

Generate Sine Wave by LUT method in PSoC® 1

January 25, 2012 1

Project Name: Example_SineWave_DAC

Programming Language: C

Associated Part Families: CY24x23, CY27x43, CY8C29x66, CY8C24x94,CY27x43

Software Version: PSoC
®
 Designer ™ 5.2

Related Hardware : CY3210 PSoCEval1 Board

Example Objective

This example shows how to generate a sine wave of 60 Hz using an 8-bit DAC, 16-bit counter as time base, and

64 point lookup table (LUT) in PSoC
®

 1.

Overview
This example demonstrates a simple method of generating a sine wave of 60Hz in PSoC 1 using a 64 point look
up table (LUT), a DAC, and a time base. The output frequency can be varied by changing the output frequency of
the time base and the number of samples per cycle.

User Module List and Placement
The following table lists user modules in the project and the hardware resources used by each user module.

User Module Placement

Counter16_1 DBB00 and DBB01

DAC8_1 ASC10 and ASD20

User Module Parameter Settings
The following tables show the user module parameter settings for each user module in the project.

User Module Name: Counter16_1

Parameter Value Comments

Clock VC1 Not applicable. Refer Note [1]

Enable High Enables the counter.

Period 6249
A period of 6249 results in a divider of 6250. The output frequency
from the counter is 24 MHz / 6250 = 3.84 kHz.

CompareValue 3125 Sets the duty cycle to 50%.

CompareType Less Than Or Equal –

InterruptType Terminal Count Generates an interrupt on terminal count.

ClockSync Use SysClk Direct
24 MHz clock is fed to the Counter UM. This setting overrides the
Clock parameter.

Note [1]: When the ClockSync is set to “Use SysClk Direct”, the clock input to the counter is set to SysClk irrespective of the

Clock parameter.

January 25, 2012 2

User Module Name : DAC8_1

Parameter Value Comments

AnalogBus AnalogOutBus_0 Connects the DAC output to P0 [3] via analog output buffers.

ClockPhase Normal
Auto-zero cycle occurs during Phase1 and output of DAC is valid in
Phase 2.

DataFormat OffsetBinary
Offset-binary values are positive numbers, with the lowest output
voltage represented by zero and the highest by 254.

Note: The most important parameter for a DAC is the column clock. The column clock should be set within the value specified

in the user module data sheet. The maximum column clock for the DAC is different for different power levels. Refer the user
module data sheet and configure the column clock according to the desired operating power.

Global Resources
Important Global Resources

Parameter Value Comments

Supply Voltage 5.0V Selects 5 V operation

SysClk Source Internal 24_MHz Selects 24 MHz system clock

CPU_Clock 24_MHz(SysClk/1) CPU clock set to 24 MHz

VC1=SysClk/N 12 Set VC1 to 2 MHz

Analog Power SC On/Ref High
Controls the power to the analog section and current drive
capability for the internal reference buffers

Ref Mux (Vdd/2)+/-(Vdd/2)
Selects [AGND level ± full scale] that is, AGND = 2.5 V Range= 0 V
to 5 V

Note: The table lists the global resources that are specific to the project. Other parameters are left at their default value or

configured as required.

Pin Configuration
Pin Select Drive

P0[3] AnalogOutBuf_0 High Z Analog

Hardware Connections

This project does not require any external components. When the PSoC device is programmed and powered, the
output signal is observed on P0 [3] using an oscilloscope.

Operation

For a sampled system, the sample rate required to produce the desired output frequency is given by formula:

This example generates a 60 Hz sine wave using 64 samples. For an output frequency of 60 Hz and 64 samples,
the desired sample rate is 3.84 ksps. Using the above formula, any desired output frequency may be generated
by varying the sample rate or the number of samples.

A 64 point LUT is created which resembles a sine wave. The formula to create the samples of the LUT is:

Where,

n = Sample number (0 to 63)

Full Scale = Full scale count for the DAC, which is 127 for DAC8

Zero = Value at which DAC produces 0V, which is 127 for DAC8

January 25, 2012 3

Using the formula given earlier, the following LUT is created and stored as a ROM array in main.c.

const char SineTable64[] = {

127, 139, 152, 164, 176, 187, 198, 208, 217, 225, 233, 239, 244, 249, 252, 253,

254, 253, 252, 249, 244, 239, 233, 225, 217, 208, 198, 187, 176, 164, 152, 139,

127, 115, 102, 90, 78, 67, 56, 46, 37, 29, 21, 15, 10, 5, 2, 1,

0, 1, 2, 5, 10, 15, 21, 29, 37, 46, 56, 67, 78, 90, 102, 115

}; //64 samples store in ROM

The maximum output frequency that can be achieved using the 8 bit DAC can be calculated as:

Maximum Sample rate for an 8-bit DAC is 125 Kbps.

