)],new_dev_desc
mov [(107*2)],new_conf_desc
mov [(108*2)],new_string_desc
ret

new_dev_desc:
db 18 ;length
db 1 ;desc type
dw 0x0101 ;USB spec 1.1
db 0xff ;device class
db 0 ;device subclass
db 0 ;protocol
db 64 ;max packet size for endpoint 0
dw 0xTBD ;TBD is the new vendor id
dw 0xTBD ;and new product id
dw 0x0100 ;device release number
db 1 ;index of manufacture string
db 2 ;index of product string
db 3 ;index of serial number string
db 1 ;number of configurations

new_conf_desc:
db 9 ;len of config
db 2 ;type of config
dw (new_end_all-new_conf_desc)
db 1 ;one interface
db 1 ;config #1
db 0 ;index of string describing config
db 0xC0 ;attributes (self powered)
db 0

new_interface_desc:
db 9
db 4
db 0 ;base #
db 0 ;alt
db 3 ;# endpoints
db 0 ;interface class (vendor)
db 0 :subclass
db 0 ;interface proto (vendor)
db 0 ;index of string describing interface
Chapter 1. BIOS Interface Page 1-33

BIOS User’s Manual
ep1:
db 7 ;length
db 5 ;type (endpoint)
db 0x81 ;type/number
db 2 ;Bulk
dw 64 ;packet size
db 0 ;interval

ep2:
db 7 ;length
db 5 ;type (endpoint)
db 0x02 ;type/number (Host uses WriteFile)
db 2 ;Bulk
dw 64 ;packet size
db 0 ;interval

ep4:
db 7 ;length
db 5 ;type (endpoint)
db 0x84 ;type/number (Host uses WriteFile)
db 3 ;Interrupt
dw 8 ;packet size
db 0 ;interval

new_end_all:
align 2
;==
; String: Require the string must be word align
;==
new_string_desc:

db STR0_LEN
db 3
dw 0x409 ; english language id

STR0_LEN equ ($-new_string_desc)
str1: db STR1_LEN

db 3
dw 'Manufacturing'

STR1_LEN equ ($-str1)
str2: db STR2_LEN

db 3
dw ‘Product’

STR2_LEN equ ($-str2)
str3: db STR3_LEN

db 3
dw ‘SerialNumber’

STR3_LEN equ ($-str3)
Page 1-34 BIOS User’s Manual v1.1

1.7.5.3 Interrupt 91,107:SUSB1_CONFIGURATION_DESCRIPTOR_VEC,
 SUSB2_CONFIGURATION_DESCRIPTOR_VEC

These interrupt locations contain the pointer to the default Cypress Configuration Descriptor (refer
to USB Specification version 2.0 for details). A pointer to a different configuration descriptor may
be written here, if necessary.

Note: In stand-alone mode, these descriptors can be changed either via the serial EEPROM or the
external ROM.

Note: In co-processor mode, these descriptors can be changed via the LCP command.

Note: The BIOS only supports one interface so the number of interfaces should be set to '1' (see
example). To support multiple interfaces, the user might need to change the
SUSBx_DELTA_CONFIG_INT and SUSBx_STANDARD_INT.

1.7.5.3.1 Software Interface
The default Cypress Configuration Descriptor is as follows:

conf_desc:
db 9 ; len of config
db 2 ; type of config
dw (end_all-conf_desc) ; Total configuration desc length
db 1 ; one interface
db 1 ; config #1
db 0 ; index of string describing config
db 0x80 ; attributes (bus powered)
db 50 ; 100 mA

interface_desc:
db 9
db 4
db 0 ; base #
db 0 ; alt
db 2 ; 2 endpoints
db 0 ; interface class (vendor)
db 0 ; subclass
db 0 ; interface proto (vendor)
db 0 ; index of string describing interface

; endpoints descriptor
ep1: db 7 ; len

db 5 ; type (endpoint)
db 0x1 ; type/number (Host use WriteFile)
db 2 ; Bulk
dw 64 ; packet size
db 0 ; interval

ep2: db 7 ; len
db 5 ; type (endpoint)
db 0x82 ; type/number (Host uses ReadFile)
db 2 ; Bulk
Chapter 1. BIOS Interface Page 1-35

BIOS User’s Manual
dw 64 ; packet size
db 0 ; interval

; support for OTG
otg: db 3 ; len=3

db 9 ; type = OTG
db 3 ; HNP|SRP supported

end_all:

1.7.5.3.2 Example
See Example 4: "Overwrite SIE1/SIE2 Device Descriptor, Configuration Descriptor and String
Descriptor."

1.7.5.4 Interrupt 92,108:SUSB1_STRING_DESCRIPTOR_VEC,
 SUSB2_STRING_DESCRIPTOR_VEC

These interrupt locations may contain the address of a string descriptor request (refer to USB
Specification version 2.0 for details). The location defaults to Cypress String Descriptor. A pointer
to a routine to service the string descriptor request may be written here if necessary.

Note: In stand-alone mode these descriptors can be changed via the serial EEPROM or the exter-
nal ROM.

Note: In co-processor mode these descriptors can be changed via LCP.

Note: The address of the string descriptor should be word aligned.

1.7.5.4.1 Software Interface
The default Cypress String Descriptor is as follows:

align 2
;==
; String: Require the string must be align 2
;==
string_desc:

db STR0_LEN
db 3
dw 0x409 ; english language id

STR0_LEN equ ($-string_desc)
str1:

db STR1_LEN
db 3
dw 'CYPRESS EZ-OTG' ;Cypress EZ-OTG:

STR1_LEN equ ($-str1)

1.7.5.4.2 Example
See Example 4: "Overwrite SIE1/SIE2 Device Descriptor, Configuration Descriptor and String
Descriptor."
Page 1-36 BIOS User’s Manual v1.1

1.7.5.5 Interrupt 89,105:SUSB1_FINISH_INT, SUSB2_FINISH_INT
These interrupts are to be called by the standard, vendor, and class command handlers to enter
the status phase and complete a control transfer.

1.7.5.5.1 Software Interface
Entry: None.

Registers: Usage: R9.

Return: R9 = DEVx_EP0_CTL_REG (either 0x200 or 0x280)

Note: These interrupts should only be used for the Endpoint0.

1.7.5.5.2 Example
See Example 10: "Intercept SUSB1_VENDOR_INT vector."

1.7.5.6 Interrupt 82,98: SUSB1_STALL_INT, SUSB2_STALL_INT
Each of these interrupt vectors will configure its associated SIE to stall the next transaction on its
default endpoint (0). It is important to note that the setup phase of a control is always acknowl-
edged even if the SIE is configured to stall.

1.7.5.6.1 Software Interface
Entry:

None.

Registers Usage: R9.

Return:

R9 points to either 0x200 or 0x280 (DEVx_EP0_CTL_REG)

Note: These interrupts should only be used for the Endpoint0.

1.7.5.7 Interrupt 83,99: SUSB1_STANDARD_INT, SUSB2_STANDARD_INT
These Interrupts implement the USB standard interface based on Chapter 9 of the USB Specifica-
tion version 2.0. These interrupts will be called whenever bit 6 and bit 5 of a bmRequest byte are
cleared ((bmRequest&0x60)==0). You can overwrite these interrupts for any extension of the
application.

These interrupts will be called inside the interrupt 32 (SIE1) and interrupt 40 (SIE2). All the regis-
ter saves and restores will be maintained by these ISRs. When a SETUP packet is detected, the
Chapter 1. BIOS Interface Page 1-37

BIOS User’s Manual
BIOS will call these interrupts after clearing the interrupt status register 0xc090 for SIE1 and
0xc0b0 for SIE2. For SIE1, the register R8 will point to the buffer at address 0x300 and R9 will
point to 0x200 (DEV1_EP0_CTL_REG). For SIE2, the register R8 will point to the buffer at
address 0x308 and R9 will point to 0x280 (DEV2_EP0_CTL_REG).

These interrupts handle bmRequest value from 0 (GET_STATUS) to 11 (SET_INTERFACE). BIOS
will send STALL for any other value in the bmRequest. STALL will be set for any non-supported
commands.

Note: BIOS will call SUSB1_STALL_INT and SUSB2_STALL_INT to send STALL to the USB
Host.

Note: These interrupts should only be used for Endpoint0. They will be called from inside the
Endpoint0 ISR so all registers should be reserved.

1.7.5.7.1 Software Interface
Entry:

R8 = 0x300 for SIE1. 0x308 for SIE2.

R9 = 0x200 for SIE1. 0x280 for SIE2

SIE buffers 1 and 2 (ports A and C) execute device requests at internal RAM addresses
0x0300 and 0x0308 respectively. These memory locations contain the current device request
structures for each SIE, for example:

db bmRequest
db bRequest
dw wValue
dw wIndex
dw wLength

Registers Usage: R0-R12

Return: None.

Note: If more data is to be received on endpoint 0, calls to SUSBx_RECEIVE_INT should be
made, or to SUSBx_SEND_INT if data is to be returned. This is at interrupt level — you may use
any registers, but you should return promptly.
Page 1-38 BIOS User’s Manual v1.1

1.7.5.7.2 Example
Example 5: Intercept Standard Interrupt vector for SIE1 (port A).

old_standard_vec dw 0
STD_VEC equ (SUSB1_STANDARD_INT*2)
usb_init: ;software initialization subroutine

mov [old_standard_vec],[STD_VEC] ;save old standard vector
;replace new standard vector

mov [STD_VEC],new_standard_isr
…
ret

Given the following device request offsets:

bmRequest equ 0
bRequest equ 1
wValue equ 2
wIndex equ 4
wLength equ 6

new_standard_isr:

;r8 was pointed to 0x300
test b[r8+bRequest],0xE0 ;is it a "clear-stall" command?
jnz @f ;it is not a "clear-stall" command?

; Add new stall request handler here

ret
@@:
jmp [old_standard_vec]

1.7.5.8 Interrupt 80, 96: SUSB1_SEND_INT, SUSB2_SEND_INT
(Send data to USB SIE1,2 endpoint x respectively)

The support these interrupts provide simplifies all transfers across all endpoints (i.e. endpoint0-7)
by providing a uniform interface and behavior. An application prepares a buffer, and a control
header block referencing the buffer. The control header block will contain a pointer to the buffer,
the buffer’s length, a null next control header block pointer, and a call back routine pointer.

These interrupts are utilized to send user data from any USB endpoint to a USB host to complete
multiple IN transactions. They will break up user data into multiple payloads that are defined by the
endpoint descriptors and the call back routine will be invoked or the message interrupt will be set
after the transfer is completed.

These interrupts provide support for both stand-alone mode and co-processor modes. In stand-
alone mode the user should provide a call back routine to check for the completion. In co-proces-
sor mode a message interrupt will be set in either register 0x144 for SIE1 and register 0x148 for
SIE2.
Chapter 1. BIOS Interface Page 1-39

BIOS User’s Manual
1.7.5.8.1 Software Interface
Each interrupt is passed an 8-byte control header block structure, to control the transmission of
data over the USB bus, and an endpoint number.

A device descriptor must be setup prior this call.

For endpoint1-7, the Interface/Endpoint descriptors must be setup and configured. The interrupts
should not be called after SUSBx_DELTA_CONFIG_INT. If the interrupts are called before they
are configured, they will not work.

The call back subroutine should not use an "sti" or "cli" instruction. Normally the subroutine will
notify the application that the task has completed or that additional buffers are to be sent.

When using these interrupts in co-processor mode via the HPI interface, disable the interrupts
“uDone1” and “uDone2” in the HPI_SIE_IE register at address 0x142 (i.e. both bits should be
cleared). Note: When both these bits are enabled, the co-processor has full control of both SIEs
and SUSBx_SEND_INT will be disabled.

Entry:

R8: points at an 8-byte structure defined as follows: ♣

dw next_link: pointer (used by this routine, input must be 0x0000)
dw address: pointer to the address of sending data ♣♣♣
dw length: length of data to send ♣♣
dw call_back: pointer of the “call back” subroutine.

R1: Bits 3..0 select the endpoint; determines where to send (should be from 0 to 7 max).
Bits 15..4 are reserved for future BIOS usage.

Registers Usage: R1, R8, R10, R11

Return:

R0: zero = successful, else error.

dw link pointer = 0 (reserved for future of BIOS)
dw address = address + length
dw length = 0 = successful transfer, else the remainder length has not transferred.
dw call_back (if call_back=0, it will not be executed, else it will be executed). In the HPI

 co-processor mode, the SIExmsg in the HPISTS register will get interrupt.

In co-processor mode, the data in the following table will be applied:
Page 1-40 BIOS User’s Manual v1.1

Notes:

♣ The structures and buffers given to this routine must not be modified until the “data can be
reused” call is made. Note: The data in this structure will be changed. This call should set up
the pointers and return immediately.

♣♣ The length of the buffer can be any size from 0x0000-32K. The length must be less than or
equal to the internal RAM/internal ROM size. The BIOS will partition the data into the user's
defined payload and transfer across through the USB bus. The call back will be called after the
ACK and the length is zero.

♣♣♣ For endpoints1-7, the address must be pointed to the internal RAM or internal ROM.
Any external memory bus, will work but not recommended.

For endpoint0 the address can be either internal or external RAM or ROM. When transferring
from external RAM the BIOS will copy data into internal RAM before executing the transfer.

1.7.5.8.2 Example
Example 6: Sending IN transaction data from SIE1 (port A) USB endpoint 0.

In response to a device request, only data may be sent over endpoint0 during the data phase of a
control transfer. Three phases – SETUP, DATA, and STATUS – are required for endpoint0. Users
can employ the same code below to replace the Vendor Command Class but it only illustrates how
to send data to the host with these interrupts.

mbx_msg1 equ 0x144 ; mailbox message address

Endpoint SUSB1_SEND_INT/SUSB2_SEND_INT
Registers

0x144/0x148
0 Endpoint0 interrupt on SIE1msg/SIE2msg from HPISTS register bit0

1 Endpoint1 interrupt on SIE1msg/SIE2msg from HPISTS register bit1

2 Endpoint2 interrupt on SIE1msg/SIE2msg from HPISTS register bit2

3 Endpoint3 interrupt on SIE1msg/SIE2msg from HPISTS register bit3

4 Endpoint4 interrupt on SIE1msg/SIE2msg from HPISTS register bit4

5 Endpoint5 interrupt on SIE1msg/SIE2msg from HPISTS register bit5

6 Endpoint6 interrupt on SIE1msg/SIE2msg from HPISTS register bit6

7 Endpoint7 interrupt on SIE1msg/SIE2msg from HPISTS register bit7
Chapter 1. BIOS Interface Page 1-41

BIOS User’s Manual
Stand-alone sample code:

usb1_ep0_send_data:
mov [ep0_next_link],0
mov [ep0_address],image_line ; image buffer pointer
mov [ep0_length], 320 ; size of the image line
mov [ep0_call_back],ep0_done ; call back for endpoint0
mov r8,ep0_next_link ; r8=pointer to linker
mov r1, 0 ; r1=0, setup endpoint 0
int SUSB1_SEND_INT ; call interrupt
ret

ep0_done:
int SUSB1_FINISH_INT ; call STATUS phrase
ret

.data
image_line dup 320
ep0_next_link dw 0
ep0_address dw 0
ep0_length dw 0
ep0_call_back dw 0

Note: In endpoint0 the STATUS phase is required for completion of DeviceIOCTL from the host.
BIOS will check the ep0_call_back. If the pointer = 0, BIOS will handle the STATUS. For endpoints
1-7 users should provide a call back.

The BIOS also sets the mbx_msg1 for both stand-alone and co-processor modes. A read of the
mbx_msg1 value can be done with the following code:

short mbx_copied;
if (mbx_msg1 !=0)
{

mbx_copied = mbx_msg1; // copy the mailbox message1
mbx_msg1 = 0; // allow BIOS to update the new message

}

Page 1-42 BIOS User’s Manual v1.1

Example 7: Co-processor mode: sending data over SIE2 (port C) USB endpoint 2.

 Co-processor sample code (detail of these code will be provided in the Application note)

typedef struct
{

WORD wNextLink;
WORD wAddress;
WORD wLength;
WORD wCallBack;

} USB_CMD;

USB_CMD ep2_ctl;
short R0, R1, R8;

#define ep2_ctl_ptr 0x1000
#define image_ptr 0x1008
#define image_size 320
#define mbx_msg2 0x148

R0 = 0;
R1 = 2;
R8 = ep2_ctl_ptr;
ep2_ctl.wNextLink = 0;
ep2_ctl.wAddress = image_ptr;
ep2_ctl.wLength = image_size;
ep2_ctl.wCallBack = 0;

HPI_Buff_Write((WORD*)&ep2_ctl, 4); // Store buffer into internal RAM
HPI_Exec_int(COMM_EXEC_INT, SUSB2_SEND_INT, R0, R1, R8);

Note:

The BIOS also sets the mbx_msg2 for both stand-alone and co-processor modes. A read of
mbx_msg2 can be done with the following code:

short mbx_copied;
if ((mbx_copied=HPI_Read(mbx_msg2)) !=0)
{

HPI_Write(mbx_msg2,0) // allow BIOS to update the new message
}

If there only one interrupt i.e. endpoint2, then the value of the
mbx_copied will be equal to 0x0004.
Chapter 1. BIOS Interface Page 1-43

BIOS User’s Manual
1.7.5.9 Interrupt 81,97: SUSB1_RECEIVE_INT, SUSB2_RECEIVE_INT
(Receive data from USB endpoint x)

The support these interrupts provide simplifies all transfers across all endpoints (i.e. endpoint0-7)
by providing a uniform interface and behavior. An application prepares a buffer, and a control
header block referencing the buffer. The control header block contains a pointer to the buffer, the
buffer’s length, a null next-control header block pointer, and a call back routine pointer.

These interrupts are used to receive data from a USB host to complete a transaction involving
multiple OUTs. These interrupts will break up user data into multiple payloads that are defined by
the “Endpoint Descriptors” and the “call back” will be called or the “message interrupt” will be set
after finishing the transfer.

These interrupts supports both stand-alone and co-processor modes. In stand-alone mode, the
user should provide the call back to check for the completion. In co-processor mode, a message
interrupt will be set in either register 0x144 for SIE1 or register 0x148 for SIE2.

1.7.5.9.1 Software Interface
Each interrupt is passed an 8-byte structure, to control the transmission of data over the USB bus,
and an endpoint number.

Device Descriptor must be setup prior this call.

For endpoint1-7, the Interface/Endpoint descriptors must be setup and configured. These inter-
rupts should be called after SUSBx_DELTA_CONFIG_INT. If the interrupts are called before they
are configured, they will not work

The “call back” subroutine should not use any “sti” and “cli” instructions. Normally this subroutine
will notify the application that either the task is complete, or additional buffers are to be sent.

When using these interrupts in co-processor mode via the HPI interface, disable the interrupts
“uDone1” and “uDone2” in the HPI_SIE_IE register at address 0x142 (i.e. both bits should be
cleared). Note: When both of these bits are enabled, the co-processor has full control of both SIEs
and SUSBx_RECEIVE_INT is disabled.

Entry:

R8: points at an 8-byte control header block structure defined as follows: ♣

dw next_link: pointer (used by this routine, input must be 0x0000)
dw address: pointer to the address of the device that is sending data. ♣♣♣
dw length: length of data to send ♣♣
dw call_back: pointer of the “call back” subroutine.

R1: Bits 3..0 select the endpoint; determines where to send (should be from 0 to 7 max).
 Bits 15..4 are reserved for future BIOS usage.

Registers Usage: R1, R8, R10, R11
Page 1-44 BIOS User’s Manual v1.1

Return:

R0: zero = successful, else error

dw link pointer = 0 (reserved for future of BIOS)
dw address = address + length
dw length = 0 = successful transfer, else the remaining length has not transferred.
dw call_back (if call_back=0, it will not be executed, else it will be executed). In HPI co-
processor mode, the SIExmsg in the HPISTS register will get interrupted.

In co-processor mode, the data in the following table will be applied:

Notes:

♣ The structures and buffers given to this routine must not be modified until the “data can be
reused” call is made. Note: The data in this structure will be changed. This call should set up
the pointers and return immediately.

♣♣ The length of the buffer can be any size from 0x0000-32K. The length must be less than or
equal to the internal RAM or ROM size. The BIOS will partition the data into the user's defined
payload and transfer across through the USB bus. The call back will be called after the length
is zero or short packet

♣♣♣ For endpoint1-7, the address must point to the internal RAM or internal ROM. Any exter-
nal memory bus, will work but this is not recommended.
For endpoint0 the address can be either internal or external RAM or ROM. When transferring
from external RAM, the BIOS will copy data from internal RAM to external RAM.

Endpoint SUSB1_RECEIVE_INT/SUSB2_RECEIVE_INT
Registers

 0x144/0x148
0 Endpoint0 interrupt on SIE1msg/SIE2msg from HPISTS register bit0

1 Endpoint1 interrupt on SIE1msg/SIE2msg from HPISTS register bit1

2 Endpoint2 interrupt on SIE1msg/SIE2msg from HPISTS register bit2

3 Endpoint3 interrupt on SIE1msg/SIE2msg from HPISTS register bit3

4 Endpoint4 interrupt on SIE1msg/SIE2msg from HPISTS register bit4

5 Endpoint5 interrupt on SIE1msg/SIE2msg from HPISTS register bit5

6 Endpoint6 interrupt on SIE1msg/SIE2msg from HPISTS register bit6

7 Endpoint7 interrupt on SIE1msg/SIE2msg from HPISTS register bit7
Chapter 1. BIOS Interface Page 1-45

BIOS User’s Manual
1.7.5.9.2 Example
Example 8: Receiving data from host (i.e. OUT transaction) to SIE1 (port A) USB endpoint 0.