Maximum No. of sample = 256.

Maximum Output Frequency that can be achieved will be 488 Hz.

Firmware
On reset, all hardware settings from the device configuration are loaded into the device and main.c is executed.
The following operations are performed in main.c:

 Counter16 is started

 Counter16 interrupt is enabled

 DAC8 is started at high power

 Global interrupts are enabled. Any interrupt in the code will be serviced only if the Global Interrupt is enabled.

 The pointer to the LUT is initialized to 0

 An infinite loop is entered. Henceforth, all the operations take place inside the Counter’s ISR

Reading from the LUT and writing to the DAC8 take place inside the Counter’s ISR. The function Counter_ISR in
main.c performs the operations. This function is declared as an interrupt handler by using the following code.

#pragma interrupt_handler Counter_ISR;

The #pragma interrupt_handler is use to make a “C” function as an ISR function.

The ISR will be:

void Counter_ISR(void)

{

 // Update the DAC with the value in lookup table pointed the variable Pointer

 DAC8_1_WriteBlind(SineTable64[Pointer]);

 // Increment pointer

 Pointer++;

 // If the Pointer is incremented by 2, the effective number of samples will be

 // 32 and the output frequency will be doubled. If Pointer is incremented by 4,

 // number of samples will be 16 and the output frequency will be quadrupled.

 // Reset Pointer if greater than or equal to 64

 if (Pointer >= 64) Pointer = 0;

}
To execute the function on interrupt, a jump to this function must be done inside the ISR. This is done by placing
the following code inside the _Counter16_1_ISR inside the Counter16_1INT.asm file.

January 25, 2012 4

_Counter16_1_ISR:

 ;@PSoC_UserCode_BODY@ (Do not change this line.)

 ;---

 ; Insert your custom code below this banner

 ;---

 ; NOTE: interrupt service routines must preserve

 ; the values of the A and X CPU registers.

 ljmp _Counter_ISR

 ;---

 ; Insert your custom code above this banner

 ;---

 ;@PSoC_UserCode_END@ (Do not change this line.)

 reti

When the counter interrupt occurs, the boot.asm redirects the interrupt to the _Counter16_1_ISR. From here the
control is transferred to the interrupt handler in main.c. The following operations take place inside the ISR.

 The value from the LUT that corresponds to the pointer is read

 The DAC is updated with this value

 The Pointer is incremented

 If Pointer = 64, Pointer is reset to 0, so that the next cycle starts from the first sample in the LUT.

COUNTER

(Time base)
COUNTER ISR

(DAC data register is updated here)

8 BIT DAC
INT

ROM

TABLE

(LUT)

127
139

115

January 25, 2012 5

Figure 1. Scope Capture of Output Observed on P0[3]

Some Design Considerations

 The same 64 point LUT can be used for smaller tables such as 32 samples, 16 samples, and 8 samples.
For 32 samples, inside the ISR, increment the Pointer by 2 instead of 1. For 16 samples, increment the
Pointer by 4

 Higher the number of samples, smoother the output wave and lesser the harmonics. But as the desired output
frequency becomes higher, the sample rate also becomes high. When the time taken to execute the
Counter’s ISR becomes greater than the sample time, CPU load becomes 100%. At this point, the number of
samples must be reduced to further increase the output frequency

 To smoothen the output signal when sample’s per cycle is less add an RC Filter with corner frequency (fc)
above fundamental frequency and below the sampling frequency

Example: Fundamental Frequency = 60 Hz, Sampling Freq = 120 Hz. Let us consider a corner frequency =
80 Hz

Then we can design an RC LPF with R= 2 KΩ and C = 1 uf.

Upgrade Information
When the project is opened with a later version of PSoC Designer

TM
, you receive a project upgrade notification.

When the project is upgraded, the boot.tpl in the project is moved to the backup folder and a new boot.tpl is
placed. Also, depending on the upgrade, some of the user module library code may be replaced. To make sure
that the project works after the upgrade, open the Counter16_1INT.asm file and check that the
ljmp _Counter_ISR instruction is present in the _Counter16_1_ISR function inside the user code marker area. If
this instruction is not present, manually add the instruction. Save and compile the project.

January 25, 2012 6

PSoC is a registered trademark of Cypress Semiconductor Corp. PSoC Designer is a trademark of Cypress Semiconductor Corp. All other
trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2009-2011. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

http://www.cypress.com/