In response to a device request, only data may be sent over endpoint0 during the data phase of a
control transfer. Endpoint0 requires three phases – SETUP, DATA, and STATUS. Users can
employ the sample code below to replace the Vendor Command Class but it only illustrates how to
receive data from the host via these interrupts.

mbx_msg1 equ 0x144 ; mailbox message address

Stand-alone sample code:

usb1_ep0_rec_data:
mov [ep0_next_link],0
mov [ep0_address],data_buff ; data buffer pointer
mov [ep0_length], 120 ; size of the image line
mov [ep0_call_back],ep0_done ; call back for endpoint0
mov r8,ep0_next_link ; r8=pointer to linker
mov r1, 0 ; r1=0, setup endpoint 0
int SUSB1_RECEIVE_INT ; call interrupt
ret

ep0_done:
; user’s code here
int SUSB1_FINISH_INT ; call STATUS phrase
ret

.data
data_buff dup 120
ep0_next_link dw 0
ep0_address dw 0
ep0_length dw 0
ep0_call_back dw 0

Note: In endpoint0 the STATUS phase is required for completion of DeviceIOCTL from the host.
BIOS will check the ep0_call_back. If the pointer = 0, BIOS will handle the STATUS. For endpoints
1-7 users should provide a call back.

The BIOS also sets the mbx_msg1 for both stand-alone and co-processor modes. To read the
mbx_msg1 value, the following code can be utilized:

short mbx_copied;
if (mbx_msg1 !=0)
{

mbx_copied = mbx_msg1; // copy the mailbox message1
mbx_msg1 = 0; // allow BIOS to update the new message

}

Page 1-46 BIOS User’s Manual v1.1

Example 9: Co-processor mode: receiving data over SIE1 (port A) USB endpoint 3.

 Co-processor sample code (detail of these code will be provided in the Application note)

typedef struct
{

WORD wNextLink;
WORD wAddress;
WORD wLength;
WORD wCallBack;

} USB_CMD;

USB_CMD ep3_ctl;
short R0, R1, R8;

#define ep3_ctl_ptr 0x1000
#define image_ptr 0x1008
#define image_size 320
#define mbx_msg1 0x144

R0 = 0;
R1 = 2;
R8 = ep3_ctl_ptr;
ep3_ctl.wNextLink = 0;
ep3_ctl.wAddress = image_ptr;
ep3_ctl.wLength = image_size;
ep3_ctl.wCallBack = 0;

HPI_Buff_Write((WORD*)&ep3_ctl, 4); // Store buffer into internal RAM
HPI_Exec_int(COMM_EXEC_INT, SUSB1_RECEIVE_INT, R0, R1, R8);

Note:

The BIOS also sets the mbx_msg1 for both stand-alone and co-processor modes. To read the
mbx_msg1 value, the following code can be utilized:

short mbx_copied;
if ((mbx_copied=HPI_Read(mbx_msg1)) !=0)
{

HPI_Write(mbx_msg1,0) // allow BIOS to update the new message
}

Chapter 1. BIOS Interface Page 1-47

BIOS User’s Manual
1.7.5.10 Interrupt 85,101: SUSB1_VENDOR_INT, SUSB2_VENDOR_INT
For these interrupts, the BIOS will return STALL as the default. The Interrupts implement the USB
vendor interface based on Chapter 9 of the USB Specification version 2.0. These interrupts will be
called whenever bit 6 of a bmRequest byte is set ((bmRequest&0x40)==0x40). These interrupts
must be replaced for any extension of the application.

These interrupts will be called inside interrupt 32 (SIE1) and interrupt 40 (SIE2). All the register
saves and restores will be maintained by these ISRs. When a SETUP packet is detected, the
BIOS will call these interrupts after clearing the interrupt status register 0xc090 for SIE1 and
0xc0b0 for SIE2. For SIE1, the register R8 will point to the buffer at address 0x300 and R9 will
point to 0x200 (DEV1_EP0_CTL_REG). For SIE2, the register R8 will point to the buffer at
address 0x308 and R9 will point to 0x280 (DEV2_EP0_CTL_REG).

These interrupts cover the range of the bmRequest value from 0x40 to 0xFF.

1.7.5.10.1 Software Interface
Entry:

R8 = 0x300 for SIE1. 0x308 for SIE2.

R9 = 0x200 for SIE1. 0x280 for SIE2

SIE buffers 1 and 2 (ports A and C) execute device requests at internal RAM addresses
0x0300 and 0x0308, respectively. These memory locations contain the current device request
structures for each SIE, for example:

db bmRequest
db bRequest
dw wValue
dw wIndex
dw wLength

Registers Usage: None.

Return: None.

Note: The SUSBx_LOADER_INT will be called if bmRequest = 0xFF. If more OUT data is to be
received on endpoint 0, calls to SUSBx_RECEIVE_INT should be made. If data is to be sent, calls
to SUSBX_SEND_INT should be invoked. This is at interrupt level — you may use any registers,
but you should return promptly. You must supply a routine for this if vendor commands are to be
used.
Page 1-48 BIOS User’s Manual v1.1

1.7.5.10.2 Example
Example 10: Intercept SUSB1_VENDOR_INT vector.

;All Software and Hardware initialization should be done here
;device request offsets
bmRequest equ 0
bRequest equ 1
wValue equ 2
wIndex equ 4
wLength equ 6
VND_VEC equ (SUSB1_VENDOR_INT*2)

usb_init:
mov [(VND_VEC],vendor_int ; replace vendor_int
ret

;Vendor Specific command table
vendor_table:

dw vCPUPoke ;0x41: wValue=Addr, wIndex=Data, wLength=0
dw vCPUPeek ;0x42: wValue=Addr, wLength=Cnt, usb1_ep0_send_data

v_bad:
ep0_done:

int SUSB1_FINISH_INT
ret

;process vendor commands
vendor_int:

;r8=0x300 SIE1 request base pointer
mov r0,b[r8+bRequest]
cmp r0,(0x42+1) ;if r0> index of vRamTest goto v_bad
jnc v_bad
cmp r0, 0x41 ;if r0<vCPUPoke goto v_bad
jc v_bad
sub r0, 0x41 ;get the Offset
mov r10,r0
shl r10, 1 ;index * 2
jmp [r10+vendor_table] ;jump to vector table entry

;usb1_ep0_send_data: send count (in r7) of data pointed to by r8
usb1_ep0_send_data:

mov [ep0_link],0
mov [ep0_call],ep0_done
mov [ep0_loc],image_line ;image buffer pointer
mov [ep0_len],r7 ;size of the image line
mov r8,ep0_link ;r8=pointer to linker
mov r1,0 ;r1=0, setup endpoint 0
int SUSB1_SEND_INT ;call interrupt
ret

;vCPUPoke: Write a Word to a specific address
vCPUPoke: ;(wValue=Addr, wIndex=Data, wLength=0)
Chapter 1. BIOS Interface Page 1-49

BIOS User’s Manual
mov r9,[r8+wValue] ;get address
mov [r9],[r8+wIndex] ;write data
jmp ep0_done ;send ack

;vCPUPeek: reading data from given address and count
vCPUPeek: ;(wValue=Addr, wIndex=0, wLength=Count, usb1_ep0_send_data)

mov r9,[r8+wValue] ;address
mov r7,[r8+wLength] ;length
mov r8,r9
jmp usb1_ep0_send_data ;host read from end point 0

ep0_done:
int SUSB1_FINISH_INT
ret

.data ;send/receive control header block
ep0_link dw 0
ep0_loc dw 0
ep0_len dw 0
ep0_call dw 0

1.7.5.11 Interrupt 87,103: SUSB1_CLASS_INT, SUSB2_CLASS_INT
The BIOS will return STALL for these interrupts as the default. These Interrupts implement the
USB vendor interface based on Chapter 9 of the USB Specification version 2.0. The interrupts will
be called whenever bit 5 of a bmRequest byte is set ((bmRequest&0x20)==0x20). These inter-
rupts must be replaced for any extension of the application.

These interrupts will be called inside the interrupt 32 (SIE1) and interrupt 40 (SIE2). All the regis-
ter saves and restores will be maintained by these ISRs. When a SETUP packet is detected, the
BIOS will call these interrupt after clearing the interrupt status register 0xc090 for SIE1 and
0xC0B0 for SIE2. For SIE1, the register R8 will point to the buffer at address 0x300 and R9 will
point to 0x200 (DEV1_EP0_CTL_REG). For SIE2, register R8 will point to the buffer at address
0x308 and R9 will point to 0x280 (DEV2_EP0_CTL_REG).

These interrupts cover the range of the bmRequest value from 0x20 to 0x3F.

1.7.5.11.1 Software Interface
Entry:

R8 = 0x300 for SIE1. 0x308 for SIE2.

R9 = 0x200 for SIE1. 0x280 for SIE2

SIE buffers 1 and 2 (ports A and C) execute device requests at internal RAM addresses
0x0300 and 0x0308 respectively. These memory locations contain the current device request
structures for each SIE, for example:

db bmRequest
db bRequest
Page 1-50 BIOS User’s Manual v1.1

dw wValue
dw wIndex
dw wLength

Registers Usage: None

Return: None.

Note: If more OUT data is to be received on endpoint 0, calls to SUSBx_RECEIVE_INT should be
made. If more data is to be sent, calls to SUSBx_SEND_INT should be made. This is at interrupt
level — you may use any registers, but you should return promptly. You must supply a routine for
this if class-specific commands are to be used.

1.7.5.11.2 Example
Example 11: Intercept SUSB1_CLASS_INT vector.

;All Software and Hardware initialization should be done here
;device request offsets
bmRequest equ 0
bRequest equ 1
wValue equ 2
wIndex equ 4
wLength equ 6
CLASS_VEC equ (SUSB1_CLASS_INT*2)

usb_init:
mov [CLASS_VEC],class_int ; replace class_int
ret

;Class Specific command table
class_table:

dw vCPUPoke ;0x41: wValue=Addr, wIndex=Data, wLength=0
dw vCPUPeek ;0x42: wValue=Addr, wLength=Cnt, usb1_ep0_send_data

v_bad:
ep0_done:

int SUSB1_FINISH_INT
ret

;process vendor commands
class_int:

;r8=0x300 SIE1 request base pointer
mov r0,b[r8+bRequest]
cmp r0,(0x42+1) ;if r0> index of vRamTest goto v_bad
jnc v_bad
cmp r0, 0x41 ;if r0<vCPUPoke goto v_bad
jc v_bad
sub r0, 0x41 ;get the Offset
mov r10,r0
shl r10, 1 ;index * 2
jmp [r10+class_table] ;jump to vector table entry
Chapter 1. BIOS Interface Page 1-51

BIOS User’s Manual
;usb1_ep0_send_data: send count (in r7) of data pointed to by r8

usb1_ep0_send_data:
mov [ep0_link],0
mov [ep0_call],ep0_done
mov [ep0_loc],image_line ;image buffer pointer
mov [ep0_len],r7 ;size of the image line
mov r8,ep0_link ;r8=pointer to linker
mov r1,0 ;r1=0, setup endpoint 0
int SUSB1_SEND_INT ;call interrupt
ret

;vCPUPoke: Write a Word to a specific address
vCPUPoke: ;(wValue=Addr, wIndex=Data, wLength=0)
mov r9,[r8+wValue] ;get address
mov [r9],[r8+wIndex] ;write data
jmp ep0_done ;send ack

;vCPUPeek: reading data from given address and count
vCPUPeek: ;(wValue=Addr, wIndex=0, wLength=Count, usb1_ep0_send_data)

mov r9,[r8+wValue] ;address
mov r7,[r8+wLength] ;length
mov r8,r9
jmp usb1_ep0_send_data ;host read from end point 0

ep0_done:
int SUSB1_FINISH_INT
ret

.data ;send/receive control header block
ep0_link dw 0
ep0_loc dw 0
ep0_len dw 0
ep0_call dw 0

1.7.5.12 Interrupt 94,110:SUSB1_LOADER_INT, SUSB2_LOADER_INT
These interrupts vectors are designed to support the debugger and should not be modified by the
user. BIOS uses the USB idle task to monitor the Vendor Command Class packet with the
bRequest value equal to 0xff (i.e. debugger command). When this command is detected, it will call
these interrupts.

1.7.5.12.1 Software Interface
Since the scan signature header is bigger than 8, all the debugger commands for the SCAN_INT
are supported as follows:

Host must use the Read DEV_IOCTL for endpoint0
SCAN_INT command 07
Page 1-52 BIOS User’s Manual v1.1

bmRequest = 0xc0 ; Read type | Vendor Command Class
bRequest = 0xff ; debugger command
wValue = 7 ; signature command opcode = 7
wIndex = Memory Address ; pointer to 0x0000-0xFFFF address
wLength (*) = 2-4K ; 2-byte to 4K-byte

Host must use the Write DEV_IOCTL for endpoint0
SCAN_INT commands from 0-6, 8-9.

bmRequest = 0x40 ; Read type | Vendor Command Class
bRequest = 0xff ; debugger command
wValue = 0xCMD ; signature command opcode = 0-6, 8-9
wIndex = 0 ; use data block as the header+data
wLength (*) = 2-4K ; 2-byte to 4K-byte

Data Block should contains: Signature_Header+Data+Signature_Header+Data+etc.. (See
SCAN_INT for more information)

 * The 4K max size is limited by the Windows OS. BIOS support up to 64Kbyte.

1.7.5.12.2 Example

// Sample code for Host interface to the debugger.
// This code interface through the CyUsbgen.SYS WDM driver

typedef struct
{ WORD sig; // signature

WORD len; // length
BYTE btype; // opcode
WORD addr; // address

} theader, *pHdr;

typedef struct _IO_SETUP_PKG
{

UCHAR bmRequest;
UCHAR bRequest;
USHORT wValue;
USHORT wIndex;
USHORT wLength;
PBYTE ioBuff;

} SETUP_PKG, *PSETUP_PKG;

BOOL uXfer(BYTE bLoad, void *pPre, WORD wPreLen, void *pData, WORD wLen,
void *pRdData, WORD RdLen)

{
DWORD cbRet
DevReq devreq;
char *pdev;
BOOL RetVal=TRUE;
theader header;
Chapter 1. BIOS Interface Page 1-53

BIOS User’s Manual
devreq.wValue=bLoad;
devreq.bRequest=0xff;
devreq.wLength=wLen;//buffer length
switch(bLoad)
{

case 7:
devreq.bmRequest=0xc0;//dev to host,vendor, device
devreq.wIndex=*(WORD*)pData;
devreq.wLength=RdLen;//buffer length
devreq.ioBuff = (PBYTE*)pRdData;
RetVal = DeviceIoControl(hDev, (DWORD)IOCTL_VENDOR_CONTROL,

(PVOID)&devreq,(DWORD)sizeof(DevReq),
NULL,(DWORD)devreq.wLength, &cbRet,NULL);

break;

default:
devreq.bmRequest=0x40;// host to dev,vendor, device
header.sig=0xc3b6;
header.len=wPreLen+wLen;
header.ltype=bLoad;
if (wPreLen==0)

devreq.ioBuff = (PBYTE*)pData;
RetVal = DeviceIoControl(hDev, (DWORD)IOCTL_VENDOR_CONTROL,

(PVOID)&devreq,(DWORD)sizeof(DevReq),
NULL,(DWORD)devreq.wLength, &cbRet,NULL);

else
{

devreq.wLength += (5+2+wPreLen); //buffer length
pdev=(char*)calloc(5+wPreLen+wLen+2,1);
memcpy(pdev,&header,5);
memcpy(pdev+5,pPre,wPreLen);
memcpy(pdev+5+wPreLen,pData,wLen);
devreq.ioBuff = (PBYTE*)pdev;
RetVal = DeviceIoControl(hDev, (DWORD)IOCTL_VENDOR_CONTROL,

(PVOID)&devreq,(DWORD)sizeof(DevReq),
NULL,(DWORD)devreq.wLength, &cbRet,NULL);

free(pdev);
}
break;

}
return RetVal;

}

Page 1-54 BIOS User’s Manual v1.1

1.7.5.13 Interrupt 95,111:SUSB1_DELTA_CONFIG_INT,
SUSB2_DELTA_CONFIG_INT

The standard USB handler calls these interrupts every time a request to set the configuration and
USB_RESET occurs. If you want to receive notification of configuration changes, you should chain
these interrupts (i.e. replace the vector with a vector to your code which ends with a jump to the
original vector leaving the registers in the same state they were found). These interrupts must be
overridden to support multiple configurations (refer to USB Specification version 2.0 for details).
These interrupts are called at the interrupt level. If the procedure will take some time, you should
set a flag and process the procedure in the foreground (see interrupt 70).

1.7.5.13.1 Software Interface
Entry:

The standard peripheral USB handler will call these interrupts whenever the configuration is
changed. These interrupts should be chained with a vector to a notification handler in order for
a user application to receive notification of configuration changes.

Return: None.

1.7.5.13.2 Example
Example 12: Intercept SIE1 (port A) Delta Configuration change and insert notification.

old_usb_delta_config dw 0
DELTA_VEC equ (SUSB1_DELTA_CONFIG_INT*2)
usb_init:

mov [old_usb_delta_config],[DELTA_VEC] ;save old delta config vector
mov [DELTA_VEC],new_delta_config ;replace with new delta_config
ret

new_delta_config:
;
; configuration change handling here
call usb1_ep1_send_data ; If use EP1, need to do this
call [old_usb_delta_config]

usb1_ep1_send_data:
mov [ep1_link],0
mov [ep1_call],ep1_done
mov [ep1_loc],image_line ;image buffer pointer
mov [ep1_len],r7 ;size of the image line
mov r8,ep0_link ;r8=pointer to linker
mov r1,1 ;r1=0, setup endpoint 0
int SUSB1_SEND_INT ;call interrupt
ret

ep1_done:
; User’s Application interface
; or call usb1_ep1_send_data again
ret

.data ;send/receive control header block
Chapter 1. BIOS Interface Page 1-55

BIOS User’s Manual
ep1_link dw 0
ep1_loc dw 0
ep1_len dw 0
ep1_call dw 0

1.7.6 Interrupt 51-63 and 118-125

These interrupts are free and may be used for extended applications. These locations are not ini-
tialized at power-up.

1.7.7 Memory Functions

1.7.7.1 Interrupt 76: REDO_ARENA
This interrupt is used to recalculate free memory when any additional memory becomes available
to the memory pool. This interrupt will be removed on the next revision of the BIOS. The BIOS
calls this interrupt at the beginning of the power-up.

1.7.7.2 Interrupt 69: Memory Data Pointer
The interrupt 69 vector is used as a variable data pointer to the beginning of the memory area that
is used by Interrupts ALLOC_INT, FREE_INT. This location is reserved for the BIOS - DO NOT
MODIFY THIS LOCATION.

1.7.7.2.1 Software Interface
This vector is a data pointer only, do not execute code (i.e. JMP or INT) to this vector. The vector
points to the first memory structure.

Memory Structure:

dw MEM_BLOCK_SIZE Size of memory block (including this structure)
dw USED_FREE 0x8000 = used, 0x0000 = free
Page 1-56 BIOS User’s Manual v1.1

1.7.7.3 Interrupt 68: ALLOC_INT
This interrupt is used to allocate available memory detected by the BIOS at boot-up.

1.7.7.3.1 Software Interface
Entry:

R0: Number of bytes to allocate.
Only bits 0...14 are used for the size of memory since 32 K is the max.

Registers Usage: None.
Return:

R0: Location of allocated memory.
Returns 0x0000 if not enough memory is available.

Note: Memory is always allocated in an even number of bytes and is guaranteed to be on an even
boundary.

1.7.7.3.2 Example
Example 13: Memory allocation.

ALLOC_INT equ 68
malloc:

mov r0, 100 ;allocate 100 bytes
int ALLOC_INT ;do interrupt 68
or r0,r0 ;check if memory available
jz Error
mov r8,r0 ;r8 contains pointer to allocated memory
mov [r8], 0 ;clear first location
...

Error:

1.7.7.4 Interrupt 75: FREE_INT
This Interrupt is used to free the memory that has been allocated by Interrupt 68.

1.7.7.4.1 Software Interface
Entry: R0 is a pointer to memory allocated previously by Interrupt 68.

Registers Usage: None.

Return: None.

Note: You should use caution when allocating and freeing memory to avoid memory fragmenta-
tion.
Chapter 1. BIOS Interface Page 1-57

BIOS User’s Manual
1.7.7.4.2 Example
Example 14: Free memory.

FREE_INT equ 75 ;see Interrupt 75
free_mem:

mov r0,r8 ;get previous allocation pointer
int FREE_INT ;free after used

1.7.7.5 Interrupt 73: PUSHALL_INT
This Interrupt is used to save all registers, from R0 - R14 to the stack. This interrupt will execute
fourteen PUSH instructions and return.

1.7.7.5.1 Software Interface
Entry: None.

Registers Usage: none

Return:

None (R15 will be decremented by 32.)

1.7.7.5.2 Example
Example 15: To save all the working registers inside the interrupt service subroutine.

PUSHALL_INT EQU 73
POPALL_INTEQU 74

endpoint1_int:
INT PUSHALL_INT ;save all registers
;process endpoint 1 interrupt
INT POPALL_INT ;restore all registers
sti ;re-enable int
ret ;return from interrupt service subroutine

1.7.7.6 Interrupt 74: POPALL_INT
This Interrupt is used to restore all the registers from R0 - R14 to the stack that had been previ-
ously saved by the interrupt 73. This interrupt will execute fourteen POP instructions and return.

1.7.7.6.1 Software Interface
Entry: None

Registers Usage: Restore all the registers from R0-R14 to previous interrupt PUSHALL_INT

Return: None (R15 will be incremented by 32.)
Page 1-58 BIOS User’s Manual v1.1

1.7.7.6.2 Example
See Example 15: "To save all the working registers inside the interrupt service subroutine."

Note: Interrupt 73 and Interrupt 74 should be used in pairs.

1.7.7.7 Interrupt 77: HW_SWAP_REG (Swap register bank)
This Interrupt is designed to save CPU flags and all registers (including R15) using a second regis-
ter bank only in the interrupt context. It should not be used in the idle task context. This interrupt is
the functional equivalent of Interrupt 73, but avoid using multiple HW_SWAP_REG and nested
interrupts.

1.7.7.7.1 Software Interface
Entry: None.

Registers Usage: R0-R14 will be unknown.

Return:

All registers are saved in the second register bank (fast equivalent to Interrupt 73). Use only in
interrupt routines when interrupts are disabled. NOT REENTRANT.

1.7.7.7.2 Example
Example 16: Hardware saves all working registers inside the interrupt service subroutine.

HW_SWAP_REG equ 77
HW_REST_REG equ 78

Endpoint2_int:
INT HW_SWAP_REG ;save all registers

;process endpoint 2 interrupt. Do not nest this interrupt

INT HW_REST_REG ;restore all registers/re-enable int and return
Chapter 1. BIOS Interface Page 1-59

BIOS User’s Manual
1.7.7.8 Interrupt 78: HW_REST_REG (Restore register bank)
This Interrupt is used to restore CPU flags and all registers from the second register bank and it
will re-enable the interrupt and return to the context switch from the HW_SWAP_REG. This inter-
rupt is a functional equivalent of Interrupt 74, but avoid using multiple HW_REST_REG and
nested interrupts. This interrupt should be paired with interrupt 77 and cannot be called in the idle
task context.

1.7.7.8.1 Software Interface
Entry:

None.

Registers Usage: R0-R14 will be restored of the previous value from HW_SWAP_REG

Return: All registers from the previous value from HW_SWAP_REG

Note: Interrupt 77 and Interrupt 78 should be used in pairs. The interrupt 78 does not need the
addition "sti" and "ret" instructions (see Example 16 for source code listing).

1.7.7.8.2 Example
Interrupt 77 and interrupt 78 source code:

hw_swap_reg: ; int 77
push [flags] ; save CPU_flags = 0xc000
mov [(hw_int_stack+30)],r15 ; new r15 = cur r15
mov [regbuf],hw_int_stack ; regbuf=0xc002: swap the reg files
jmp [r15+2] ; return to the caller

hw_rest_reg: ; int 78
mov [regbuf],0x100 ; restore hardware register
addi r15,4 ; adjust to the last r15
mov [flags],[r15-4] ; CPU_flags=0xc000: restore CPU flags
sti ; for ISR use only
ret

1.7.8 BIOS Idle task functions

1.7.8.1 Interrupt 70: IDLE_INT
This interrupt is the entry point to a chain of idle tasks, i.e. the beginning of the task link list. This
linked list of tasks is executed whenever there are no interrupt routines active. They are performed
as background tasks. INT 71 calls this task list endlessly. By default there are three idle tasks in
the idle chain, which are:

[int 70] -> [usb_idle] -> [lcp_idle]->[uart_idle] -> [return]
Page 1-60 BIOS User’s Manual v1.1

Each task polls its associated port for a 0xc3b6 SCAN_INT signature and allows access to the chip
via the SCAN_INT (INT 67) protocol.

The user can add user-defined idle tasks via INT 72 (INSERT_IDLE_INT). Note: when the new
task is inserted, it will be inserted at the top of the task list and it will become the first task to be
executed.

usb_idle: This USB idle task handles all USB peripheral ports (i.e. USB-portA and USB-portC). It
does all the call back services from the following interrupts: SUSB1_SEND_INT,
SUSB2_SEND_INT, SUSB1_RECEIVE_INT, and SUSB2_RECEIVE_INT. In addition, it also sup-
ports the SCAN_INT by monitoring the USB Vendor Command Class with the bmRequest = 0xFF.
The debugger tools will communicate through this USB Vendor Command Class.

lcp_idle: This LCP idle task handles all the LCP command processing for HPI, HSS, and SPI
ports, that depend on the boot-up pin configuration on GPIO31-30. In addition, it also supports the
mailbox message service when the chip is configured in co-processor mode. In stand-alone, it will
be in idle mode.

uart_idle: This UART idle task handles all debugging commands that support debugger tools via
the SCAN_INT.

Note: Interrupt 70 cannot be blocked. If users decide to replace this interrupt vector, the substi-
tuted vector must maintain execution of the idle task. If it does not, unpredictable behavior will
occur. When executing this interrupt, users need to make sure all the registers should be reserved
and properly restore (see Example 17: "Execute Interrupt 70.")

1.7.8.1.1 Software Interface
None.

1.7.8.1.2 Example
Example 17: Execute Interrupt 70.

int PUSHALL_INT
int 70 ;execute int 70
int POPALL_INT

Note: Do not modify this interrupt.

1.7.8.2 Interrupt 71: IDLER_INT
This interrupt routine calls INT 70 (IDLE_INT) in a loop such that the IDLE processing chain is exe-
cuted endlessly as a background process. The BIOS calls this interrupt after all boot-up activities
are finished. This interrupt behaves like the “main” program loop for the BIOS. If the user decides
to replace this interrupt, the execution of the “int 70” must be maintained for the BIOS to be alive.
Chapter 1. BIOS Interface Page 1-61

BIOS User’s Manual
The listing of interrupt 71:

Int_71:
addi r15, 2 ;adjust the stack pointer
int 70 ;execute IDLE_INT
int 71 ;execute int 71

1.7.8.2.1 Example
Example 18: Execute Interrupt 71.

int 71

; interface to c-language: using Timer1 for BIOS idle task
IDLER_VEC equ (IDLER_INT*2)
_cstartup:

mov [IDLER_VEC],new_71 ; Replace idler loop
mov [2],Timer1 ; use timer 1 for BIOS tasks idle loop
or [intenb],2 ; enable Timer 1 interrupt
ret

;*******************************
;New Idle loop
;*******************************
new_71:

addi r15,2
call _main ;call main
int 71

;*******************************
; alternative execute BIOS task
;*******************************
Timer1:

push [flags]
int PUSHALL_INT ; push all R0-R14
int 70 ; call BIOS tasks
mov [0xc012],10000 ; call BIOS task for every 1 mili seconds
int POPALL_INT ; pop all R0-R14
pop [flags]
sti
ret

void main(void)
{

// Call User HW/SW initialization here
while (1)
{

// Application here
}

}

Page 1-62 BIOS User’s Manual v1.1

; interface to c-language: via calling BIOS idle task
IDLER_VEC equ (IDLER_INT*2)
_cstartup:

mov [IDLER_VEC],new_71 ; Replace idler loop
ret

;*******************************
;New Idle loop
;*******************************
new_71:

addi r15,2
call _main ;call main
int 71

;*******************************
; Call BIOS idle tasks
;*******************************
_bios_idle:

int PUSHALL_INT ; push all R0-R14
int 70 ; call BIOS tasks
int POPALL_INT ; pop all R0-R14
ret

void main(void)
{

// Call User HW/SW initialization here
while (1)
{

bios_idle();
// Application here

}
}

1.7.8.3 Interrupt 72: INSERT_IDLE_INT
This interrupt allows the user to add new idle tasks into the idle chain via the head entry task list in
interrupt 70. The listing of interrupt 72 is as follows:

The listing of interrupt 72:

Int_72:
push R0 ;push new user’s idle task
mov R0,[(70*2)] ;move current task to R0
pop [(70*2)] ;replace interrupt 70 with new user’s idle task
ret
Chapter 1. BIOS Interface Page 1-63

BIOS User’s Manual
1.7.8.3.1 Software Interface
Entry:

R0: location of interrupt handler on user’s machine.

Registers Usage: None.

Return:

R0: location of previous interrupt handler on user’s machine.

Note: To use this, the routine calls interrupt 72 with R0 pointing at its handler. R0 returns with the
location of the previous handler. After processing is complete, your interrupt routine must JUMP to
the previous handler. Conversely, if you want your handler to be at the end of the chain, you can
call the previous interrupt handler first and then continue with your own handler. There is no guar-
antee that any registers (R0-R14) are preserved.

1.7.8.3.2 Example
Example 19: How to insert a new task into the idle chain interrupt.

INSERT_IDLE_INT equ 7 ;new symbol define
my_idle_chain dw 0 ;variable to hold the old idle chain interrupt

;The initialization section:

mov r0,my_idle ;setup insert new idle task to R0
int INSERT_IDLE_INT ;insert new idle task
mov [my_idle_chain],r0 ;this is a link list task

;The new idle handler should have the following form:

my_idle:
;execute your idle code here
jmp [my_idle_chain] ;continue the idle chain

The new idle chain tasks will be:

[int 70] -> [my_idle_chain]->[usb_idle] -> [lcp_idle]->[uart_idle] -> [return]
Page 1-64 BIOS User’s Manual v1.1

1.7.9 Debugging Support functions

1.7.9.1 Interrupt 126-127 Reserved for Debugger
BIOS reserves Interrupts 126-127 for the debugger. The GNU debugger will load a STUB program
into internal RAM of the CY16. The STUB is a small application program that is written in CY16
assembly language. This application is about 512 bytes that use the interrupts 126-127 for all the
debugging purpose.

1.7.10 Serial EEPROM support

1.7.10.1 Interrupt 64: 2-wire Serial EEPROM (from 256-byte to 2 KByte)
The BIOS uses this interrupt to access an external serial EEPROM (typically an Atmel/MicroChip
AT24CXX/ 24LCXX device family). Currently the BIOS allows reads and writes of 256 bytes up to
64 Kbytes, i.e. AT24LC16B/SN up to AT24C512. If more than 64K bytes of either code or initialized
data must be stored in EEPROM, then the user can use GPIO lines to manipulate the A0 and A1
lines of additional EEPROM and call the SCAN INT with a pointer to INT 64 or INT 65.

A user’s program and USB vendor/device configuration can be programmed and stored into the
external EEPROM device. On power-up the code or data in the EEPROM will be downloaded into
RAM. The 2-wire serial/EEPROM interface provides a space and cost efficient means of non-vola-
tile data storage.

The BIOS uses two GPIO pins (GPIO31 and GPIO30) to interface with an external serial EEPROM
(refer to Figure 1-3 and Figure 1-4):

• GPIO31 is connected to the Serial Clock Input (SCL).

• GPIO30 is connected to the Serial Data (SDA).

• Use a 5K-15K pull-up resistor on the data and clock lines (i.e. GPIO30 and GPIO31).

• Pin 1 (A0), pin 2 (A1), pin 3 (A2), pin 4 (GND), and pin 7 (write protect) are connected to
ground.
Chapter 1. BIOS Interface Page 1-65

BIOS User’s Manual
Figure 1-3. 2-wire Serial for up to 256 byte up to 2-KByte Connection

Figure 1-4. 2-wire Serial from 4K up to 64-KByte Connection

Note: The GPIO [31, 30] shared with boot-up configuration pin. The 10K pull-up is required on
both pins.

1.7.10.1.1 Software Interface

Uses Ptr to Param Struct to read/write control params.

The current BIOS configures interrupt 64 with the following:

1 A0 VCC 8

2 A1 WP 7

3 A2 SCL 6

4 GND SDA 5

AT24LC16B/SN

GPIO30

GPIO31

VCC

1 A0 VCC 8

2 A1 WP 7

3 A2 SCL 6

4 GND SDA 5

IC2: AT24C512

GPIO31

GPIO30

VCC
Page 1-66 BIOS User’s Manual v1.1

Entry:

R0:(1) 1 for writes, 0 for reads, 2 for set parameters, 3 for get parameters.

R1: 2-wire serial address to read or write, or parameter address.

R2: Contains the byte to be written in write operations.

Registers Usage: none

Return:

R0: On Read, R0 contains the byte read from a 2-wire serial.
On Write, 0 for no error, not 0 if error.

R1: Incremented by 1.

Note: The default BIOS uses GPIO31 and GPIO30 for all I2C programming. If developers like to
use other GPIO pins for the I2C programming, then the R0 = 2 and R0 = 3 can be used for this pur-
pose

Note: The 2-wire serial BIOS default parameters are set in the following format:

dw GPIO_HI_ENB ;GPIO address used to enable output
dw GPIO_HI_IO ;GPIO address used to set/clear output
dw SDA ;bit mask used for the data line
dw SCL ;bit mask used for the clock line
db 0xa0 ;signature byte
db 11 ;number of bits for address

IO Port Location:

GPIO_HI_ENB equ 0xc028 ;General Purpose IO Control register high
GPIO_HI_IO equ 0xc024 ;General Purpose IO Data register high
SDA equ 0x4000 ;bit 14 of the GPIO_HI_IO for the two-wire

;serial Data line
SCL equ 0x8000 ;bit 15 of the GPIO_HI_IO for the two-wire

;serial Control line

The user can configure the serial EEPROM interface for different GPIO lines. The example below
shows how to modify the default parameters. This example shows how to reuse the BIOS code to
access an additional serial EEPROM connected to different GPIO lines.
Chapter 1. BIOS Interface Page 1-67

BIOS User’s Manual
Example 20: Setting new two-wire serial 2-KByte parameters.

align 2
new_param:

dw 0xc028 ;General Purpose IO Control register high
dw 0xc024 ;General Purpose IO Data register high
dw 0x0001 ;GPIO16 (SDA)
dw 0x0002 ;GPIO17 (SCL)
db 0xa0 ;signature byte
db 11 ;number of bits for address (addressable up to 2KByte)

align 2
mov r0, 2 ;2=set param
mov r2,new_param ;new_parameter
int 64 ;call BIOS interrupt

mov r0,0 ;0=read
int 64 ;call BIOS interrupt
mov [data],r0 ;r0 is the return data

Note: At power-up the EZ-Host/EZ-OTG device will restore the old configuration, which means the
users cannot boot from the serial EEPROM that connects to GPIO16 and GPIO17. To be able to
boot from the serial EEPROM, the serial EEPROM must be connected to GPIO31 and GPIO30.

The data pull-up resistor is required on GPIO16.

1.7.10.2 Interrupt 65: 2-wire Serial EEPROM from (4 KByte to 64 KByte)
This interrupt offers the same functionality as INT 64, but address bits are set to 14 and the SDA
and SCL are swapped. The swapping of the GPIO lines forces the board designer to wire the
EEPROM reverse for the two size ranges, allowing only two GPIO pins to still be used. During
boot-up, INT 64 and INT 65 are used by the SCAN INT (67) to test for each type of EEPROM.

1.7.11 UART functions

1.7.11.1 Interrupt 66: UART_INT

Note: THE UART IS RESERVED FOR DEBUGGING. In the EZ-Host device (100-pin package),
this port is connected to pin GPIO27 and GPIO28. In the EZ-OTG part (48-pin package), this port
is connected to pin GPIO7 and GPIO6.

The UART interrupt provides read/write access to the UART. The BIOS uses this interrupt and INT
67 (Scan for enhancements) to provide external access to the chip. Code and data can be down-
loaded via the UART, and the debugger utilities use the UART port for low-level access.
Page 1-68 BIOS User’s Manual v1.1

In the EZ-Host device, the BIOS uses GPIO28 for data transmit (TX) and GPIO27 for data receive
(RX). In the EZ-OTG device, the BIOS uses GPIO7 and GPIO6 for the UART, but it will be disabled
when the chip is in HPI mode. In general, the UART pins are shared with other functions (i.e. GPIO
mode). When other functions are selected, the UART will no longer function and this interrupt will
not work. However, besides the UART, there is another way to support software debugging; the
USB port can also be used by the debugger.

Note: The BIOS will setup the default baud rate for the UART at 28,800 baud. Other parameters
are: 1 stop bit, 8 data bits, no parity.

1.7.11.1.1 Software Interface
Entry:

R0: Bits [3:0] = 0 for read, 1 for write, 2 for read control, 3 for write control.

For write control only (R0[3:0]=3):

Bits [7:4] = baud rate of R0

R2: For write only (R0[3:0] = 1):

Bits [7:0] = Byte to transmit.

Registers Usage: none

Return:

Read Operations (R0[3:0]=0):

R0: Bits 7:0 contain input data.
Bit 15 = 1 if error has occurred.

Write Operations (R0[3:0]=1):

R0: Bit 15 = 1 if error has occurred.

Read Control (R0[3:0]=2):

R0: Bits [7:4] contain current baud rate.

R1: Points to the location to call when receive buffer goes not empty.

R2: Points to the receive buffer memory structure, defined as follows:
dw length of buffer -1 (must be 2n-1)
dw input pointer
dw output pointer
db data(0)..data(n)
Chapter 1. BIOS Interface Page 1-69

BIOS User’s Manual
R3: Points to the location to call when the transmit buffer becomes empty.

R4: Points to the transmit buffer memory structure as follows:
dw length of buffer -1 (must be 2n-1)
dw input pointer
dw output pointer
db data0..datan

Write Control (R0[3:0]=3):

All of the registers returned in Read Control can be set using the same registers as
inputs.

Note: UART buffers are predefined by the BIOS, but are accessible to the user. This interrupt
cannot be called in the interrupt context.

1.7.11.1.2 Example
See examples in the KBHIT section.

1.7.11.2 Interrupt 123: KBHIT
1.7.11.2.1 Overview
This interrupt is used for UART debugging purpose during development. It configures baud rate
and disables/enables the BIOS UART. The interrupt is designed for standard I/O and used by
printf().

1.7.11.2.2 Software Interface
Entry:

R0: baud rate

1.7.11.2.3 Example

_kbhit:
mov r0,9 ; setup 19.2K

int 117 ;execute interrupt
ret
Page 1-70 BIOS User’s Manual v1.1

Example 21: Get a character from the UART.

Note: To use this subroutine, users must disable the UART task that supports the debugger by call-
ing the KBHIT_INT. When the KBHIT_INT is enabled, the debugger will no longer work.

_getchar:
xor r0,r0 ;R0 = read data from the keyboard
int UART_INT ;call UART_INT
ret ;return character in R0

Example 22: Put a character to the UART.

_putchar:
push r2
mov r2,r0
mov r0, 1 ; write to the UART
int UART_INT ; call UART_INT
pop r2
ret

void puts(char *buf)
{

while (*buf != 0) putchar(*buf++);
}

void main(void)
{

int c;
// Call User HW/SW initialization here
kbhit(); //
while (1)
{

// Application here
puts(“Hello world”);
c = getchar();

}
}

Chapter 1. BIOS Interface Page 1-71

BIOS User’s Manual
Page 1-72 BIOS User’s Manual v1.1

Chapter 2 Link Control Protocol Firmware

2.1 Introduction

2.1.1 Overview

The BIOS allocates an idle task for the Link Control Protocol, which is called lcp_idle. This LCP
idle task handles all the LCP commands and also maintains support for the message interrupt to
the external microprocessor.

Note: The BIOS does not support queuing of LCP commands. Only one LCP command may be
executed at a time.

When EZ-Host or EZ-OTG is used in co-processor mode, it is connected to an external micropro-
cessor or an ASIC with an embedded processor core. There is potential for some confusion in ter-
minology because in this case the external processor is the “Host” or “Master” and the EZ-host or
EZ-OTG device is the “Peripheral” or “Slave”. Using the terms “Host” and “Peripheral” to describe
these interactions can be confusing because of Host and Peripheral USB Communication Terms.
To describe the external microprocessor the term “System CPU” or “System Processor” will be
used since this external microprocessor is generally at the center of the overall system.

PORT commands are common to all Host Control Ports (HPI, HSS, SPI) for communication with
the system CPU. The port commands and associated responses form the basis of the Link Control
Protocol (LCP). The LCP allows the system CPU full control of the EZ-Host or EZ-OTG chip.

2.1.2 Scope

The LCP is primarily used in co-processor mode embedded host applications. Stand-alone applica-
tions will typically not use LCP, although they can.
Chapter 2. Link Control Protocol Firmware Page 2-1

BIOS User’s Manual
2.2 Detailed Design

2.2.1 Architectural Outline

As shown in Figure 2-1, the command processor is the heart of the communication system
between EZ-Host/EZ-OTG and the system CPU.

Figure 2-1. Link Control Protocol

The lcp_idle task handles port commands which are completely controlled by the chip. The mem-
ory can be read and written, control registers can be read and written, and interrupts can be trig-
gered. This level of access however, does not hide all of the hardware dependencies from the
programmer of the system CPU unless a library of functions is created on the system CPU to
abstract the different functions of EZ-Host/EZ-OTG into simple interfaces.

In order to make this abstraction simpler and faster for the system CPU, a set of functions can be
built and downloaded to the EZ-Host/EZ-OTG device where all of the desired functionality of the
chip for the given application is abstracted through the use of the command processor. This allows
the Host to communicate with a simple, flexible and extensible API, from system CPU to the EZ-
Host/EZ-OTG device.

Note: The LCP exposes all of the functionality of the chip.

- Process Port CMD
- Send/Receving to/
from HPI/HSS/SPI Port

HPI Slave
Transport

HSS Slave
Transport

BO
O

T
CO

N
TR

O
L

LCP Idle Task
COMM_RESET

COMM_JUMP2CODE

COMM_CALL_CODE

 Link Control Protocol Port Commands

HPI HW

HSS HW

SPI HW

Boot Select USB Slave

COMM_EXEC_INT

COMM_READ/WRITE_CTRL_RE

COMM_CONFIG

COMM_READ/WRITE_MEM

COMM_READ/WRITE_XMEMSPI Slave
Transport
Page 2-2 BIOS User’s Manual v1.1

2.2.2 Transport Requirements

Each Transport (HPI/HSS/SPI or other) must meet the following requirements:

• Have an INIT function that:

– Enables HPI/HSS/SPI mode
– Configures the port for Default Communication Parameters (baud rate for example,

INT enables, etc.)
• Have a Receive Command ISR which receives a Command or Command Packet

2.2.3 BIOS ROM Code (LCP)

All of the port command processing is included in the BIOS ROM via the lcp_idle task.

2.2.3.1 Data Structures and Variables for Port Command Processing
Several data structures are stored in the BIOS reserved section of RAM from (0x019A -- 0x01A2).
These are described in lcp_data.inc and lcp_cmd.inc.

; -- DATA UNION FOR SIMPLE PORT CMDS --

COMM_PORT_CMD equ 0x01ba ; -- For PORT Command
COMM_MEM_ADDR equ 0x01bc ; -- For COMM_RD/WR_MEM
COMM_MEM_LEN equ 0x01be ; -- For COMM_RD/WR_MEM
COMM_LAST_DATA equ 0x01c0 ; -- memory pointer for xmem
COMM_BAUD_RATE equ 0x01bc ; -- Use in the HSS COMM_CONFIG

COMM_CTRL_REG_LOGIC equ 0x01c0 ; -- User to AND/OR Reg
REG_WRITE_FLG equ 0x0000
REG_AND_FLG equ 0x0001
REG_OR_FLG equ 0x0002

COMM_INT_NUM equ 0x01c2 ; -- Interrupt number
COMM_R0 equ 0x01c4 ; -- CY16-R0 register
COMM_R1 equ 0x01c6 ; -- CY16-R1 register
COMM_R2 equ 0x01c8 ; -- CY16-R2 register
COMM_R3 equ 0x01ca ; -- CY16-R3 register
COMM_R4 equ 0x01cc ; -- CY16-R4 register
COMM_R5 equ 0x01ce ; -- CY16-R5 register
COMM_R6 equ 0x01d0 ; -- CY16-R6 register
COMM_R7 equ 0x01d2 ; -- CY16-R7 register
COMM_R8 equ 0x01d4 ; -- CY16-R8 register
COMM_R9 equ 0x01d6 ; -- CY16-R9 register
COMM_R10 equ 0x01d8 ; -- CY16-R10 register
COMM_R11 equ 0x01da ; -- CY16-R11 register
COMM_R12 equ 0x01dc ; -- CY16-R12 register
COMM_R13 equ 0x01de ; -- CY16-R13 register
Chapter 2. Link Control Protocol Firmware Page 2-3

BIOS User’s Manual
2.2.3.2 Command Descriptions
This software interrupt service routine is for selected ports (i.e. HPI/HSS/SPI will signal the
lcp_idle task by posting new command to the COMM_PORT_CMD). Upon receiving a new com-
mand set, the lcp_idle task handles processing of all the port commands and their associated
responses.

Entry:

COMM_PORT_CMD equ 0x01ba ; -- For PORT Command
COMM_MEM_ADDR equ 0x01bc ; -- For COMM_RD/WR_MEM
COMM_MEM_LEN equ 0x01be ; -- For COMM_RD/WR_MEM
COMM_LAST_DATA equ 0x01c0 ; -- memory pointer for xmem

Exit: None.

Note: When sending the COMM_PORT_CMD = 0, the lcp_idle task will not response to this com-
mand

Each of the port commands is serviced by calling the Virtual Callback function in the selected
transport module (HPI/HSS/SPI).

The following port commands are serviced:

COMM_RESET

Action: Do soft reset to the lcp_idle task
Data Used: None
Response: COMM_ACK

The COMM_RESET command can be used to do soft reset the lcp_idle task.

Response: COMM_ACK

Note: An ACK will be sent immediately after receiving this command.

COMM_JUMP2CODE

Action: Jump Code
Data Used: COMM_MEM_ADDR (Must point to Valid Code Space)
Response: COMM_ACK

Note: An ACK will be sent after completing the execution of COMM_JUMP2CODE (for exam-
ple the HUSB_RESET take 10miliseconds, then the ACK will be sent after 10 milliseconds). If
this code never returns, the external microprocessor should not expect the ACK.
Page 2-4 BIOS User’s Manual v1.1

Note: For HPI the COMM_MEM_ADDR must use direct hardware access to modify this loca-
tion. For the HSS/SPI this variable is part of the 4-word command structure.

This command is used to jump to the start of program memory after a program is loaded via
HPI/HSS/SPI.

COMM_CALL_CODE

Action: Call Subroutine
Data Used: COMM_MEM_ADDR (Must point to Valid Code Space)
Response: COMM_ACK

Note: An ACK will be sent after completing the execution of COMM_JUMP2CODE. If this
code never returns, the external microprocessor should not expect the ACK.

For HPI the COMM_MEM_ADDR must use direct hardware access to modify this location. For
the HSS/SPI this variable is part of the 4-word command structure.

This command is used to call a subroutine after a program is loaded via HPI/HSS/SPI.

COMM_EXEC_INT

Action: Execute hardware/software interrupt
Data Used: COMM_INT_NUM (0-127) and COMM_R0-COMM_R13
Response: COMM_ACK

Note: An ACK will be sent after completing the execution of the COMM_EXEC_INT. If this
code never returns, the external microprocessor should not expect the ACK.

The Interrupt vector is stored in COMM_INT_NUM. If the COMM_R0-COMM_R13 are used in
the associate interrupt, then it should be updated. When the HPI is used, the
COMM_INT_NUM and COMM_R0-COMM_R13 locations are written using direct hardware
access. When HSS or SPI is used, this value comes from a COMM_MEM_WRITE transaction
or as part of the port communication packet along with the command.

Note: The BIOS will not check the interrupt range (i.e. 0-127). Invalid ranges can cause unpre-
dictable results.

COMM_READ_CTRL_REG (i.e. Memory Peek command)

Action: Read Control Register
Data Used: COMM_MEM_ADDR
Response: COMM_ACK
Chapter 2. Link Control Protocol Firmware Page 2-5

BIOS User’s Manual
This command is designed to read the entire address space of the CY16 (64K) i.e., internal
RAM, internal ROM, external RAM/ROM/DRAM and all the CY16 CPU control registers.

Note: All the Read cycles will be in 16-bit access.

For HPI, the COMM_MEM_ADDR must use direct hardware access to modify this location.
For the HSS/SPI, this variable is part of the 4-word command structure.

HPI requires a read of the address 0x01BE (COMM_MEM_LEN) to get the return data after
receiving an ACK from the command COMM_READ_CTRL_REG.

For the HSS/SPI, the extra word read will be sent by the lcp_idle task.

COMM_WRITE_CTRL_REG (i.e. Memory Poke Command)

Action: Write Control Register
Data Used: COMM_MEM_ADDR, 0x1BE, COMM_CTRL_REG_LOGIC
Response: COMM_ACK

This command is designed to poke a data word into any location from 0x0000 to 0xFFFF
address space.

For HPI, the COMM_MEM_ADDR 0x1BE (COMM_MEM_LEN) and the
COMM_CTRL_REG_LOGIC variables must be written from the direct hardware memory
access. For HSS/SPI, these variables are part of the 4-word command data structure.

COMM_CTRL_REG_LOGIC is an optional parameter (it must default to zero for HSS and
SPI). It allows the write operation to write with bitwise AND or bitwise OR.

COMM _READ_MEM (Implemented in HSS and SPI Transports Only)

Action: Read Memory
Data Used: COMM_MEM_ADDR, COMM_MEM_LEN
Response: COMM_ACK

This allows reading “words” from INTERNAL memory. This command is not required for HPI
communications since there is direct memory access. The HPI can access the internal mem-
ory from 0x0000-0x3FFF and 0xE000-0xFFFF

COMM_CTRL_REG_LOGIC WRITE OPERATION USED
0 Direct Write
1 AND the register value
2 OR the register value
Page 2-6 BIOS User’s Manual v1.1

Note: COMM_MEM_LEN specifies the number of words to transfer. The BIOS will not check
the valid range of INTERNAL memory. If users want to access the external memory bus, they
should use the COMM_READ_XMEM. However, if the address range is not valid, the data will
not be valid.

COMM _WRITE_MEM (Implemented in HSS and SPI Transports Only)

Action: Write Memory
Data Used: COMM_MEM_ADDR, COMM_MEM_LEN
Response: COMM_ACK

This allows writing to INTERNAL memory only. This command is not required for HPI commu-
nications since there is Direct Memory Access.

Note: COMM_MEM_LEN specifies the number of words to transfer. The BIOS will not check
the valid range of INTERNAL memory. If users want to access the external memory bus, they
should use the COMM_WRITE_XMEM. However, if the address range is not valid, the INTER-
NAL memory might be corrupted.

COMM _READ_XMEM

Action: Read Memory
Data Used: COMM_MEM_ADDR, COMM_MEM_LEN, COMM_LAST_DATA
Response: COMM_ACK

This command handles:

• Memory Copy
Memory is copied from COMM_MEM_ADDR to COMM_LAST_DATA, where
COMM_MEM_ADDR should be in the external memory space (or it can be from 0x0000-
0xFFFF) and COMM_LAST_DATA must be in the internal memory (i.e. 0x0000-0x3FFF).

• Data Transfers
After copying, data is transferred from COMM_LAST_DATA to the HSS/SPI interface.

The purpose of this command is to allow reads from external memory or data transfers
between external memory to internal memory (the location where COMM_MEM_ADDR points
to). The COMM_LAST_DATA should point to the internal memory address and the
COMM_MEM_LEN should be greater than zero.

Note: COMM_MEM_LEN is the number of words to transfer.
Chapter 2. Link Control Protocol Firmware Page 2-7

BIOS User’s Manual
COMM _WRITE_XMEM

Action: Write Memory
Data Used: COMM_MEM_ADDR, COMM_MEM_LEN, COMM_LAST_DATA
Response: COMM_ACK

This command handles:

• Data Transfers
Data is transferred from HSS/SPI to memory pointed to by COMM_LAST_DATA, which
should be located in the internal memory.

• Memory Copy
Memory is copied from COMM_LAST_DATA to COMM_MEM_ADDR.

• COMM_MEM_ADDR can be any where from 0x0000 to 0xFFFF.

The purpose of this command is to allow data transfer between HPI, SPI and HSS hardware to
external memory. The sequence of data will be: Data will transfer from HPI, SPI and HSS
hardware to the internal RAM that pointed by the COMM_LAST_DATA and then the BIOS will
copy from the internal memory (COMM_LAST_DATA) to external memory that pointed by the
COMM_MEM_ADDR.

Note: COMM_MEM_LEN is the number of words to transfer and should be greater than zero.

COMM _CONFIG

Action: Configures COMM Transport Features
Data Used: COMM_BAUD_RATE (for HSS ONLY)
Response: COMM_ACK

This command will change the default baud rate for the HSS. For HPI/SPI this command will
return ACK and do nothing.

Note: The external host processor is in full control of the interface as a master. The Host must
allot time to the BIOS in between sending LCP commands. The Host should wait at least 30
microseconds between sending a new command packet. When changing the BAUD rate com-
mand via the COMM_CONFIG, the Host must wait at least 100 microsecond before sending a
new command with the new baud rate.
Page 2-8 BIOS User’s Manual v1.1

Chapter 3 USB Host BIOS Specifications

3.1 Introduction

The USB Host BIOS will support two application modes: co-processor mode and stand-alone
mode. It includes support for TD list transfer, USB Reset, Speed Detection, and SOF (EOP) gener-
ation.

3.1.1 Co-processor Mode

In co-processor mode the EZ-Host/EZ-OTG device works with the System CPU via the HPI, HSS
or SPI port. An example of an application is a USB Host Controller in a PDA or a cellular phone
with an embedded microprocessor running a Real Time Operating System (RTOS) such as
WinCE, Linux, VxWorks or Nucleus. The RTOS has a USB stack. Inside the USB stack the HCD
(Host Controller Driver) is used to control the EZ-Host or EZ-OTG device. Figure 3-1 illustrates this
kind of application.

Figure 3-1. Co-processor Mode

Applications

HCD for EZ-Host/OTG

USBD

EZ-Host/EZ-OTG Controller

GWES
System

File
System

Printer
System

Operating System

Embedded
System

Class Driver
(HID, Mass Storage, Printer, Audio,

Communication, Image, ...)

USB
Driver
Stack

USB
Device
Stack
Chapter 3. USB Host BIOS Specifications Page 3-1

BIOS User’s Manual
The HCD builds a Transaction Descriptor (TD) list for each frame. The TD list and data are loaded
into the EZ-Host/EZ-OTG buffer. The EZ-Host/EZ-OTG device then transfers the data associated
with this TD list to or from USB.

The HCD is informed of completion of the TD list processing via the SIE mailbox at which time it
checks the TD status. The HCD then builds a new TD list for the next frame and loads it into the
EZ-Host/EZ-OTG device. While the TD transfer is executed, the HCD copies the previous frame's
IN data from the EZ-Host/EZ-OTG part.

3.1.2 Stand-alone Mode

In the stand-alone mode the EZ-Host or EZ-OTG device works independently. The TD list is built
and submitted to BIOS in the same way as in co-processor mode. After completion of the TD list,
HCD is informed by semaphore.

3.2 Functional Requirements

The EZ-Host/EZ-OTG USB Host performs the following:

• Generates USB Reset

• Detects the device speed (Full- or Low-Speed)

• Generates the SOF/EOP

• Transfers the TD list over USB

• Performs error handling

• Performs scheduling

3.3 USB Host BIOS Overview

3.3.1 Block Diagram

The USB Host BIOS includes three software interrupts:

• HUSB_SIE1_INIT_INT

• HUSB_SIE2_INIT_INT

• HUSB_RESET_INT
Page 3-2 BIOS User’s Manual v1.1

Their functions are illustrated in Figure 3-2.

Figure 3-2. Block Diagram of USB Host BIOS

3.3.1.1 HUSB_SIEx_INIT_INT
HUSB_SIEx_INIT_INT is used to execute the TD list. It has the following functions:

Set SIE as Host and perform initialize:
The HUSB_SIEx_INIT_INT sets SIEx as a host and does initialization.

Check for pending TD list:
At the beginning of every frame, it checks to see if there is a TD list waiting for transfer. If true,
it begins the TD list transfer.

Schedule and perform transfer:
It transfers all TD data over USB.

Update status and error handling:
It updates the TD status after every transaction. It also does error handling for control and bulk
transfers. For ISO and Interrupt transfer errors, it will let the HCD handle the error. The
ActiveFlag is not changed to inactive for ISO and Interrupt transfers.

After the TD list is finished, the BIOS sends HUSB_TDListDone to the HCD via the SIE mail-
box. It also sets a semaphore at HUSB_SIEx_pTDListDone_Sem for the HCD.

HPI/HSS/
SPI

EZ-Host/OTG USB Host BIOS

TD
TD

DATA
TD
TD

DATA
TD

DATA

TD List

Device

HUSB_RESET_INT

USB
Device

HCD

TD List

TD
TD

DATA
TD
TD

DATA
TD

DATA

HUSB_SIE1_INIT_INT

HUSB_SIE2_INIT_INT
Chapter 3. USB Host BIOS Specifications Page 3-3

BIOS User’s Manual
3.3.1.2 HUSB_RESET_INT
HUSB_RESET_INT performs three functions:

USB Reset:
Before accessing a USB device, the HUSB_RESET_INT will generate a USB reset, which
forces the peripheral device to its default address of zero. After USB reset, configuration soft-
ware can read the device’s descriptor at the default address.

Speed Detect:
The HUSB_REST_INT will detect the full/low speed of the attached device and then return the
port status: FULL SPEED, LOW SPEED or NO DEVICE.

SOF/EOP Generation:
Based on the device speed HUSB_RESET_INT will generate SOF for full speed and EOP for
low speed. If no device is attached on this port, there will be no SOF/EOP.

3.3.2 Flow Chart of USB Transfer

The USB transfer needs the EZ-Host/EZ-OTG Host BIOS and HCD to work together. Figure 3-3
shows how data is transferred over USB.

EZ-Host/EZ-OTG USB Host BIOS

• EZ-Host/EZ-OTG reset: Sets SIE to host mode, initializes the registers, sets the interrupt
vectors and enables host interrupts.

• EZ-Host/EZ-OTG device checks HUSB_SIEx_CurrentTDPtr: If
HUSB_SIEx_pCurrentTDPtr is not zero, there is a TD list waiting for transfer. If
[HUSB_SIEx_pCurrentTDPtr]=0, there is no TD list waiting for transfer. Continue checking
at the beginning of every frame.

• EZ-Host/EZ-OTG device transfers this TD list to USB bus: If there is a TD list waiting
for transfer, the EZ-Host/EZ-OTG device begins to transfer this TD list to the USB bus.

• After completion of the TD list, the EZ-Host/EZ-OTG device sends the
HUSB_TDListDone to HCD: The EZ-Host/EZ-OTG device does this via SIE mailbox. It
informs the HCD that the TD list has been finished. It also sets semaphore at
HUSB_SIEx_pTDListDone_Sem.
Page 3-4 BIOS User’s Manual v1.1

HCD (Host Controller Driver)

• HCD Configures EOT (End Of Transfer): EOT is a configurable duration of time prior to
the end of a frame. All transactions should be completed by the time the starting point of
EOT is reached. During this time the HCD checks the status of the previous TD list and
loads a new TD list before the next frame.

• TD_ Load: HCD prepares the TD list and loads it into the EZ-Host/EZ-OTG buffer. There
are ping-pong buffers in the EZ-Host/EZ-OTG part to speed up the transfer. After loading
the TD list, HCD writes the TD list pointer to HUSB_SIEx_pCurrentTDPtr.

• TD_Check: After receiving the HUSB_TDListDone, the HCD checks the finished TD. The
HCD handles any transfer errors during this step.

• TD_DataCopy: HCD copies the IN data from EZ-Host/EZ-OTG. This is done while the EZ-
Host/EZ-OTG part transfers the TD list for the next frame. This is possible because of the
ping-pong buffers.

Figure 3-3. Flow Chart of USB Transfer

HCD Reset

TD_Check:
After recieving the

HUSB_SIEx_TDListDone,
HCD Check the finished TD

HCD Configures the EOT

TD_Load:
load TD List to EZ-Host/OTG;

write the TD list pointer to
HUSB_SIEx_pCurrentTDPtr.

TD_DataCopy :
Copy the IN data from the

EZ-Host/OTG

EZ-Host/OTG
Reset

After finishing the TD list,
EZ-Host/OTG sends the

HUSB_SIEx_TDListDone to
HCD

EZ-Host/OTG checking
HUSB_SIEx_CurrentTDPtr.

EZ-Host/OTG transfers this
TD List to USB bus

[HUSB_SIEx_pCurrent
TDPtr] =0

Yes

No

HCD

EZ-Host/OTG
BIOS

HUSB_TDListDone

HUSB_SIEx_pCurrentTDPtr

HUSB_SIEx_pTDListDone_Sem
Chapter 3. USB Host BIOS Specifications Page 3-5

BIOS User’s Manual
3.4 Software Interface Between HCD and BIOS

Figure 3-4. Time Domain Behavior

Figure 3-4 shows the time domain behavior for both EZ-Host/EZ-OTG BIOS and HCD.

Data Buffer
Ping-Pong SIE

SOF

SOF

SOF

SOF

SOF

SOF

Pong

SOF SOF

Ping

SOF
ISR

Start
Transfer

ISR

Done
Update Status

ISRUpdate Status

ISR

Done
Update Status

ISR TD

TD

TD

HCD

Start
Transfer

ISR

Done
Update Status

ISR
Done

Update Status

ISR

Done
Update Status

ISR TD

TD

TD

EZ-Host/OTG BIOS

EOT

EOT

EOT

TD_Load: Ping
TD_DataCopy: Pong

HCD

Pong

Start
Transfer

ISR

Done
Update Status

ISR

Done
Update Status

ISR

Done
Update Status

ISR T
D

T
D

T
D

HUSB_TDListDone

HUSB_SIEx_pTDListDone_Sem

TD_Check: Pong

TD_Load: Pong
TD_DataCopy: Ping

TD_Check: Ping

TD_Load: Pong
TD_DataCopy: Ping

TD_Check: Ping

HUSB_SIEx_pCurrentTDPtr

HUSB_SIEx_pCurrentTDPtr

USB Done
ISR

Next TD
Transfer

Next TD
Transfer

Next TD
Transfer

Next TD
Transfer

Next TD
Transfer

Next TD
Transfer

HUSB_TDListDone

HUSB_SIEx_pTDListDone_Sem

HUSB_TDListDone

HUSB_SIEx_pTDListDone_Sem
Page 3-6 BIOS User’s Manual v1.1

The HCD is responsible for cooperating with the EZ-Host/EZ-OTG BIOS to transfer data to the
USB bus. It performs three basic functions to work with EZ-Host/EZ-OTG part:

• TD_Load

• TD_Check

• TD_DataCopy

The software interface between HCD and BIOS includes the followings:

• TD Structure

• TD Semaphore Address

• TD SIE Mailbox Message

The TD structure is discussed in a separate section. The TD semaphore address and TD SIE mail-
box message information is presented in this section.

3.4.1 TD Semaphore Address

The BIOS contains five TD semaphore addresses (shared memory) which deliver semaphore
between BIOS and HCD. They are listed below and subsequently described.

3.4.1.1 HUSB_SIEx_pCurrentTDPtr
• BIOS: At the beginning of every SOF, BIOS checks HUSB_SIEx_pCurrentTDPtr to see If

there is a TD list waiting for transfer. If there is, the BIOS begins the TD list transfer.

• HCD: When TD_Load finishes loading the TD list to the EZ-Host/EZ-OTG device, it writes
the TD list address to HUSB_SIEx_pCurrentTDPtr.

3.4.1.2 EOT and HUSB_pEOT
TD_Check and TD_Load must be done with BIOS in sequence. So, it is important to keep
proper timing. A point called EOT (End of Transfer) is defined for each frame.

Please see Figure 3-5 for the definition of EOT. EOT value is in full speed bit time and is stored
in address HUSB_pEOT.

• HUSB_SIE1_pCurrentTDPtr equ 0x1B0 ;Address to SIE1 current TD pointer
• HUSB_SIE2_pCurrentTDPtr equ 0x1B2 ;Address to SIE2 current TD pointer
• HUSB_pEOT equ 0x1B4 ;Address to End Of Transfer
• HUSB_SIE1_pTDListDone_Sem equ 0x1B6 ;Address to SIE1 TD List Done Semaphore
• HUSB_SIE2_pTDListDone_Sem equ 0x1B8 ;Address to SIE2 TD List Done Semaphore
Chapter 3. USB Host BIOS Specifications Page 3-7

BIOS User’s Manual
Figure 3-5. End Of Transfer Point

• BIOS: For every frame, all data transaction must be completed before the EOT point.

• HCD: The EOT value should be set to guarantee that the TD_ Load will be finished before
next SOF. The TD_DataCopy could cross the SOF because of the ping-pong buffers.

When the EZ-Host/EZ-OTG part boots up, the HUSB_pEOT is cleared to zero. The EOT value is
based on the external processor speed and HCD mechanism. During initialization of the HCD the
EOT value should be written into HUSB_pEOT. It only needs to be set one time.

Note: When the EOT value is not set properly the USB host BIOS still works fine. In that
case, sometimes the TD_Load may not be finished before the next SOF and there will be no
transaction in the next frame (1 ms). So the worst case for not setting the EOT value prop-
erly is the loss of some bandwidth.

3.4.1.3 HUSB_SIEx_pTDListDone_Sem
This semaphore indicates that the TD list is done. It is equivalent to HUSB_TDListDone SIE mail-
box message. It is used in case there is no mailbox available.

• BIOS: After completion of TD list, set [HUSB_SIEx_pTDListDone_Sem]=1.

• HCD: The HCD checks HUSB_SIEx_pTDListDone_Sem to see if the TD list has been fin-
ished; then clears it to zero.

3.4.2 TD SIE Mailbox Message

There are two SIE mailboxes. SIE1’s mailbox address is 0x144 and SIE2’s mailbox address is
0x148. After the completion of TD list, the BIOS will send out the HUSB_TDListDone message to
their respective SIE mailbox.This message is bitmap. Bit 12 is HUSB_TDListDone.

• BIOS: After the completion of TD list, the BIOS will send the HUSB_TDListDone message
to HCD via HPI SIE mailbox (write to address 0x144/0x148).

SOF SOFEOT

USB Transfer USB Transfer

EOT value

EOF SOFEOT
Page 3-8 BIOS User’s Manual v1.1

• HCD: Upon receiving the HUSB_TDListDone message, HCD will begin to check the fin-
ished TD and load the next TD list. The following shows how HCD receives an
HUSB_TDListDone message:

– When the HPI mailbox interrupt is received, check the HPISTS register.

– If bit 4 of HPISTS is set, read address 0x144 to get message. If bit 5 of HPISTS is
set, read address 0x148 to get message.

– If bit 12 of the message is set, read the HUSB_TDListDone message for the
respective SIE.

3.5 TD List Data Structure

The TD is a 12-byte structure.

3.5.1 BaseAddress (WORD: 0x00-01)

The pointer to the TD data must be written into BassAddress when preparing a TD.

Example: If the TD data address is 0xA0C, 0xA0C should be written into BaseAddress.

Table 3-1. TD List Data Structure

TD
Offset Name Function
0x00-01 BaseAddress Base Address of Data Buffer
0x02-03 Port_Length Port Number /Data Length

0x04 PID_EP PID /Endpoint
0x05 DevAdd Device Address
0x06 Control TD Control
0x07 Status Transaction Status
0x08 RetryCnt Retry Counter/ Transfer Type/ Active Flag
0x09 Residue Residue

0x0A-0B NextTDPointer Pointer to Next TD

Table 3-2. BaseAddress (WORD: 0x00-01)

Bit Position Bit Name Function
0-15 BaseAddress Base Address
Chapter 3. USB Host BIOS Specifications Page 3-9

BIOS User’s Manual
3.5.2 Port_Length (WORD: 0x02-03)

The TD data length and port number must be written into Port_Length when submitting a TD.

DL9-0 10 Bit Data Length Value in Binary.

PN1-0 2 Bit Port Number in Binary:

00 --- Port 0 (Port A)
01 --- Port 1 (Port B)
10 --- Port 2 (Port C)
11 --- Port 3 (Port D)

EXAMPLE: If the TD is for port 1 (port B) and data length is 8, 0x4008 should be written into
Port_Length.

Table 3-3. Port_Length (WORD: 0x02-03)

Bit Position Bit Name Function
0 DL0 Data Length
1 DL1 Data Length
2 DL2 Data Length
3 DL3 Data Length
4 DL4 Data Length
5 DL5 Data Length
6 DL6 Data Length
7 DL7 Data Length
8 DL8 Data Length
9 DL9 Data Length

10 Reserved
11 Reserved
12 Reserved
13 Reserved
14 PN0 Port Number
15 PN1 Port Number
Page 3-10 BIOS User’s Manual v1.1

3.5.3 PID_EP (BYTE: 0x04)

The PID and Endpoint number must be written into PID_EP when submitting a TD.

EP3-0 4-bit Endpoint Value in Binary.
PID3-0 4-bit PID Field (See Table Below)

Example: If the TD is for endpoint 1 and PID_IN, 0x91 should be written into PID_EP.

Table 3-4. PID_EP (BYTE: 0x04)

Bit Position Bit Name Function
0 EP0 Endpoint
1 EP1 Endpoint
2 EP2 Endpoint
3 EP3 Endpoint
4 PID0 PID
5 PID1 PID
6 PID2 PID
7 PID3 PID

PID Type Bit7-Bit4
SETUP 1101 (D Hex)
IN 1001 (9 Hex)
OUT 0001 (1 Hex)
SOF 0101 (5 Hex)
PREAMBLE 1100 (C Hex)
NAK 1010 (A Hex)
STALL 1110 (E Hex)
DATA0 0011 (3 Hex)
DATA1 1011 (B Hex)
Chapter 3. USB Host BIOS Specifications Page 3-11

BIOS User’s Manual
3.5.4 DevAdd (BYTE: 0x05)

The device address must be written into DevAdd when submitting a TD.

DA6-0 7 Bit Device Address in Binary.

EXAMPLE: If the TD is to be sent to device address 3, 0x3 should be written into DevAdd.

3.5.5 Control (BYTE: 0x06)

The control register information must be written into Control when preparing a TD.

ARM bit: Should always be ‘1’ when loading a TD.

ISO bit: For ISO transfers, it must be ‘1’. For other transfers, it must be ‘0’.

SynSOF bit: When set to ‘1’, the transaction takes place after the next SOF. If set to ‘0',
the transaction takes place immediately if the SIE is free.

Table 3-5. DevAdd (BYTE: 0x05)

Bit Position Bit Name Function
0 DA0 Device Address
1 DA1 Device Address
2 DA2 Device Address
3 DA3 Device Address
4 DA4 Device Address
5 DA5 Device Address
6 DA6 Device Address
7 Reserved

Table 3-6. Control (BYTE: 0x06)

Bit Position Bit Name Function
0 ARM ‘1’ Arm transaction
1 Reserved Reserved
2 Reserved Reserved
3 Reserved Reserved
4 ISO ‘1’ allows ISO mode for this transaction.
5 SynSOF ‘1’ Synchronize transfer with SOF
6 DToggle Sequence Bit. ‘0’ if DATA0, ‘1’ if DATA1
7 Preamble When set to ‘1’ = sends pre-amble packet
Page 3-12 BIOS User’s Manual v1.1

DToggle bit: Data toggle. ‘0’ if DATA0, ‘1’ if DATA1. It must be written for both OUT
data and IN data. For IN data, it is also used for checking the sequence
error.

Preamble bit: When requiring the SIE to generate PREAMBLE, this bit must be set to
‘1’. This happens when transferring a TD to low-speed devices behind a
hub. Otherwise it must be set to ‘0’.

Example: If the TD is to be sent to a low-speed device behind a HUB with Sequence DATA1, 0xC1
should be written into Control.

3.5.6 Status (BYTE: 0x07)

The Status must be set to ‘0' when submitting a TD and must be checked after the TD list is done.

Example: Always write ‘0' into Status.

Table 3-7. Status (BYTE: 0x07)

Bit Position Bit Name Function
0 Ack Transmission acknowledge
1 Error Error detected in transmission
2 Time-Out Time Out occur
3 Seq Sequence Bit. 0-DATA0, 1-DATA1
4 Reserved
5 Overflow Overflow condition – maximum length exceeded during

receive (or Underflow condition)
6 NAK Peripheral returns NAK
7 STALL Peripheral returns STALL
Chapter 3. USB Host BIOS Specifications Page 3-13

BIOS User’s Manual
3.5.7 RetryCnt (BYTE: 0x08)

RetryCnt1-0 2-bit RetryCnt Value in Binary.

The RetryCnt0 and RetryCnt1 must be '1' when submitting a TD. When doing a TD_Check, check
how many retries are left. The maximum number of retries is three.

TransferType1-0 2-bit Transfer Type in Binary:

00 --- Control
01 --- ISO
10 --- Bulk
11 --- Interrupt

When doing a TD_Load, the transfer type must be written into TransferType.

ActiveFlag TD active flag

 ‘1’ --- Active

‘0’ --- Inactive

The ActiveFlag must be '1' when submitting a TD. When doing a TD_Check, check this bit to see if
the TD is active. For more details please refer to Section 3.6, "Error Handling".

Example: If the TD transfer type is Bulk, 0x1B should be written into RetryCnt.

Table 3-8. RetryCnt (BYTE: 0x08)

Bit Position Bit Name Function
0 RetryCnt0 Retry Counter Bit
1 RetryCnt1 Retry Counter Bit
2 TransferType0 Transfer Type
3 TransferType1 Transfer Type
4 ActiveFlag ‘1’ is active, ‘0’ is inactive
5 Reserved
6 Reserved
7 Reserved
Page 3-14 BIOS User’s Manual v1.1

3.5.8 Residue (BYTE: 0x09)

The Residue must be '0' when submitting a TD.

If the TD type is non-ISO and the overflow bit is set when doing a TD_Check, Residue must be
checked.

For the non-ISO transfer case, the maximum packet size is 64. So:

• If the 7th bit is ‘0', it is an UNDERFLOW and Residue contains the number of bytes left
over from Port_Length.

• If the 7th bit is ‘1', it is an OVERFLOW. The number is twos complement value in 8-bit rep-
resentation. It indicates the byte count of received packets was greater than the value from
Port_Length.

3.5.9 NextTDPointer (WORD: 0x0A-0B)

The NextTDPointer must carry the pointer to the next TD when submitting a TD. This Value stays
the same in the BIOS process. If the TD is the last one in the TD list, its NextTDPointer should be
‘0’.

Example: If the Next TD address is 0xA14, ‘0xA14’ should be written into NextTDPointer.

Note:
1. All the reserved bits should put ‘0’.
2. The following table shows the fields that get updated inside EZ-Host/EZ-OTG BIOS:

*In the RetryCnt field, TransferType is not updated.

Table 3-9. NextTDPointer (WORD: 0x0A-0B)

Bit Position Bit Name Function
0-15 NextTDPointer NextTDPointer

Name Updated inside the EZ-Host/EZ-OTG device
BaseAddress NO
Port_Length NO
PID_EP NO
DevAdd NO
Control NO
Status YES
RetryCnt YES *
Residue YES
NextTDPointer NO
Chapter 3. USB Host BIOS Specifications Page 3-15

BIOS User’s Manual
3.6 Error Handling

Error handing is done by both BIOS and HCD. BIOS will handle Control/Bulk transaction errors.
HCD will handle ISO/Interrupt transaction errors. Details are shown in Figure 3-6.

The BIOS handles the error in the following way:

Serious Error:

• Sequence error
• Overflow (Underflow)
• Stall

For these serious errors, BIOS halts this PIPE in that frame. All the successive TDs with this
PIPE (having the same port number, device number and endpoint number) will be marked as
INACTIVE (ActiveFlag=0) with Status=0.

The HCD must interpret that these successive TDs are actually not successful. So when HCD
finds a TD with a serious error it should halt this PIPE (except the short packet (underflow)); it
does not need to check the successive TDs.

For the short packet (underflow) the BIOS will halt the PIPE in that frame too and it will let
HCD make the decision. The HCD will treat short packets as either “end of unit of data” (no
error) or “serious error” per the client.

Retry-able Error:

• Error (CRC error or others)
• Time-Out

For these retry errors, BIOS will retry 3 times.

NAK:

For NAK, the BIOS will retry until the end of the current frame.

When checking TD status, HCD should handle the error in the following way:

ActiveFlag Status HCD Action (ISO/INT) HCD Action (CTL/BULK)
0 Status=0 N/A Success, TD done (except the halted pipe,

see “Serious Error”)
0 Status≠0 N/A Serious Error (except the short packet)
1 Status=0 Handle Error This TD hasn’t been executed
1 Status≠0 Handle Error Continue to Retry
Page 3-16 BIOS User’s Manual v1.1

Figure 3-6. Error Handling Interface

update packte
status and residue

to TD

Let HCD handle
error;

Yes

Serious
error?

ActiveFlag=0;
Stop all TD relate
to same EP/DEV/

Port;

Yes

No

No

Do TD Transfer
(ActiveFlag=1)

No error?

iISO/INT?

ActiveFlag=0;
Status=0;

No

Yes

NAK?

RetryCnt=0?

Yes

Dec RetryCnt;

Enough
Time?

Yes

No

No

No

Yes

End

(Status/=0)

(ActiveFlag=0)

(Status =0)

(Status= x)

(ActiveFlag=0)

(ActiveFlag=1)

(Status/=0)

(ActiveFlag=1)

HCD-BIOS Interface
Chapter 3. USB Host BIOS Specifications Page 3-17

BIOS User’s Manual
3.7 Schedule Bus Transaction Times

Before transferring all TD data, it must calculate how much bus time is required for a given TD
data. These calculations are required to ensure that the time available in a frame is not exceeded.
This schedule or calculation is based on USB 2.0 Specification, Section 5.11.3. The equations
used to determine transaction bus time are:

KEY:

Data_bc The byte count of the data payload.

Host_Delay The time required for the host to prepare for or recover from the transmission.
For the EZ-Host/EZ-OTG parts the required time is 106 full-speed bit times.

For the BIOS calculation, after reading the SOF timer register, it takes 21 full-
speed bit times to do the transfer.

Floor() The integer portion of the argument.

Hub_LS_Setup The time provided by the Host controller for hubs to enable low-speed ports.
This is measured as the delay from the end of the PRE PID to the start of the
low-speed SYNC; the minimum being four full-speed bit times.

BitStuffTime Function that calculates theoretical additional time required due to bit-stuffing in
signaling; the worst case is (1.1667*8*Data_bc)

Full-speed (Input)
Non-Isochronous Transfer (Handshake Included)
= 9107 + (83.54 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay
= 9107 + 83.54*(3.167+1.1667*8*Data_bc) + Host_Delay (ns)
= 112.5 + 9.36*Data_bc + Host_Delay (full-speed bit times)

Isochronous Transfer (No Handshake)
= 7268 + (83.54 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay
= 90.5 + 9.36*Data_bc + Host_Delay (full-speed bit times)

Full-speed (Output)
Non-Isochronous Transfer (Handshake Included)
= 9107 + (83.54 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay
= 112.5 + 9.36*Data_bc + Host_Delay (full-speed bit times)

Isochronous Transfer (No Handshake)
= 6265 + (83.54 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay
= 78.4 + 9.36*Data_bc + Host_Delay (full-speed bit times)
Page 3-18 BIOS User’s Manual v1.1

Low-speed (Input)
= 64060 + (2 * Hub_LS_Setup) + (676.67 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay
= 768.7 + 2* 4 + 8.12*(3.167+1.1667*8*Data_bc) + Host_Delay (full-speed bit times)
= 802.4 + 75.78*Data_bc + Host_Delay (full-speed bit times)

Low-speed (Output)
= 64107 + (2 * Hub_LS_Setup) + (667.0 * Floor(3.167 + BitStuffTime(Data_bc))) + Host_Delay
= 769.3 + 2*4 + 8*(3.167+1.1667*8*Data_bc) + Host_Delay (full-speed bit times)
= 802.6 + 74.67*Data_bc + Host_Delay (full-speed bit times)

3.8 Detail Design

3.8.1 HUSB_SIEx_INIT_INT

3.8.1.1 Software Interface
Refer to Section 3.4, "Software Interface Between HCD and BIOS".

3.8.1.2 Example:
Set SIE1 as Host and be ready to execute the TD list.

int HUSB_SIE1_INIT_INT ;Set SIE1 as Host
ret

3.8.2 HUSB_RESET_INT

3.8.2.1 Software Interface
Entry:

R1: Port number 0=USB-Port0
1=USB-Port1
2=USB-Port2
3=USB-Port3

R0: time interval for USB reset in milliseconds.

Return:

This interrupt returns the speed on that port.

R0: Bit0 = 0 Full speed
Bit0 = 1 Slow speed
Bit1 = 1 No device
Bit1 = 0 Device is connected
Chapter 3. USB Host BIOS Specifications Page 3-19

BIOS User’s Manual
3.8.2.2 Example
Reset port A. Generate SOF/EOP based on the speed and return the speed for that port.

mov r1, cPortA ;port A
mov r0, 10 ;USB reset interval is 10 ms
int HUSB_RESET_INT ;Reset USB and generate SOF
ret

3.8.2.3 Flow Chart

Figure 3-7. Flow chart of HUSB_RESET_INT

If slow
speed?

No

No

Yes

Yes

Return

Port Status
--->LOW SPEED

Port Status
--->FULL SPEED

Port Status
--->NO DEVICE

Enable EOP for
low speed device

Enable SOF for
full speed

device

If there is
device?

Start

Generate SE0

Hold USB bus

Remove SE0
Page 3-20 BIOS User’s Manual v1.1

Chapter 4 Slave Support Module Firmware

4.1 Introduction

4.1.1 Overview

The BIOS includes full speed and low speed slave support for both of its SIEs. This support con-
sists of standard chapter 9 processing, specific vendor command processing, and generic endpoint
support. This functionality is all and in part override-able. The majority of chapter 9 support is the
ability to service device requests required to enumerate and reset a device. Vendor command pro-
cessing supports USB loader, debugger, and memory peek and poke functionality. Generic end-
point support includes a software-interrupt-based interface to manage endpoint buffer framework.

4.1.2 Scope

This document describes functional requirements, an architectural outline, interrupt service rou-
tines, register usage, data structures subroutines, error handling, important design decisions, and
unit tests for the slave support module. The software descriptions outline the processing flow and
interfaces and include diagrams as needed. The unit test descriptions describe the test themselves
as well as the test environment and methodology.

The reader should have a cursory familiarity with USB control transfer processing, generic USB
endpoint support, and the EZ-Host/EZ-OTG hardware architecture (see Appendix "B").

4.2 Functional Requirements

The Slave Support Module’s functional requirements consist of standard chapter 9 processing,
vendor-specific command processing and generic endpoint support for both SIEs. Standard chap-
ter 9 processing is the ability to service standard device requests via the default endpoints. The
specific vendor command support consists of software tool and USB loader support. Generic end-
point support is the default BIOS support for servicing endpoint interrupts and the software inter-
rupt interface to these service routines. The following tables detail the functionality required by the
two command processing categories.
Chapter 4. Slave Support Module Firmware Page 4-1

BIOS User’s Manual
There must also be a programmatic means of completely or just partially overriding the above
functionality in both categories. Behavior override-ability will have the following granularity:

a. Endpoint 0 processing
b. Chapter 9 Standard Processing
c. Configuration Parsing
d. Device Descriptor Change
e. Configuration Descriptor Change
f. String Descriptor Change
g. Class Command Processing
h. Vendor Command Processing
i. Load Program
j. Generic Endpoint Support on an endpoint by endpoint basis
k. Generic IN endpoint support
l. Generic OUT Endpoint Support
m. USB Initialization
n. Finish Control Transfer

Override-ability equates to software interrupts, effectively routines that the BIOS and user applica-
tions can call. This enables a user to modify particular behavior without having to rewrite entire
functionality. This is especially important for endpoint 0 control transfer processing.

Table 4-1. Standard Command (Chapter 9) Requirements

Standard Request Description
CLEAR_FEATURE
SET_FEATURE

Enable and disable a device’s ability to remotely wakeup and to stall
and unstall an endpoint

GET_CONFIGURATION
SET_CONFIGURATION

Set/Get Configuration

GET_DESCRIPTOR Provide DEVICE and CONFIGURATION descriptors
GET_INTERFACE Specify or query for the current interface.
GET_STATUS Obtain DEVICE, INTERFACE, or ENDPOINT status
SET_ADDRESS Set the USB address

Table 4-2. Vendor Request Requirements

Vendor Request Description
LOAD_PROGRAM Load new binary either into RAM or Serial EEPROM
PEEK Return specific memory contents
POKE Change Specific memory locations
Page 4-2 BIOS User’s Manual v1.1

The chart below graphically depicts the dependencies of override-able functionality for control
transfer processing. Small device and configuration descriptor changes shall not require the asso-
ciated processing routines to be overridden. Any shaded block below may be overridden. When a
block is overridden, it must also provide any behavior that is in a un-shaded block below it, and the
override of shaded blocks below it are optional. A special case is generic Endpoint processing.

Figure 4-1. Override-ability Dependency Stack

The generic endpoint processing may be overridden on an endpoint by endpoint basis. The
generic endpoint processing framework is also entirely override-able. The framework itself has one
special hook to differentiate between control transfers and transfers on any other endpoint. This
special hook, a finish control transfer software interrupt, is used to reset the state of the control
transfer processor at the end of a control transfer’s data stage.

It is the responsibility of the generic endpoint processing functionality to abstract USB transfer
management in a manner which simplifies its utilization for applications and module developers.

In doing so it will provide a means to queue multiple transactions and notify the caller upon com-
pletion. Larger data transfers of data sequential in memory shall appear to users of this functional-
ity as a single transaction, while the transfer is divided into smaller USB transactions across the
endpoint. Upon transfer completion a caller specified call back routine will be called.

The programmatic interface exposed by aforementioned functionality has other benefits aside from
override-able modularity. It provides a set of utilities that can simplify applications development.
Similarly, it also cleanly exposes itself to other internal modules, an example would be an HPI/HSS
command processor.

Control Transfer State Management

Generic Slave Endpoint Support

SIE1 Endpoint0 ISR SIE2 Endpoint0 ISR

Chapter 9

Configuration
Processing

Vendor Decoder

Class

Loader
Peek,
Poke,
Arena

Other
Vendor
Chapter 4. Slave Support Module Firmware Page 4-3

BIOS User’s Manual
4.3 Detailed Design

The architecture, sequence, code layout and data structure for Endpoint0 and Generic Endpoint
Processing will be discussed. State, class and sequence diagrams will be utilized to detail desired
behavior. Decision/call trees and/or class diagrams will be used to describe the code and data
structure.

4.3.1 Endoint0 Processing Outline

4.3.1.1 Behavior
The USB slave architecture consists of endpoint 0 support and generic endpoint support for two
SIEs. Default/Control endpoint processing is the processing of USB Control Transfers usually via
endpoint 0. Chapter 9 support, class commands, and vendor specific commands are types of con-
trol transfers. Control transfers always have at least two stages, setup and status. Control trans-
fers that require the transfer of more data to the slave, or any data back to the host must have a
third, data, stage. The status stage is very similar to a data stage and can be considered a data-
less data stage. The following state diagram generally demonstrates how a control transfers han-
dler should be behave.

Figure 4-2. Control Transfer Handler State Diagram

Setup Stage
Ch. 9

Vendor (tools)

Data/Status Stage

Waiting For OUT Waiting For IN

Setup Command

Setup Arrived

OUT zero length

OUT, more data
to transfer

IN, more data to
transfer

Status IN/OUT Zero
Length
Page 4-4 BIOS User’s Manual v1.1

4.3.1.2 Architecture
Size and modularity are the two major considerations for this project. An architecture that mini-
mizes size and maintains modularity and produces the desired behavior meets our design goals.
Code Size can be minimized by sharing processing routines between SIEs and maintaining a
structure for each slave SIE that contains its configuration and state. Device descriptors are
required to support Chapter 9 processing and contain configuration information, so descriptor cen-
tric routines should be used to facilitate flexibility and save space. Each slave mode configured SIE
would have a collection of information that the slave processing routines would use to service it.

Figure 4-3. Control Transfer Processing Architecture

SIE SIE Data
EP Data

Descriptors
Generic EP

Frame
Control Regs

EP0 ISR

Control Transfer
Processor

Chapter_9

Loader

Vendor

Class

Generic Endpoint Support

Finish Transfer
Chapter 4. Slave Support Module Firmware Page 4-5

BIOS User’s Manual
The overall structure of a slave control transfer processor is sketched in Figure 4-3. Each SIE has
an ISR, called on hardware interrupt, and a collection of state and configuration data. The ISR sets
up the call into the Control Transfer Processor by referencing the appropriate collection and may
complete a register bank switch. The transfer processor then utilizes its logic and override-able
software interrupts (shaded in Figure 4-3) to complete the transaction and prepare for the next.
This support is entirely contained in the BIOS.

4.3.2 Generic Endpoint Support

Generic Endpoint support is a routine that is, at least initially, shared among all endpoints. It is a
single processing routine that utilizes endpoint specific states to process transfers on behalf of the
endpoints. This support is also entirely contained in the BIOS.

4.3.2.1 Behavior
This support simplifies all transfers across all endpoints by providing a uniform interface and
behavior. An application would prepare a buffer, and a frame referencing the buffer. The frame
would contain a pointer to the buffer, the buffer’s length, a null next frame pointer, and a call back
routine pointer. The application would then setup and call either the SUSBx_SEND_INT or
SUSBx_RECEIVE_INT to submit the frame. The generic processing block would log the frame
and set up the endpoint registers in the SIE to transfer either a portion or all the data depending on
the amount of data and the size of the endpoint. The SIE would then trigger the endpoints ISR
after the data transferred. The ISR would call setup and call into the generic block where pointers
would be walked along the data buffer and counts adjusted and SIE registers again configured for
the next data portion. Eventually all the data would be transferred and the ISR’s call into the
generic block would reset the state for that endpoint and issue a call back to the user application.
The following sequence diagram details this behavior.
Page 4-6 BIOS User’s Manual v1.1

Figure 4-4. Generic Endpoint Support Sequence Diagram

4.3.2.2 Architecture
Generic endpoint support will consist of a single set of routines that will operate on the endpoints.
Each endpoint, configured to utilize generic endpoint support, will have configuration and state
information that will be passed to the support entry routine from the endpoint ISR. This architecture
will minimize code size, maintain modularity and produce the desired behavior.

The architecture in Figure 4-5 uses rectangles to describe data structures and blocks with rounded
corners to depict routines. Lightly shaded routines are hardware interrupts, and darker shaded rou-
tines are software interrupts. The use of generic endpoint support for a particular endpoint can be
overridden simply by providing a new ISR for that endpoint. The Generic Support can be used for
vendor specific control transfers but the call back must eventually call the “Finish Transfer” soft-
ware interrupt to signal the default control transfer processor.

User
Application

Generic
Endpoint
Support

Endpoint ISR SIE

prepare buffer
prepare frame

Send/Receive Int
setup transaction

processor

configure ep regs for data subset

configure ep regs for data subset

configure ep regs for data subset

Data
Transferred

Data
Transferred

Data
Transferred

Interrupt

Interrupt

Interrupt

calls

calls

calls

Callback

OK

Application aware
of

transfercompletion

While
more
data
pointers
are
walked
along
data
buffer
Chapter 4. Slave Support Module Firmware Page 4-7

BIOS User’s Manual
Figure 4-5. Generic Endpoint Support Architecture

4.3.2.3 Data Structures
The following table describes the structures and their relationships, where “dw” is 16 bits.

Table 4-3. Generic Frame (1/ Send/Receive Request) Used by Generic Endpoint Processing.

Name Size Description
Link dw Pointer to the next Generic Frame in active frame

list. The current design requires this to be initial-
ized with zero.

BufferBase dw Pointer to a buffer
BufferLen dw Length of buffer in bytes
Callback dw Pointer to function to call when the send receive

transaction has completed.

Frame
Data Block Ptr
Count
Next Frame Ptr
Callback Ptr

Endpoint

Registers

Callback

Finish Transfer

Generic Endpoint
Support

Endpoint ISR

Send/Receive Data
Page 4-8 BIOS User’s Manual v1.1

4.3.2.4 Code Structure
The code structure parallels the previous architecture diagram. There are ISR and user entry
points into the code provided via software interrupts. The ISR code consists of two classes of
device and endpoint service routines. The endpoint service routines serve as entry points that
setup subsequent calls to the Generic Endpoint routine common to all endpoints. Since endpoint 0
is the default endpoint (only one with message pipe support) it also uses the ControlHandler rou-
tine to initiate control transfer processing. The diagram below details endpoint code flow. Square
boxes indicate interrupt vectors (software and hardware as previously described).

Other interfaces into the code include software interrupts and the initialization routine. The initial-
ization routine works by constructing an endpoint table out of contiguous EP#_Table_Entry’s and
then passing a pointer to the base of this table, the number of endpoints in it to the SUSB#_Init
routine. The BIOS will then initialize the SIE and related data structures. The USB_Init and
SUSB#_Reset_Isr are likely callers.

OUT and IN transactions may be queued via the RECEIVE and SEND software interrupts for each
slave SIE. These calls queue the generic frames for Generic Endpoint processing, arming the end-
points if necessary. Control transfers must be initiated from within a control transfer handler, i.e.
Chapter 9 Processor, Vendor Processor, Class Processor. A data stage may be initiated here with
a call back (e.g. SUSBx_FINISH_INT) to handle the status phase. Two stage-transfers may just
initiate the status phase.

The software interrupt table provides place holders for data (descriptor pointers, loader com-
mands), over-rideable calls within the BIOS (class, vendor, Chapter 9, string desc etc) and utilities
(SUSBx_FINISH_INT etc.).
Chapter 4. Slave Support Module Firmware Page 4-9

BIOS User’s Manual
Figure 4-6. Endpoint Processing Code Flow

Endpoint# ISR
Entry point :
Clears Int
Sets EP#

(1 per endpoint)

SUSB#_EP_Hub
Loads SIE V and NV

Pointers, and common
cleanup

Generic Endpoint
Processing

Loads EP data,
and completes

data transactions
on behalf of the

endpoint.

Control Handler
Processes Device
Requests, possibly
queing transactions
to complete control

transfers.

Chapter 9 Standard
Command
Processing

jump

call

Call

return

calls

Vendor Command
Processing

Class Command
Processing

Scan Processing
Turns over
transaction

completion to scan
idle routine.
Page 4-10 BIOS User’s Manual v1.1

Device ISRs for each SIE include the SUSB#_Reset_Isr, SUSB#_SOF_Isr and the Timer1_Isr.
The reset ISR is used to re-initialize the state (registers and control data) of the SUSB# device.
The SUSB#_SOF_Isr is used with the Timer1_Isr to implement suspend and wake-up functionality.

4.3.3 Reasons for Important Choices

Duplication Software Interrupts. Just prior to implementation it was decided that each SIE
should have its own set of software interrupts for maximizing BIOS code saving.

Generic Endpoint Support in BIOS. The generic endpoint support is in the BIOS mainly because
it does not consume a lot of space and facilitates slave USB utilization for applications and mod-
ules. Modules and applications can then be more consistent, smaller and more organized with a
uniform interface, less duplicity and less coupling.

Tool Support. Is available on both USB ports but not simultaneously.

Speed Support. Low or full speed configuration is possible for either or both SIEs.

Variable Number of Endpoints. Since devices can have different numbers of endpoints and
SIEs, a configuration mechanism was needed to prevent memory space from being waste on
unused endpoint buffers and data within the BIOS. The passing of an initialization table to the init
routine accommodates this. This way the variable amount of memory in which the table lives
resides in the users space, i.e. only users with many endpoints get the many endpoint memory
penalty. This may be augmented later with a library routine that can parse a device’s descriptors to
generate the table.

Variable Endpoint Size. Support a variable size amount on an endpoint by endpoint basis.

Odd Transaction Support. Generic endpoint processing supports transactions that are not inte-
ger multiples of the endpoint length.

Chapter 4. Slave Support Module Firmware Page 4-11

BIOS User’s Manual
Page 4-12 BIOS User’s Manual v1.1

Chapter 5 HPI Transport Module

5.1 Introduction

5.1.1 Overview

The Host Processor Interface (HPI) provides a high-speed interface into the CY16 processor for
control and debug purposes. The interface port provides a bi-directional mailbox and bi-directional
DMA. The DMA channel is used for reading and writing EZ-Host/EZ-OTG memory. The mailbox
channel is used for LCP commands and responses.

5.1.2 Scope

This document provides details on the HPI support software. A basic understanding of the EZ-
Host or EZ-OTG hardware and software architecture is assumed.

5.2 Functional Requirements

The HPI Transport exposes the Link Control Protocol via the HPI Hardware Interface. The Trans-
port must be capable of receiving LCP commands from an external CPU and sending back
responses via the mailbox. The Transport must also allow asynchronous messages to be sent to
the external CPU.

5.3 Detailed Design

See Figure 2-1 Link Control Protocol.

5.3.1 HPI General Description

16-bit multiplexed address/data interface with the following interface registers:
Chapter 5. HPI Transport Module Page 5-1

BIOS User’s Manual
Write Address Pointer
Read Address Pointer
Data Register
Mailbox register

Allows external processor to directly access the entire on-chip memory by first loading either the
Write Address Pointer or Read Address Pointer, and then performing single or multiple write/read
to the data register. The read/write pointer auto-increments during multiple read/write accesses,
thus allowing a fast block mode transfer.

The external processor can write to the mailbox register and cause an internal interrupt in the on-
chip processor.

The on-chip processor can write to the mailbox register and cause an external interrupt signal to
be asserted, which clears automatically upon a read from the mailbox.

The external processor access to on-chip memory is re-synchronized with the internal 48MHz
clock, and requires a successful arbitration of the on-chip internal memory bus. The HPI is the
highest priority bus contender.

The maximum data transfer rate on the HPI port is 48MHz / 6 = 8MHz = 16.0 MByte/sec using
16-bit data.

The 2-bit port address decodes to four port registers:

00 HPIDATA data register
10 HPIADDR memory access address
01 HPIMAILBOX mailbox register
11 HPISTS HPI port status

5.3.2 HPI Signal Description

The HPI port of the EZ-Host/EZ-OTG device uses GPIO pins shared by the DMA and IDE sub-
systems. To put the EZ-Host/EZ-OTG device into HPI mode use the GPIO configuration register
(0xC01C). The HPI mode allows an external host processor to directly read/write to EZ-Host/EZ-
OTG internal memory. The HPI port consists of the following I/O signals:

HPI_Addr[1:0] 2 bit port address

HPI_Data[15:0] 16-bit port data

HPI_nWRITE port writes pulse

HPI_nREAD port read pulse

HPI_INTR mailbox interrupts from EZ-Host/EZ-OTG to System Host
Page 5-2 BIOS User’s Manual v1.1

Figure 5-1. EZ-Host/EZ-OTG Chip

5.3.3 Host DMA to/from EZ-Host/EZ-OTG Memory via HPI Port

The host can access the on-chip ROM and on-chip RAM of the EZ-Host/EZ-OTG part. Obviously,
the on-chip ROM is read only.

A data block write by the host to the on-chip memory begins with the System Host writing the EZ-
Host/EZ-OTG memory address to the HPIADDR register, followed by writing the data block contig-
uously to the HPIDATA register.

A data block read by the host from the on-chip memory begins with the host writing the EZ-Host/
EZ-OTG memory address to the HPIADDRR register, followed by reading the data block with con-
secutive reads from the HPIDATA register.

Loading the HPIADDR register must precede changing host read/write direction. The memory
addresses are auto-incremented after each access to the HPIDATA register.

The HPI interface pre-fetches data from the on-chip memory system when the HPIADDR register
is loaded, and after every read from the HPIDATA register. Therefore, reading a block of n words
from the HPI port results in n+1 read accesses to the on-chip memory system. The pre-fetch pipe-
line also delays the read data.

The maximum data transfer rate is one word every 6 T, where T is 1/48MHz, resulting in a rate of
16 Mega-byte/second.

Refer to section 6 for HPI write and read cycle timing specifications.

Host
Processor

HPI port

incoming
mailbox
register

outgoing
mailbox
register

DMA
memory
address
counter

DMA
data
buffer/
registers

SL16
CPU

On-chip
Memory
System
(ROM, RAM)

CPU Bus

HPI_nCS

HPI_A[1:0]

HPI_nWR

HPI_nRD

HPI_D[15:0]

HPI_INTR

incoming
mailbox
interrupt

outgoing
mailbox
interrupt

chip
select

address

read

write

data

EZ-Host/OTG chip
Chapter 5. HPI Transport Module Page 5-3

BIOS User’s Manual
5.3.4 HPI INIT Routine

The HPI INIT routine is called to enable LCP messages to be processed via the HPI Transport.
The INIT Routine performs the following:

• Loads HPI Commands Processor table

• Enables HPI I/F via EZ-Host/EZ-OTG Control Registers

• Enables RX in the Interrupt Enable Register

5.3.5 Host to EZ-Host/EZ-OTG MailBox Message

The HPI Mailbox RX ISR is triggered when the external CPU writes to the HPI mailbox. The ISR
will get the 16-bit word from the mailbox.

Host sends a single 16-bit word message to the EZ-Host/EZ-OTG device by writing to the HPI-
MAILBOX register of the Host Interface Port. The message word is readable by the CY16 CPU as
the HostMailBoxMsg register.

When Host writes the HPIMAILBOX register of the HPI port, an interrupt is generated within the
EZ-Host/EZ-OTG on-chip processor. The interrupt is automatically cleared when the CY16 CPU
reads from the HostMailBoxMsg register.

The incoming mailbox interrupt is maskable via bit 6 of the INTERRUPT ENABLE REGISTER.

This register is initialized to zero by the hardware at reset.

5.3.6 EZ-Host/EZ-OTG to Host MailBox Message

The EZ-Host/EZ-OTG part sends a single 16-bit word message to Host by writing to the Mail-
BoxMsg register. The message is then readable by the host at HPIMAILBOX register on the HPI
port.

When EZ-Host/EZ-OTG writes to the MailBoxMsg register, an interrupt is generated and sent to
the HPI port as the HPI_INTR signal. The interrupt is automatically cleared when the Host reads
from the HPIMAILBOX register of the HPI port.

When EZ-Host/EZ-OTG is configured for HPI mode, the HPI_INTR signal shares the pin with
GPIO24. The HPI_INTR state can be polled by the CY16 processor at bit 8 of the GPIO INPUT
REGISTER 1.

This document describes BIOS operation and software interrupts. The following sections define
(pictorially) the interrupt vectors and the BIOS calls.
Page 5-4 BIOS User’s Manual v1.1

5.3.7 HPI TRANSFER DIAGRAMS FOR LCP

5.3.7.1 COMM_RESET via HPI

Figure 5-2. COMM_RESET via HPI

5.3.7.2 COMM_JUMP2CODE via HPI

Figure 5-3. COMM_JUMP2CODE via HPI

Notes: COMM_CODE_ADDR is defined as same as the COMM_MEM_ADDR, which is a pointer
to the code to jump to; it is written via HPI Direct Memory Access not the mailbox. Then the
COMM_JUMP2CODE can be sent over the mailbox. Of course, before either of these operations
is done, the code itself should exist in the memory space that COMM_CODE_ADDR will point to. If
the code jumped to does not return, then the ACK will not be sent.

HOST CPU
HPI Master

COMM_RESETSend 16 byte
Command

 ResponseWait for
Response

EZ-Host/OTG
HPI MailBox

HOST CPU
HPI Master

COMM_JUMP2CODESend CMD

 Response
Wait for

Response

EZ-Host/OTG
HPI MailBox

SET COMM_CODE_ADDR
Set Jump
Address

EZ-Host/OTG
HPI Direct
Memory
Access

Jump After
Send
Response
Chapter 5. HPI Transport Module Page 5-5

BIOS User’s Manual
5.3.7.3 COMM_CALL_CODE via HPI

Figure 5-4. COMM_CALL_CODE via HPI

Notes: COMM_CODE_ADDR is defined as same as the COMM_MEM_ADDR, which is a pointer
to the code to jump to; it is written via HPI Direct Memory Access not the mailbox. Then the
COMM_CALL_CODE can be sent over the mailbox. Of course, before either of these operations
is done, the code itself should exist in the memory space that COMM_CODE_ADDR will point to.
If the code jumped to does not return, then the ACK will not be sent.

HOST CPU
HPI Master

COMM_CALL_CODESend CMD

 Response

Wait for
Response

EZ-Host/OTG
HPI MailBox

SET COMM_CODE_ADDR
Set Call
Address

EZ-Host/OTG
HPI Direct
Memory
Access

Call Code
then Send
Response
Page 5-6 BIOS User’s Manual v1.1

5.3.7.4 COMM_WRITE_CTRL_REG via HPI

Figure 5-5. COMM_WRITE_CTRL_REG via HPI

Notes: The COMM_CTRL_REG_ADDR is defined the same as the COMM_MEM_ADDR, which
is a pointer to the CY16 address to be read. The COMM_CTRL_REG_DATA is defined as the
COMM_MEM_LEN and the COMM_CTRL_REG_LOGIC is defined as the COMM_LAST_DATA.

Users should supply the COMM_CTRL_REG_ADDR, COMM_CTRL_REG_DATA, and
COMM_CTRL_REG_LOGIC before writing the command COMM_WRITE_CTRL_REG in the HPI
mailbox.

HOST CPU
HPI Master

COMM_WRITE_CTRL_REG
Send CMD

 Response
Wait for

Response

EZ-Host/OTG
HPI MailBox

SET COMM_CTRL_REG_ADDR
Set Control

Reg Address
and Value SET COMM_CTRL_REG_DATA

EZ-Host/OTG
HPI Direct
Memory
Access

SET COMM_CTRL_REG_LOGIC

Optionally set
LOGIC

Operation
Chapter 5. HPI Transport Module Page 5-7

BIOS User’s Manual
5.3.7.5 COMM_READ_CTRL_REG via HPI

Figure 5-6. COMM_READ_CTRL_REG via HPI

Notes: The COMM_CTRL_REG_ADDR is defined the same as the COMM_MEM_ADDR, which
is a pointer to the CY16 address to be read. the COMM_CTRL_REG_DATA is defined as the
COMM_MEM_LEN.

Users should supply the COMM_CTRL_REG_ADDR before writing the command
COMM_READ_CTRL_REG in the HPI mailbox.

After receiving the ACK, the COMM_CTRL_REG_DATA (i.e. COMM_MEM_LEN), should be read
via the HPI Direct Memory Access

HOST CPU
HPI Master

COMM_READ_CTRL_REGSend CMD

 ResponseWait for
Response

EZ-Host/OTG
HPI MailBox

EZ-Host/OTG
HPI Direct
Memory
Access

 Set COMM_CTRL_REG_ADDR
Set Control

Reg Address

 GET COMM_CTRL_REG_DATA

Get Control
Reg Value
Page 5-8 BIOS User’s Manual v1.1

5.3.7.6 COMM_READ_XMEM via HPI

Figure 5-7. COMM_READ_XMEM

Notes: Users should supply the COMM_MEM_ADDR, COMM_MEM_LEN and
COMM_LAST_DATA before writing the command COMM_READ_XMEM in the HPI mailbox. After
receiving ACK from the EZ-Host/EZ-OTG device, the data should be read from
COMM_LAST_DATA.

The external microprocessor should maintain the memory usage of EZ-Host/EZ-OTG internal
memory space. The COMM_LAST_DATA should be allocated inside the internal memory space.

HOST CPU
HPI Master

COMM_READ_XMEM

 Response

EZ-Host/OTG
HPI MailBox

Set COMM_MEM_LEN

EZ-Host/OTG
HPI Direct
Memory
Access

Set COMM_MEM_ADDR

 Read Data from COMM_LAST_DATA

Set memory
pointers and

length

Wait for
Response

Get Data

Set COMM_LAST_DATA

Pointer to internal RAM

Pointer to external RAM
Chapter 5. HPI Transport Module Page 5-9

BIOS User’s Manual
5.3.7.7 COMM_WRITE_XMEM via HPI

Figure 5-8. COMM_WRITE_XMEM via HPI

Notes: Users should supply the COMM_MEM_ADDR, COMM_MEM_LEN, COMM_LAST_DATA
and also the users buffer to the address that is pointed to by the COMM_LAST_DATA before writ-
ing the command COMM_WRITE_XMEM in the HPI mailbox.

The external microprocessor should maintain the memory usage of EZ-Host/EZ-OTG internal
memory space. The COMM_LAST_DATA should be allocated inside the internal memory space.

HOST CPU
HPI Master

COMM_WRITE_XMEM

 Response

Wait for
Response

EZ-Host/OTG
HPI MailBox

Set COMM_MEM_LEN
Set memory

buffer data

and pointers

EZ-Host/OTG
HPI Direct
Memory
Access

Set COMM_MEM_ADDR
Set COMM_LAST_DATA

Pointer to Internal RAM

Pointer to External RAM

Send CMD
Page 5-10 BIOS User’s Manual v1.1

5.3.7.8 COMM_EXEC_INT via HPI

Figure 5-9. COMM_EXEC_INT via HPI

Notes: Users should supply the COMM_INT_NUM and COMM_R0-R13 before writing the com-
mand COMM_EXEC_INT in the HPI mailbox.

The external microprocessor should read the COMM_R0 after receiving the ACK from the EZ-
Host/EZ-OTG device.

When executing the “COMM_INT_NUM” that does not require COMM_R0-COMM_R13, setting
value for these R0-R13 can be ignored.

HOST CPU
HPI Master

COMM_EXEC_INT

 Response

Wait for
Response

EZ-Host/OTG
HPI MailBox

SET COMM_INT_NUMSet Int
Number and

Register
Values

EZ-Host/OTG
HPI Direct
Memory
Access

Execute INT
and send
Response

SET COMM_R0

SET COMM_R13

 Get COMM_R0Optionally
read

COMM_R0
Chapter 5. HPI Transport Module Page 5-11

BIOS User’s Manual
Page 5-12 BIOS User’s Manual v1.1

Chapter 6 SPI Transport Module Firmware

6.1 Introduction

6.1.1 Overview

The Serial Peripheral Interface (SPI) of the CY16 processor provides a synchronous interface to
the external host CPU. For connection to a host CPU, the SPI hardware is used in Slave Mode. In
slave mode the external host CPU can communicate to EZ-Host/EZ-OTG device at up to a 2Mhz
clock rate.

6.1.2 Scope

This document provides details on the SPI support software. A basic understanding of the EZ-
Host/EZ-OTG hardware and software architecture is assumed.

6.2 Functional Requirements

The SPI Transport exposes the Link Control Protocol via the SPI hardware interface. The transport
must be capable of receiving LCP commands from an external CPU and sending back responses.
The transport must also allow asynchronous messages to be sent to the external CPU.

6.3 Detailed Design

Refer to Figure 2-1 Link Control Protocol for details.

The SPI Transport is unique in that it is truly a slave interface and cannot transmit or receive data
unless requested from the EZ-Host/EZ-OTG device. This makes for a much tighter communication
protocol than that of HPI or HSS. The interface is synchronous with the EZ-Host part initiating
every data transfer to and from the EZ-Host. This means that the SPI Transport must be setup and
ready for a Read or Write of data of the correct length at every phase of the protocol. This is
Chapter 6. SPI Transport Module Firmware Page 6-1

BIOS User’s Manual
accomplished through a simple state machine. These details make the SPI Transport the most
complicated it implements.

6.3.1 General Outline

The SPI Transport consists of the following functions:

• SPI INIT Routine

• SPI_RX_ISR

• SPI_DONE_ISR

• SPI Send Block Routine

• SPI Receive Block Routine

6.3.2 SPI INIT Routine

The SPI INIT routine is called to enable LCP messages to be processed via the SPI transport.

The INIT routine does the following:

• Enables the SPI I/F via the EZ-Host/EZ-OTG control register’s entry point, spi_ginit, for
GPIO Connection

• Sets up INT_REQ (via GPIO24) for every DATA/ACK/NAK

• Enables the SPI Interrupt enable

• Sets up to receive a CMD packet from the Host

6.3.3 SPI_RX_ISR

The SPI_RX_ISR is triggered when the External CPU writes an 8-byte (4-word) command block to
the SPI interface.The ISR gets the 16-bit port command and the six bytes that follow and places
them in memory. The extra six bytes contain parameters for the given LCP command. For exam-
ple, if the command is COMM_JUMP2CODE, then the data after the command contains the
address to jump to. This is described in the SPI transfer diagrams.

6.3.4 SPI_Done_ISR

The SPI_DONE_ISR triggers when either a block transmit or block receive has completed. Before
the SPI_Send_Blk exits, the SPI hardware must be configured for the next transfer. The next
Page 6-2 BIOS User’s Manual v1.1

transfer will be the Host polling for the LCP response. So the ISR will configure the SPI hardware
to be ready for a read and points to 0xFF for the read data.

6.3.5 SPI_Send_Blk Routine

The SPI_Send_Blk routine is used to send data to the Host CPU.

Entry: R1 – Number of words to send

R8 – Pointer to data

R9 -- Pointer to SPI_TX_ADDR

Return: Assert IRQ0 high

6.3.6 SPI_Rec_Blk Routine

The SPI_Receive_Blk routine is used to send data to the Host CPU.

Entry: R1 – Number of words to send

R8 – Pointer to data

R9 -- Pointer to SPI_RX_ADDR

Return: None

6.3.7 SPI polling the Status

If the application interface decides to poll the STATUS after each LCP command, it must poll the
first MSB status byte until it returns a not equal to 0xFF. In the case of polling the STATUS byte, the
Host must give time to the BIOS in between sending LCP commands and reading responses. The
Host should wait at least 100 microseconds (Assume only one SIE and no other activity like UART.
If there are more idle tasks, this number needs to be adjusted.) after sending a CMD packet before
attempting to poll the response. Also, after receiving a response the host should wait 100 micro-
seconds before issuing another CMD packet. If the application interface decides to use the inter-
rupt, then the IRQ0 (GPIO24) can be used as the interrupt signal whenever the STATUS word is
ready to be read. IRQ0 is normally a low signal and the BIOS will set it high when the STATUS is
ready. This signal will be low, when the STATUS word is finished reading from the external micro-
processor.

Note: If the first byte of the STATUS word is equal to 0xFF, it must continue to read this byte until it
returns a value other than 0xFF .
Chapter 6. SPI Transport Module Firmware Page 6-3

BIOS User’s Manual
6.3.8 SPI TRANSFER DIAGRAMS FOR LCP

6.3.8.1 COMM_RESET via SPI

Figure 6-1. COMM_RESET via SPI

HOST CPU
SPI Master

COMM_RESET [7:0]

Send 8 Byte
CMD Packet

EZ-Host/OTG
SPI Slave

 Response = COMM_ACK [7:0]

COMM_RESET [15:8]
“XXh”

Get
2 Bytes of
Response Response = COMM_ACK [15:8]

“XXh”

“XXh”

“XXh”

“XXh”

“XXh”

Poll for non
0xFF

 Wait = 0xFF
Page 6-4 BIOS User’s Manual v1.1

6.3.8.2 COMM_JUMP2CODE via SPI

Figure 6-2. COMM_JUMP2CODE via SPI

Notes: The code should exist in the memory space that COMM_CODE_ADDR will point to. If the
code jumped to does not return, then the ACK will not be sent.

HOST CPU
SPI Master

COMM_JUMP2CODE [7:0]

Send 8 Byte
CMD Packet

EZ-Host/OTG
SPI Slave

 Response = COMM_ACK [7:0]

COMM_JUMP2CODE [15:8]
COMM_CODE_ADDR [7:0]

 Response = COMM_ACK [15:8]

COMM_CODE_ADDR [15:8]
“XXh”

“XXh”

“XXh”

“XXh”

Jump After
Send
Response

Poll for non
0xFF

 Wait = 0xFF

Get
2 Bytes of
Response
Chapter 6. SPI Transport Module Firmware Page 6-5

BIOS User’s Manual
6.3.8.3 COMM_CALL_CODE via SPI

Figure 6-3. COMM_CALL_CODE via SPI

Notes: The code should exist in the memory space that COMM_CODE_ADDR will point to. If the
code jumped to does not return, then the ACK will not be sent.

HOST CPU
HSS Master

COMM_CALL_CODE [7:0]

Send 8 Byte
CMD Packet

EZ-Host/OTG
HSS Slave

 Response = COMM_ACK [7:0]

COMM_CALL_CODE [15:8]
COMM_CODE_ADDR [7:0]

Get
2 Bytes of
Response Response = COMM_ACK [15:8]

COMM_CODE_ADDR [15:8]
“XXh”

“XXh”

“XXh”

“XXh”

Call Code
Then
Send
Response

Poll for non
0xFF

 Wait = 0xFF
Page 6-6 BIOS User’s Manual v1.1

6.3.8.4 COMM_WRITE_CTRL_REG via SPI

Figure 6-4. COMM_WRITE_CTRL_REG via SPI

HOST CPU
SPI Master

COMM_WRITE_CTRL_REG [7:0]
COMM_WRITE_CTRL_REG [15:8]COMM_CTRL_REG_ADDR [7:0]
COMM_CTRL_REG_ADDR [15:8]

EZ-Host/OTG
SPI Slave

Send 8 Byte
CMD Packet

COMM_CTRL_REG_DATA [7:0]
COMM_CTRL_REG_DATA [15:8]

 Response [7:0]

 Response [15:8]

Poll for non
0xFF

 Wait = 0xFF

Get
2 Bytes of
Response

COMM_CTRL_REG_LOGIC[7:0]
COMM_CTRL_REG_LOG [15:8]
Chapter 6. SPI Transport Module Firmware Page 6-7

BIOS User’s Manual
6.3.8.5 COMM_READ_CTRL_REG via SPI

Figure 6-5. COMM_READ_CTRL_REG via SPI

HOST CPU
SPI Master

COMM_READ_CTRL_REG [7:0]

 Response [7:0]

COMM_READ_CTRL_REG [15:8]COMM_CTRL_REG_ADDR [7:0]COMM_CTRL_REG_ADDR [15:8]

 Response [15:8]
Get

2 Bytes of
Response

followed by 2
bytes of Data

 COMM_CTRL_REG_DATA [7:0]

 COMM_CTRL_REG_DATA [15:8]

“XXh”

“XXh”

“XXh”
“XXh”

EZ-Host/OTG
SPI Slave

 Wait = 0xFFPoll for non
0xFF

Send 8 Byte
CMD Packet
Page 6-8 BIOS User’s Manual v1.1

6.3.8.6 COMM_WRITE_MEM via SPI

Figure 6-6. COMM_WRITE_MEM via SPI

HOST CPU
SPI Master

COMM_WRITE_MEM [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_WRITE_MEM [15:8]
COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR [15:8]

 Response [15:8]

 Mem Value 1 [7:0]
 Mem Value 1 [15:8]

“XXh”

“XXh”

EZ-Host/OTG
SPI Slave

COMM_MEM_LEN[7:0]
COMM_MEM_LEN[15:8]

 Mem Value n [7:0]
 Mem Value n [15:8]

Send
n Words of

Data

Poll for non
0xFF

 Wait = 0xFF

Get
2 Bytes of
Response
Chapter 6. SPI Transport Module Firmware Page 6-9

BIOS User’s Manual
6.3.8.7 COMM_READ_MEM via SPI

Figure 6-7. COMM_READ_MEM via SPI

HOST CPU
SPI Master

COMM_READ_MEM [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_READ_MEM [15:8]
COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR [15:8]

 Response [15:8]

 Mem Value 1 [7:0]

 Mem Value 1 [15:8]

“XXh”

“XXh”

EZ-Host/OTG
SPI Slave

COMM_MEM_LEN [7:0]
COMM_MEM_LEN [15:8]

 Mem Value n [7:0]

 Mem Value n [15:8]

Poll for non
0xFF

 Wait = 0xFF

Get
2 Bytes of
Response

followed by n
words of Data
Page 6-10 BIOS User’s Manual v1.1

6.3.8.8 COMM_WRITE_XMEM via SPI

Figure 6-8. COMM_WRITE_XMEM via SPI

COMM_WRITE_XMEM [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_WRITE_XMEM [15:8]
COMM_MEM_LEN [7:0]
COMM_MEM_LEN [15:8]

 Response [15:8]

 Mem Value 1 [7:0]
 Mem Value 1 [15:8]

COMM_LAST_DATA
COMM_LAST_DATA

COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR[15:8]

 Mem Value n [7:0]
 Mem Value n [15:8]

Send
n Words of

Data

Poll for non
0xFF

 Wait = 0xFF

HOST CPU
SPI Master

EZ-Host/OTG
SPI Slave

Get
2 Bytes of
Response
Chapter 6. SPI Transport Module Firmware Page 6-11

BIOS User’s Manual
6.3.8.9 COMM_READ_XMEM via SPI

Figure 6-9. COMM_READ_XMEM via SPI

HOST CPU
SPI Master

COMM_READ_XMEM [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_READ_XMEM [15:8]
COMM_MEM_LEN [7:0]
COMM_MEM_LEN [15:8]

 Response [15:8]Get
2 Bytes of
Response

followed by n
words of Data

 Mem Value 1 [7:0]

 Mem Value 1 [15:8]

COMM_LAST_DATA[7:0]
COMM_LAST_DATA[15:8]

EZ-Host/OTG
SPI Slave

COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR [15:8]

 Mem Value n [7:0]

 Mem Value n [15:8]

Poll for non
0xFF

 Wait = 0xFF
Page 6-12 BIOS User’s Manual v1.1

6.3.8.10 COMM_EXEC_INT via SPI

Figure 6-10. COMM_EXEC_INT via SPI

HOST CPU
SPI Master

COMM_EXEC_INT [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_EXEC_INT [15:8]

 Response [15:8]

Get
2 Bytes of
Response

Followed by
R0 Return

Value

“XXh”

“XXh”

EZ-Host/OTG
SPI Slave

COMM_WRITE_MEM of INT Data

Full
COMM_WRITE_MEM

to set Interrupt Data
Structure

“XXh”

“XXh”

“XXh”

“XXh”

Poll for non
0xFF

 Wait = 0xFF

 R0 [7:0]

 R0 [15:8]
Chapter 6. SPI Transport Module Firmware Page 6-13

BIOS User’s Manual
Page 6-14 BIOS User’s Manual v1.1

Chapter 7 HSS Transport Module

7.1 Introduction

7.1.1 Overview

The High Speed Serial interface (HSS) of the CY16 processor provides a 9600 to 2M baud asyn-
chronous serial interface to EZ-Host/EZ-OTG device. The HSS Transport uses the HSS hardware
to receive LCP commands and data and to transmit responses. The serial connection is used in a
half-duplex manner with no hardware or software handshaking.

7.1.2 Scope

This document provides details on the HSS support software. A basic understanding of the EZ-
Host/EZ-OTG hardware and software architecture is assumed.

7.2 Functional Requirements

The HSS transport exposes the Link Control Protocol via the HSS hardware interface. The trans-
port must be capable of receiving LCP commands from an external CPU and sending back
responses.

7.3 Detailed Design

Refer to Figure 2-1 Link Control Protocol for details.

The HSS transport is inherently different from the HPI transport. This is because HSS is a single
channel communication link, which relies totally on software for access to the hardware. Where the
HPI interface has a direct memory access channel for memory reads and writes, the HSS must
access memory via LCP commands.
Chapter 7. HSS Transport Module Page 7-1

BIOS User’s Manual
7.3.1 General Outline

The HSS transport consists of the following functions:

• HSS Init Routine

• HSS_RX_ISR

• HSS_Done_ISR

• HSS_SEND_BLOCK Routine

• HSS_RECEIVE_BLOCK Routine

7.3.2 HSS INIT Routine

The HSS INIT routine is called to enable LCP messages to be processed via the HSS transport.

The INIT routine does the following:

• Enables HSS I/F via EZ-Host/EZ-OTG Control Registers

• Sets the Baud Rate

• Setup HSS Port Commands table

• Setup Packet/BYTE/Block mode

• Enables HSS Interrupts

7.3.3 HSS RX ISR

The HSS_RX_ISR is triggered when the External CPU writes an 8-byte command block to the
HSS interface. The ISR gets the 16-bit port command and the six bytes that follow and places
them in memory. The extra six bytes contain parameters for the given LCP command. For exam-
ple, if the command is COMM_JUMP2CODE then the data after the command contains the
address to jump to. This is described in the HSS transfer diagrams.

7.3.4 HSS_DONE_ISR

The HSS_DONE_ISR is triggers when either a block transmit or block receive has completed.
The ISR will set the semaphore that signal the LCP idle task to indicate the completion of the
transfer so other transactions can take place.
Page 7-2 BIOS User’s Manual v1.1

7.3.5 HSS_SEND_BLOCK Routine

The HSS_SEND_BLOCK routine is used to send data to the External CPU using DMA.

Entry: R1 – Number of Words to Send

R8 – Pointer to data

R9-- Pointer to HSS_TX_BLK_ADDR

Return: None.

7.3.6 HSS_RECEIVE_BLOCK Routine

The HSS_RECEIVE_BLOCK routine is used to receive data from the External CPU using DMA.

Entry: R1 – Number of Words to Send

R8 – Pointer to data

R9 – Pointer to HSS_RX_BLK_ADDR

Return: None.

Note: As a master, the external host processor is in full control of the interface. The Host must
grant time to the BIOS in between sending LCP commands. The Host should wait at least 30
microseconds between sending a new command packet (This time is required due to the LCP idle
task is running as part the BIOS idle tasks. This number assumes only one SIE is activated at a
time. If two SIEs and UART idle tasks are involved, then this time should be extended). When
changing the BAUD rate command via the COMM_CONFIG, the Host must wait at least 100
microsecond before sending any new command with the new baud rate.
Chapter 7. HSS Transport Module Page 7-3

BIOS User’s Manual
7.3.7 HSS TRANSFER DIAGRAMS FOR LCP

7.3.7.1 COMM_RESET via HSS

Figure 7-1. COMM_RESET via HSS

HOST CPU
HSS Master

COMM_RESET [7:0]

Send 8 Byte
CMD Packet

EZ-Host/OTG
HSS Slave

 Response = COMM_ACK [7:0]

COMM_RESET [15:8]
“XXh”

Wait for
2 Bytes of
Response

 Response = COMM_ACK [15:8]

“XXh”

“XXh”

“XXh”

“XXh”

“XXh”
Page 7-4 BIOS User’s Manual v1.1

7.3.7.2 COMM_JUMP2CODE via HSS

Figure 7-2. COMM_JUMP2CODE via HSS

Notes: The code should exist in the memory space that COMM_CODE_ADDR will point to. If the
code jumped to does not return, then the ACK will not be sent.

HOST CPU
HSS Master

COMM_JUMP2CODE [7:0]

Send 8 Byte
CMD Packet

EZ-Host/OTG
HSS Slave

 Response = COMM_ACK [7:0]

COMM_JUMP2CODE [15:8]
COMM_CODE_ADDR [7:0]

Wait for
2 Bytes of
Response

 Response = COMM_ACK [15:8]

COMM_CODE_ADDR [15:8]
“XXh”

“XXh”

“XXh”

“XXh”

Jump After
Send
Response
Chapter 7. HSS Transport Module Page 7-5

BIOS User’s Manual
7.3.7.3 COMM_CALL_CODE via HSS

Figure 7-3. COMM_CALL_CODE via HSS

Notes: The code should exist in the memory space that COMM_CODE_ADDR will point to. If the
code jumped to does not return, then the ACK will not be sent.

HOST CPU
HSS Master

COMM_CALL_CODE [7:0]

Send 8 Byte
CMD Packet

EZ-Host/OTG
HSS Slave

 Response = COMM_ACK [7:0]

COMM_CALL_CODE [15:8]
COMM_CODE_ADDR [7:0]

Wait for
2 Bytes of
Response

 Response = COMM_ACK [15:8]

COMM_CODE_ADDR [15:8]
“XXh”

“XXh”

“XXh”

“XXh”

Call Code Then
Send Response
Page 7-6 BIOS User’s Manual v1.1

7.3.7.4 COMM_WRITE_CTRL_REG via HSS

Figure 7-4. COMM_WRITE_CTRL_REG via HSS

HOST CPU
HSS Master

COMM_WRITE_CTRL_REG [7:0]

 Response [7:0]

COMM_WRITE_CTRL_REG [15:8]COMM_CTRL_REG_ADDR [7:0]
COMM_CTRL_REG_ADDR [15:8]

 Response [15:8]

EZ-Host/OTG
HSS Slave

Send 8 Byte
CMD Packet

Wait for
2 Bytes of
Response

COMM_CTRL_REG_DATA [7:0]COMM_CTRL_REG_DATA [15:8]
COMM_CTRL_REG_LOGIC [7:0]COMM_CTRL_REG_LOGIC [15:8]
Chapter 7. HSS Transport Module Page 7-7

BIOS User’s Manual
7.3.7.5 COMM_READ_CTRL_REG via HSS

Figure 7-5. COMM_READ_CTRL_REG via HSS

HOST CPU
HSS Master

COMM_READ_CTRL_REG [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_READ_CTRL_REG [15:8]
COMM_CTRL_REG_ADDR [7:0]COMM_CTRL_REG_ADDR [15:8]

 Response [15:8]

Wait for
2 Bytes of
Response

followed by 2
bytes of Data

 COMM_CTRL_REG_DATA [7:0]

 COMM_CTRL_REG_DATA [15:8]

“XXh”

“XXh”

“XXh”

“XXh”

EZ-Host/OTG
HSS Slave
Page 7-8 BIOS User’s Manual v1.1

7.3.7.6 COMM_WRITE_MEM via HSS

Figure 7-6. COMM_WRITE_MEM via HSS

HOST CPU
HSS Master

COMM_WRITE_MEM [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_WRITE_MEM [15:8]
COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR [15:8]

 Response [15:8]

Wait for
2 Bytes of
Response

Mem Value 1 [7:0]
 Mem Value 1 [15:8]

“XXh”

“XXh”

EZ-Host/OTG
HSS Slave

COMM_MEM_LEN [7:0]
COMM_MEM_LEN [15:8]

 Mem Value n [7:0]
 Mem Value n [15:8]

Send
n Words of

Data
Chapter 7. HSS Transport Module Page 7-9

BIOS User’s Manual
7.3.7.7 COMM_READ_MEM via HSS

Figure 7-7. COMM_READ_MEM via HSS

HOST CPU
HSS Master

COMM_READ_MEM [7:0]

Send 8-Byte
CMD Packet

 Response [7:0]

COMM_READ_MEM [15:8]
COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR [15:8]

 Response [15:8]

 Mem Value 1 [7:0]

 Mem Value 1 [15:8]

“XXh”

“XXh”

EZ-Host/OTG
HSS Slave

COMM_MEM_LEN [7:0]
COMM_MEM_LEN [15:8]

 Mem Value n [7:0]

 Mem Value n [15:8]

Wait for
2 Bytes of
Response

followed by n
words of Data
Page 7-10 BIOS User’s Manual v1.1

7.3.7.8 COMM_WRITE_XMEM via HSS

Figure 7-8. COMM_WRITE_XMEM via HSS

HOST CPU
HSS Master

COMM_WRITE_XMEM [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_WRITE_XMEM [15:8]
COMM_MEM_LEN [7:0]
COMM_MEM_LEN [15:8]

 Response [15:8]

Wait for
2 Bytes of
Response

 Mem Value 1 [7:0]
 Mem Value 1 [15:8]

COMM_LAST_DATA [7:0]
COMM_LAST_DATA [15:8]

EZ-Host/OTG
HSS Slave

COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR [15:8]

 Mem Value n [7:0]
 Mem Value n [15:8]

Send
n Words of

Data
Chapter 7. HSS Transport Module Page 7-11

BIOS User’s Manual
7.3.7.9 COMM_READ_XMEM via HSS

Figure 7-9. COMM_READ_XMEM via HSS

HOST CPU
HSS Master

COMM_READ_XMEM [7:0]

Send 8 Byte
CMD Packet

 Response [7:0]

COMM_READ_XMEM [15:8]
COMM_MEM_LEN [7:0]
COMM_MEM_LEN [15:8]

 Response [15:8]

 Mem Value 1 [7:0]

 Mem Value 1 [15:8]

COMM_LAST_DATA [7:0]
COMM_LAST_DATA[15:8]

EZ-Host/OTG
HSS Slave

COMM_MEM_ADDR [7:0]
COMM_MEM_ADDR [15:8]

 Mem Value n [7:0]

 Mem Value n [15:8]

followed by n

Wait for
2 Bytes of
Response

words of Data
Page 7-12 BIOS User’s Manual v1.1

7.3.7.10 COMM_EXEC_INT via HSS

Figure 7-10. COMM_EXEC_INT via HSS

HOST CPU
HSS Master

COMM_EXEC_INT [7:0]

Send 8-Byte
CMD Packet

 Response [7:0]

COMM_EXEC_INT [15:8]

 Response [15:8]Wait for
2 Bytes of
Response

Followed by
R0 Return

Value

“XXh”

“XXh”

EZ-Host/OTG
HSS Slave

COMM_WRITE_MEM of INT Data

Full
COMM_WRITE_MEM
to set Interrupt Data

Structure

“XXh”

“XXh”

“XXh”

“XXh”

 R0 [7:0]

 R0 [15:8]
Chapter 7. HSS Transport Module Page 7-13

BIOS User’s Manual
7.3.7.11 COMM_CONFIG via HSS

Figure 7-11. COMM_CONFIG via HSS

Note: Appropriate baud rate values can be found in the EZ-Host or EZ-OTG Datasheets.

HOST CPU
HSS Master

COMM_CONFIG [7:0]

Send 8 Byte
CMD Packet

EZ-Host/OTG
HSS Slave

 Response = COMM_ACK [7:0]

COMM_CONFIG [15:8]
COMM_BAUD_RATE [7:0]

 Response = COMM_ACK [15:8]

COMM_BAUD_RATE [15:8]
“XXh”

“XXh”

“XXh”

“XXh”

Send
Response

Then change
Baud Rate

Wait for
2 Bytes of
Response
Page 7-14 BIOS User’s Manual v1.1

Appendix A
Definitions

Term Definition

2-wire serial
interface

2-wire serial flash EEPROM interface.

BIOS Basic Input/Output System

EOT End Of Transfer

EZ-Host
EZ-OTG

The EZ-Host and EZ-OTG are Cypress USB Controllers that provides multiple
functions on a single chip

HCD Host Controller Driver

HPI Host Processor Interface

HSS High-Speed Serial port

LCP Link Control Protocol

Port CMD LCP Command sent over a Slave Transport

PLL Phase Lock Loop

PWM Pulse Width Modulation

R0-R15 CY16 Registers: R0-R7 Data registers or general-purpose registers
R8-R14 Address/Data registers, or general-purpose registers
R15 Stack pointer register

RAM Random Access Memory

R/W Read/Write

SPI Serial Peripheral Interface

System CPU An external CPU acting as a master to EZ-Host or EZ-OTG

TD Transfer Descriptor (host mode)

USB Universal Serial Bus

WDT Watch Dog Timer
Appendix A A - 1

BIOS User’s Manual
A - 2 BIOS User’s Manual v1.1

Appendix B
References

CY16_HW: CY16 Hardware Specification

USB Specification 2.0

CY16_TOOLS: CY16 Software Tools.

EZ-Host/EZ-OTG BIOS bugs Tracking and Solving Issues
Appendix B B - 3

BIOS User’s Manual
B - 4 BIOS User’s Manual v1.1

Appendix C
Revision History

Name and Version Date Issue Comments
Rev 0.0
Appendix C C - 5

BIOS User’s Manual
C - 6 BIOS User’s Manual v1.1

	BIOS User's Manual
	Cypress Disclaimer
	Table of Contents
	List of Figures
	List of Tables
	Chapter 1 BIOS Interface
	1.1 Introduction
	1.1.1 Overview
	1.1.2 General Notes

	1.2 Development Utilities
	1.2.1 GNU Development Tools from RedHat

	1.3 BIOS Overview
	1.3.1 CY16 Memory Map
	1.3.2 BIOS Initialization Process
	1.3.3 Boot Control
	1.3.3.1 SIE1 Host/Peripheral USB Initialization
	1.3.3.2 Co-processor and Stand-alone Boot Control

	1.4 Link Control Protocol (LCP)
	1.4.1 LCP Overview for Host Processor Interface (HPI)
	1.4.1.1 Programming Overview

	1.4.2 LCP Overview for High Speed Serial (HSS)
	1.4.3 LCP Overview for Serial Peripheral Interface (SPI)

	1.5 Hardware Interrupts
	1.5.1 BIOS Hardware Interrupt Usage
	1.5.1.1 Interrupts Not Used by the BIOS
	1.5.1.2 Interrupts Used by the BIOS�

	1.6 Debugging Tools support
	1.7 Software Interrupts
	1.7.1 Interrupt 48-49: LCP Message Subroutines
	1.7.2 Signature SCAN Support
	1.7.2.1 Interrupt 67: SCAN_INT
	1.7.2.1.1 Software Interface
	1.7.2.1.2 Example

	1.7.2.2 Interrupt 79: SCAN_DECODE_INT
	1.7.2.2.1 Software Interface

	1.7.3 OTG Interrupt Functions
	1.7.3.1 Interrupt 50 (OTG_STATE)
	1.7.3.2 Interrupt 112 (OTG_STATE_INT)
	1.7.3.2.1 Software Interface

	1.7.3.3 Interrupt 88 (OTG Descriptor)
	1.7.3.4 Interrupt 84 (OTG_SRP_INT)
	1.7.3.4.1 Software Interface

	1.7.3.5 Interrupt 86 (REMOTE_WAKEUP_INT)
	1.7.3.5.1 Software Interface

	1.7.4 USB Host Interrupt Functions
	1.7.4.1 Interrupt 114/115: HUSB_SIE1_INIT_INT/ HUSB_SIE2_INIT_INT
	1.7.4.1.1 Software Interface
	1.7.4.1.2 Example:

	1.7.4.2 Interrupt 116: HUSB_RESET_INT
	1.7.4.2.1 Software Interface
	1.7.4.2.2 Example

	1.7.5 USB Peripheral Interrupt Functions
	1.7.5.1 Interrupt 113: SUSB_INIT_INT
	1.7.5.1.1 Software Interface
	1.7.5.1.2 Example

	1.7.5.2 Interrupt 90,106: SUSB1_DEVICE_DESCRIPTOR_VEC, SUSB2_DEVICE_DESCRIPTOR_VEC
	1.7.5.2.1 Software Interface
	1.7.5.2.2 Example

	1.7.5.3 Interrupt 91,107:SUSB1_CONFIGURATION_DESCRIPTOR_VEC, SUSB2_CONFIGURATION_DESCRIPTOR_VEC
	1.7.5.3.1 Software Interface
	1.7.5.3.2 Example

	1.7.5.4 Interrupt 92,108:SUSB1_STRING_DESCRIPTOR_VEC, SUSB2_STRING_DESCRIPTOR_VEC
	1.7.5.4.1 Software Interface
	1.7.5.4.2 Example

	1.7.5.5 Interrupt 89,105:SUSB1_FINISH_INT, SUSB2_FINISH_INT
	1.7.5.5.1 Software Interface
	1.7.5.5.2 Example

	1.7.5.6 Interrupt 82,98: SUSB1_STALL_INT, SUSB2_STALL_INT
	1.7.5.6.1 Software Interface

	1.7.5.7 Interrupt 83,99: SUSB1_STANDARD_INT, SUSB2_STANDARD_INT
	1.7.5.7.1 Software Interface
	1.7.5.7.2 Example

	1.7.5.8 Interrupt 80, 96: SUSB1_SEND_INT, SUSB2_SEND_INT (Send data to USB SIE1,2 endpoint x resp...
	1.7.5.8.1 Software Interface
	1.7.5.8.2 Example

	1.7.5.9 Interrupt 81,97: SUSB1_RECEIVE_INT, SUSB2_RECEIVE_INT (Receive data from USB endpoint x)
	1.7.5.9.1 Software Interface
	1.7.5.9.2 Example

	1.7.5.10 Interrupt 85,101: SUSB1_VENDOR_INT, SUSB2_VENDOR_INT
	1.7.5.10.1 Software Interface
	1.7.5.10.2 Example

	1.7.5.11 Interrupt 87,103: SUSB1_CLASS_INT, SUSB2_CLASS_INT
	1.7.5.11.1 Software Interface
	1.7.5.11.2 Example

	1.7.5.12 Interrupt 94,110:SUSB1_LOADER_INT, SUSB2_LOADER_INT
	1.7.5.12.1 Software Interface
	1.7.5.12.2 Example

	1.7.5.13 Interrupt 95,111:SUSB1_DELTA_CONFIG_INT, SUSB2_DELTA_CONFIG_INT
	1.7.5.13.1 Software Interface
	1.7.5.13.2 Example

	1.7.6 Interrupt 51-63 and 118-125
	1.7.7 Memory Functions
	1.7.7.1 Interrupt 76: REDO_ARENA
	1.7.7.2 Interrupt 69: Memory Data Pointer
	1.7.7.2.1 Software Interface

	1.7.7.3 Interrupt 68: ALLOC_INT
	1.7.7.3.1 Software Interface
	1.7.7.3.2 Example

	1.7.7.4 Interrupt 75: FREE_INT
	1.7.7.4.1 Software Interface
	1.7.7.4.2 Example

	1.7.7.5 Interrupt 73: PUSHALL_INT
	1.7.7.5.1 Software Interface
	1.7.7.5.2 Example

	1.7.7.6 Interrupt 74: POPALL_INT
	1.7.7.6.1 Software Interface
	1.7.7.6.2 Example

	1.7.7.7 Interrupt 77: HW_SWAP_REG (Swap register bank)
	1.7.7.7.1 Software Interface
	1.7.7.7.2 Example

	1.7.7.8 Interrupt 78: HW_REST_REG (Restore register bank)
	1.7.7.8.1 Software Interface
	1.7.7.8.2 Example

	1.7.8 BIOS Idle task functions
	1.7.8.1 Interrupt 70: IDLE_INT
	1.7.8.1.1 Software Interface
	1.7.8.1.2 Example

	1.7.8.2 Interrupt 71: IDLER_INT
	1.7.8.2.1 Example

	1.7.8.3 Interrupt 72: INSERT_IDLE_INT
	1.7.8.3.1 Software Interface
	1.7.8.3.2 Example

	1.7.9 Debugging Support functions
	1.7.9.1 Interrupt 126-127 Reserved for Debugger

	1.7.10 Serial EEPROM support
	1.7.10.1 Interrupt 64: 2-wire Serial EEPROM (from 256-byte to 2 KByte)
	1.7.10.1.1 Software Interface

	1.7.10.2 Interrupt 65: 2-wire Serial EEPROM from (4 KByte to 64 KByte)

	1.7.11 UART functions
	1.7.11.1 Interrupt 66: UART_INT
	1.7.11.1.1 Software Interface
	1.7.11.1.2 Example

	1.7.11.2 Interrupt 123: KBHIT
	1.7.11.2.1 Overview
	1.7.11.2.2 Software Interface
	1.7.11.2.3 Example

	Chapter 2 Link Control Protocol Firmware
	2.1 Introduction
	2.1.1 Overview
	2.1.2 Scope

	2.2 Detailed Design
	2.2.1 Architectural Outline
	2.2.2 Transport Requirements
	2.2.3 BIOS ROM Code (LCP)
	2.2.3.1 Data Structures and Variables for Port Command Processing
	2.2.3.2 Command Descriptions

	Chapter 3 USB Host BIOS Specifications
	3.1 Introduction
	3.1.1 Co-processor Mode
	3.1.2 Stand-alone Mode

	3.2 Functional Requirements
	3.3 USB Host BIOS Overview
	3.3.1 Block Diagram
	3.3.1.1 HUSB_SIEx_INIT_INT
	3.3.1.2 HUSB_RESET_INT

	3.3.2 Flow Chart of USB Transfer

	3.4 Software Interface Between HCD and BIOS
	3.4.1 TD Semaphore Address
	3.4.1.1 HUSB_SIEx_pCurrentTDPtr
	3.4.1.2 EOT and HUSB_pEOT
	3.4.1.3 HUSB_SIEx_pTDListDone_Sem

	3.4.2 TD SIE Mailbox Message

	3.5 TD List Data Structure
	3.5.1 BaseAddress (WORD: 0x00-01)
	3.5.2 Port_Length (WORD: 0x02-03)
	3.5.3 PID_EP (BYTE: 0x04)
	3.5.4 DevAdd (BYTE: 0x05)
	3.5.5 Control (BYTE: 0x06)
	3.5.6 Status (BYTE: 0x07)
	3.5.7 RetryCnt (BYTE: 0x08)
	3.5.8 Residue (BYTE: 0x09)
	3.5.9 NextTDPointer (WORD: 0x0A-0B)

	3.6 Error Handling
	3.7 Schedule Bus Transaction Times
	3.8 Detail Design
	3.8.1 HUSB_SIEx_INIT_INT
	3.8.1.1 Software Interface
	3.8.1.2 Example:

	3.8.2 HUSB_RESET_INT
	3.8.2.1 Software Interface
	3.8.2.2 Example
	3.8.2.3 Flow Chart

	Chapter 4 Slave Support Module Firmware
	4.1 Introduction
	4.1.1 Overview
	4.1.2 Scope

	4.2 Functional Requirements
	4.3 Detailed Design
	4.3.1 Endoint0 Processing Outline
	4.3.1.1 Behavior
	4.3.1.2 Architecture

	4.3.2 Generic Endpoint Support
	4.3.2.1 Behavior
	4.3.2.2 Architecture
	4.3.2.3 Data Structures
	4.3.2.4 Code Structure

	4.3.3 Reasons for Important Choices

	Chapter 5 HPI Transport Module
	5.1 Introduction
	5.1.1 Overview
	5.1.2 Scope

	5.2 Functional Requirements
	5.3 Detailed Design
	5.3.1 HPI General Description
	5.3.2 HPI Signal Description
	5.3.3 Host DMA to/from EZ-Host/EZ-OTG Memory via HPI Port
	5.3.4 HPI INIT Routine
	5.3.5 Host to EZ-Host/EZ-OTG MailBox Message
	5.3.6 EZ-Host/EZ-OTG to Host MailBox Message
	5.3.7 HPI TRANSFER DIAGRAMS FOR LCP
	5.3.7.1 COMM_RESET via HPI
	5.3.7.2 COMM_JUMP2CODE via HPI
	5.3.7.3 COMM_CALL_CODE via HPI
	5.3.7.4 COMM_WRITE_CTRL_REG via HPI
	5.3.7.5 COMM_READ_CTRL_REG via HPI
	5.3.7.6 COMM_READ_XMEM via HPI
	5.3.7.7 COMM_WRITE_XMEM via HPI
	5.3.7.8 COMM_EXEC_INT via HPI

	Chapter 6 SPI Transport Module Firmware
	6.1 Introduction
	6.1.1 Overview
	6.1.2 Scope

	6.2 Functional Requirements
	6.3 Detailed Design
	6.3.1 General Outline
	6.3.2 SPI INIT Routine
	6.3.3 SPI_RX_ISR
	6.3.4 SPI_Done_ISR
	6.3.5 SPI_Send_Blk Routine
	6.3.6 SPI_Rec_Blk Routine
	6.3.7 SPI polling the Status
	6.3.8 SPI TRANSFER DIAGRAMS FOR LCP
	6.3.8.1 COMM_RESET via SPI
	6.3.8.2 COMM_JUMP2CODE via SPI
	6.3.8.3 COMM_CALL_CODE via SPI
	6.3.8.4 COMM_WRITE_CTRL_REG via SPI
	6.3.8.5 COMM_READ_CTRL_REG via SPI
	6.3.8.6 COMM_WRITE_MEM via SPI
	6.3.8.7 COMM_READ_MEM via SPI
	6.3.8.8 COMM_WRITE_XMEM via SPI
	6.3.8.9 COMM_READ_XMEM via SPI
	6.3.8.10 COMM_EXEC_INT via SPI

	Chapter 7 HSS Transport Module
	7.1 Introduction
	7.1.1 Overview
	7.1.2 Scope

	7.2 Functional Requirements
	7.3 Detailed Design
	7.3.1 General Outline
	7.3.2 HSS INIT Routine
	7.3.3 HSS RX ISR
	7.3.4 HSS_DONE_ISR
	7.3.5 HSS�_SEND_BLOCK Routine
	7.3.6 HSS_RECEIVE_BLOCK Routine
	7.3.7 HSS TRANSFER DIAGRAMS FOR LCP
	7.3.7.1 COMM_RESET via HSS
	7.3.7.2 COMM_JUMP2CODE via HSS
	7.3.7.3 COMM_CALL_CODE via HSS
	7.3.7.4 COMM_WRITE_CTRL_REG via HSS
	7.3.7.5 COMM_READ_CTRL_REG via HSS
	7.3.7.6 COMM_WRITE_MEM via HSS
	7.3.7.7 COMM_READ_MEM via HSS
	7.3.7.8 COMM_WRITE_XMEM via HSS
	7.3.7.9 COMM_READ_XMEM via HSS
	7.3.7.10 COMM_EXEC_INT via HSS
	7.3.7.11 COMM_CONFIG via HSS

	Appendix A
	Definitions

	Appendix B
	References

	Appendix C
	Revision History

